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Abstract. We consider Albeverio’s linear representations of the braid groups B3 and Bi.
We specialize the indeterminates used in defining these representations to non zero complex
numbers. We then consider the tensor products of the representations of Bz and the tensor
products of those of B4. We then determine necessary and sufficient conditions that guaran-
tee the irreducibility of the tensor products of the representations of Bs. As for the tensor
products of the representations of B4, we only find sufficient conditions for the irreducibility
of the tensor product.
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1. Introduction

Let B,, be the braid group on n strings. It has many kinds of linear representations.
The earliest was Artin’s representation, which is an embedding B,, — Aut(F),), where
F,, is a free group with n generators. Applying the free differential calculus to elements
of Aut(F,,) sometimes gives rise to linear representations of B,, and its normal subgroup,
the pure braid group denoted by P, . For more details, see [3,4]. The Lawrence- Krammer
representation arises this way. Krammer’s representation is a representation of the braid
group B, in GL(m, Z[t*, ¢*1]), where m = @ ([6,7]). It was shown by Bigelow us-
ing topological methods, and independently by Krammer using algebraic methods to be
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faithful, thus proving the long open problem that the braid groups are linear. To prove
linearity, Bigelow [2] used the Lawrence-Krammer representation. Other representations
of braid groups were obtained by Albeverio in every dimension (see [1]). Using Burau
unitarizable representation, Albeverio presented a class of non trivial unitary represen-
tations for the braid groups B3 and By. These are unitary representations of the braid
group on a small number of strands and they exist in every dimension depending on
n parameters. In section 2, we write explicitly Albeverio’s representations of the braid
groups B3 and By. In section 3, we write the main theorems of our work. In sections 4
and 5, we determine the tensor product of the representations of Bs and By respectively.
In sections 6 and 7, we prove Theorem 3.1 and Theorem 3.2 concerning the irreducibility
of the representations obtained by tensoring Albeverio’s representations of Bs and By
respectively. Theorem 3.1 gives necessary and sufficient conditions for the irreducibility
of the tensor product of the representations of Bs. As for the tensor product of the repre-
sentations of By, we fall short of finding necessary conditions of irreducibility. Theorem
3.2 gives only sufficient conditions of irreducibility of the representations of By. A similar
study related to reducibility or irreducibility of braid groups representations exists for the
Lawrence-Krammer representation. It was shown that the representation is generically
irreducible, but when its two parameters are specified to some complex numbers, it be-
comes reducible. A complete criterion of irreducibility for the representation is provided
in [8]. The latter paper provides a necessary and sufficient condition on the parameters
so that the representation is reducible.

2. Sergio Albeverio representations of the Braid groups B3 and By

Albeverio representations of the Braid Group Bjs: Consider the braid group B3 and the
product of the generators J = o109 and S = o1J. This means that B3 will be generated
by J and S, and has only one relation S? = .J3. Denote the representation of B3 by 73,
where 73(S) = U and n3(J) = V. Here U and V are 2n + m X 2n + m block matrices
given by

A—1,/2 B c
U=2| B* B*A'B-1,)2 B*A"'C
o C*A"'B C*A7'C—1I,/2

and V = diag(I,, BI,, 3*IL,). We have 8 = /1 is a primitive root, 1 < m < n, A and B
are n x n matrices and C' is an n X m matrix. We also have V3 = Iopim. If A= A*and
BB* +CC* = A — A2, we get U = U* and U? = I3, . For more details, see [1].

Proposition 2.1 A and B are invertible, rank(C) = m, B*B is a diagonal matrix with
simple spectrum and every entry of A is non-zero then the Albeverio representation is
irreducible.

Albeverio representations of the Braid Group By: Consider the braid group By
generated by o1, o2 and o3. Denote the representation of By by m4. The representation
74 is constructed using the reduced Burau representation (see [5]) written in the base
where every matrix 74 (o;) is unitary, my(o1) = diag(u, 1, 1),

(u—1a1+1 (u—1)y/a;—a?0

m(o2) = | (u—1)\/a; —a? (1 —-w)a;+u 0
0 0 1

and
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1 0 0
ma(o3) =10 (u—Dag+1 (u—1)\/as—a3 |,
0(u—1)/az—a2 (1—u)as+u

where vt = 1, ag = —u/(u — 1), ag = a1/(1 — a1). We assume further that u # 1
and u # 1%7\@ We observe that «; and ag are real numbers. Let us specialize u to a
non zero complex number and write m4(u) instead of m4. Since the representation m4(u)
is unitary then the orthogonal complement of a proper invariant subspace is again a
proper invariant subspace. To study the irreducibility of m4(u), it suffices to study the
existence of a one-dimensional invariant subspace. The possible one-dimensional invariant
subspaces are (e1) and (aes + bes), where a and b are scalars, and ej, e and ez standard
unit vectors. Easy calculations give the following proposition.

Proposition 2.2 m4(u) is irreducible if and only if u # =+i.

3. Main theorems of the paper

We would take the 3-dimensional 1-parameter based representatlons of Bg, namely7
m3C), with B and C non-zero reals and A specialized to 5, 0B specialized to e 5 , tensor
with the 3-dimensional 1-parameter based representatlon of Bg, namely m3(C") With B
and C” non-zero reals and A specialized to 2, 0 specialized to e 5
Theorem 3.1 For non zero real numbers C,C’ €] — %, 2[ the tensor product of the real
specializations of Albeverio’s representations p3 = w3(C) x 73(C’) : By — GL(9,C) is
irreducible if and only if C? # C".

On the other hand, we take the 3-dimensional 1-parameter based representation of By,
74(u) as defined formerly tensor with mg(u’).

Theorem 3.2 For non zero complex numbers u,u’ ¢ {1, 1+;\/§7 1_;*/5}, the tensor

product of the complex specializations of Albeverio’s representations ps = 74 (u) @y (u') :
By — GL(9,C) is irreducible if u # « and wu' # 1.

4. Tensor product of Albeverio’s representations of Bj

Consider the braid group Bj3 generated by S and V. Take n = m = 1 with B and C
non-zero real numbers and A is specialized to the value % This implies that B = B*,
C =C*and B>+C? = A— A% For A= 1 wehave B? = —CQ. We require —% <C< %
We substitute the value of B in U. So, We get

/1 _ 2
0 1—C c 10 0

m(S)=U=2|,/L—c2 —20? 20,/l-C2| andms(J)=V =080
C  20/1-0C? 2073

Here, 3 is a 3rd root of unity. That is, 5* = 1. The representation 73 is now a one
parameter representation. The matrices U and V are given in terms of the real number

C.Let 8 = es" and we denote 73 by w3(C'). On the other hand, we change the real number
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C to C" and S8 to e%, which we will denote by 73(C”). We also require —% <(C < i
We denote m3(C') x 73(C") by p3 given by

p3(J)

where

o0 000 0 00 0000 ablode
Oes 0‘000 0 00 000(a f g|d hi
00es 000 0 00 000[b g jle ik
00 0es00 0 00 0abl0 ul|]0mn
=100 0 010 0 0 O0f andps(S)=]afgluopmaqgs|,
00 0 0 0es 0 00 bgjll prin st
00 0 000 e 00 0del0 mn|0 wax
00 0 000 0 €50 dhilm g sjwy 2
00 0 000 0 01 et kln s tlz z v
a=4/(}-C?) (1-0?) | b=4c\/(}-C?) d=140,/(% - C?)
e = 4CC" f=-80%/(3-c2) | g=s8C'\/(3-C?) (L -C?)
h = —8CC" i=scc\/(A-cn) | j=(807-2),/(-c?)
k= 20(4C" — 1) —8C'C? m=8C,/(} - C2) (1 - C?)
n=38CC"\/( - C?) 0 = 1602C" = —160'C?/ (1 — )
g=-16CC?\ /(1 -C2) | r=—-4C? (107 - 1) | s=160C" /(L - C?) (3 - C7)

t=4C (4C" —

1),/(k-C?)

u=-8C/(% - ")

v=(4C*-1) (4C” —1)

w=(3C2-2),/(1-¢7)

x=2C"(4C? - 1)

= —4C"(4C% - 1)

1
4
2= 4C"(4C7 — 1)\/(5

5. Tensor Product of Albeverio’s Representations of B,

Consider the braid group By, where By is the braid group generated by the standard
generators o1, 09, o3 and w4 is a one parameter representatlon of By. The images of
the generators m4(01),m4(02) and m4(03) are given in terms of u only, and so we get the
representation 74(u). On the other hand, we change u to v’ and denote it by 74(u'). We

require u # 1, u # Lé‘/g, u #1 and v # 1%7‘/3 The representation 74 (u) is given by

g

” 0 0 —1 1/7,u134,u27u 0 1 0 0

u—1 u—1 u—1)4/—u(u2+1
01 0) o= | e W ey = |0 g St
001 “o ot 0 =Dyl u?

[u?—u+1]|

u2—u+1
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Then, we determine the tensor product psy = mg(u) X ma(u').

109

uu’ 00000000 zz' r 0|7 wvov' 0|0 00
00000000 r y Olvv’ 2/ 0/0 00
0 0u00000O00O0 0 0 «2[0 0 2|0 0O
0 00400000 v 0y =2 0[/0 00
pa(c1)=] 0 00010000 | and pg(oe) =] vv' 2 0| z ww’ 0[O0 00
000001000 0 0 wvf0O O wlO OO
0000004 00 0 000 0 Ofzf 20
0 00000O0OT1O0 0 000 0 O]woO
0 00000O0O01 0 000 O 0001
where
r— V—uBtu?—v/ P — V-udtu?—u
(1—w)(w—1) — (—w)(u-1)
B \/(—u3+u2—u) ;L \/(—u’g—l-u/z—u’)
L (72§ IR N O S R
. 2 /_ 72
W= G el 75))
— 1 — —1
~u-1 T = v
— — 2 . — 72
Y= w1 Y = w1
_ @ (uttur ) | wr i tu—u
SO (72 )] (s Y S OV V] )
and
100000000
0ab000000O0
0bcO0O0OO0O0OO
000d00e 00
palos)= | 0000 fg0h i |,
0000gj0 ik
000e00700
0000hi0mn
0000:ik0no
where
B 1 (' =1)y/—w (w2 +]1) - 8
4= T b= ¢ = vl
_ 1 _ (u=1)y/—u(u?+1) _ 1
d_uz—u—l-l €= |[u?—u+1] f_ (u?—u+1)(u?—u'+1)

(W =1)y/—w (w2 +1)
9= (u?—u+1)|u?—u'+1]

(u—1)y/—u(u?+1)

i (u—1)(u'—1)y/uw (u2+1) (u2+1)

h = G ]

[u?—u+1|Ju?—u/'+1]

/3

E— u’3(u71)\/7u(u2+1)

3

m =

(u?—u+1)(u?—u'+1)

(u?—u+1)|u2—u'+1]

J T wr—w (@ —ut1) (0 —w+ D[ —ut1] Wil
ud u (u’fl)\/fu’(u’%rl) w3

o=

(u?—u+1)(uw2—u'+1)

6. On the Irreducibility of the Tensor Product of the Real
Specializations of Albeverio’s Representations of Bj

We specialize the indeterminates involved in defining the tensor product of Albeverio’s
representations of B3 to non zero real numbers. We investigate whether or not there
are invariant subspaces under the tensor product of the representations. Now, we prove

Theorem 3.1.
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Sufficient conditions of irreducibility: For a unitary representation, the orthogonal
complement of a proper invariant subspace is again a proper invariant subspace. Thus,
to show irreducibility, it suffices only to show that there are no proper invariant
subspaces of dimensions 1, 2, 3 and 4 if C? is distinct from C"2.

Invariant subspaces of dimension one. If x is a generator of a one-dimensional
invariant subspace, then since ps(J)(x) = Az, some scalar A, we must have x belongs
to span{ey,es,eg9) or x belongs to span (ea,eg, e7) or x belongs to span(es,ey,es).
From the shape of the matrix p3(S) and the allowed specializations for C and C’, the
third possibility is to rule out. And so is the second one. It remains to study the first
possibility, where x belongs to span(ei,es,eg). Let A = (aje; + ases + ageg). Then,

p3(S)er =\ (a1 0005000 ag)T for some scalar A\. Here we notice that fk —gi =0
but fn —wi # 0 if C? is distinct from C’?. This implies a5 = a9 = 0. Then from the
eight row, we derive a; = 0. Hence if C? is distinct from C’2, there is no one-dimensional
invariant subspace.
Invariant subspaces of dimension two. From the diagonal shape of p3(.J), the pos-
sible 2-dimensional invariant subspaces are (aie; + ases + ageg, ages + ageq + asges),
(arer + ases + ageg, ases + ages + arer), (aze + ageg + arer, azes + ageq + ageg),
(e1,€;) for i = 5,9, (e2,€;) for i = 6,7 and (es, ;) for i = 4, 8. Here, o/s are scalars. We
observe that for any vector belonging to either one of these spaces, we have at least two
of its components are zeros. From the shape of p3(S) and the specializations, we rule
out the subspaces of the form (e;,e;). Since the argument is quite similar in handling
all the other subspaces, we take A = («aje; + ases + ageg, ages + ageq + ages) as an
example to show that the subspace is not invariant if C? # C"2.

If A = (are1 + ases + ageg, azes + ageq + ages), then ps(S) (are; + ases + ageg) €
A. We show that the 2nd entry and the Tth entry cannot be both zeros. If 2nd entry
fas +iag =0, we get

1 1
—8C", | <4 — C2> as +8CC"y | <4 - C’2> as = 0. (1)

If the 7-th entry mas + xag = 0, we get

80\/<i - 02> (i — C2> as + 20" (4C% — 1)ag = 0. (2)

By solving equations (1) and (2), we get C"? = C2, which is a contradiction. So, the 2nd
and Tth entries cannot be zeros at the same time. Thus, p3(U) (a1e1 + ases + ageg) ¢ A.
Therefore, the subspace A = (a1e1 + ases + ageg, ages + ageq + ageg) is not invariant.
Invariant subspaces of dimension three. As in dimension 2, we only consider the
three dimensional invariant subspace which contains vectors whose none of their compo-
nents are zeros. Take A = <a161 + azes + (geg, (i3e3 + ugey + ages, ol + geg + Ck7€7>.
Let VI = aje1 + ases + ageg, Vo = ases + ageq + ageg and Vi = ages + ageg + arer.

o p3(S8)(V1) € A.

So, we get (aas + eag)er + (fas +iag)es + (gas + kag)es + (uas + nag)es + (aa + oas +
sag)es+ (bag +pas+tag)eg+ (mas+xag)er+ (dag +qas+zag)eg+ (et sas +vag)eg € A.
Thus, p3(S)(V1) = k1Vi+keVa+ksVa, where acs +eag = Kjaq, acg +oas+sag = Kias,
eatsas +vag = Kiag, gas + kag = Koas, uas +nag = Kooy, day + qas + zag = Ksag,
fas + iag = K3zaa, bag + pas + tag = Kzag and mas + rag = Kzar.
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o p3(S)(Va) e A

So we get (dag)er + (aa +hag)ea+ (bay +iag)es+ (bas +mag)es+ (gas +uay +gag)es +
(Jag + lay + sag)es + (eas + wag)er + (iag + mayg + yag)es + (kas + nay + zag)eg € A.
Thus, pg(S)(VQ) = di1V1 4+ d2Va + d3V3, where dag = diay, gas + uay + qag = dias,
kas 4+ nay 4+ zag = diag, bay +tag = doag, bas +mag = doay, tas +may + yag = doas,
acy + hag = dsas, jas + layg + sag = dsag and eas + wag = dsary

o p3(S)(V3) € A

So, we get (bag)er+ (gag+dar)es+ (jas+ear)es+ (acs +lag)es+ (fao+pag+marg)es +
(gag + rag + nar)eg + (dag + nag)er + (hag + sag + war)es + (iag + tag + zag)eg € A.
Thus, p3(S)(V3) = mi1Vi+maVa+m3Vs, where bag = miai, faz +pag +mar = mias,
i +tag+rar = miag, jag+ear = moas, acs +lag = maoay, has + sag+war = moas,
gag + dar = mzag, gas + rag + nay = maag and dag + nag = maar.

Without loss of generality, we assume a; = as = a3 = 1. Solving the system above,
we get the following equations.

kas + nagas + zasag — gag — lagag — sagag = 0 (3)
k+nayg + zag — dagag =0 (4)
g —lay — sag — dasag =0 (5)
uas + iog — gasay — kagay =0 (6)
b+ pas + tag — fasag — iagag = 0 (7)
mas + rag — fasar — iagar =0 (8)
k + nay + zag — dagagag = 0 (9)
g+ lag + sag — dasag =0 (10)
a + oas + sog — aag — easog =0 (11)
gagar + da2 —nag =0 (12)

The aim is to write the values of «; in terms of a5 and ag and then solve for a5 in terms
of ag (1 =4,6,7,8,9). From equation (6), we get

8CC'\/ (% — C?)ag — 8C?% /(1 — C?)as

80"\ /(1 — C2)(3 — C?)as — 20(4C™ ~ 1)ay

gy =

From equation (7), we get

16C2C" /(L — C?)as — 4C(4C72 — 1)1/ (3 — C)ag — 4C" /(L — C7)
g = 4 4 4 .
80’2\ / % — C2OJ5 — 800/\ / % — C’2a9
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From equation (8), we get

8C/(4 = C2)(4 — CP)as +2C7(4C? ~ 1)ay

8CC! /1 — Cay —8C2\ /1 — C2as

By solving equations (9) and (10), we get

a7 =

(2¢%(4c? — 1) + 80’(% —c?) (i —c?)

402’/(}1 ’2)a9+4c\/(1 —02) (i —0’2)a5'

At last, we replace the values of ag and a7 in equation (12) and then we get ag in terms
of as. By solving equations (3)-(5), we get

ag —

(—4C3C™ + 20'CB + 207 C)as
8202005 — (202 +207 — 1), /(1 - €2) (1 - 0?)

g =

Comparing both equations, we get a contradiction. Thus, the subspace
A = (a1e1 + ases + ageg, ages + ageq + ages, azes + ageg + arer)

is not invariant.
Invariant Subspaces of Dimension Four. As in the previous cases, we will exclude
these subspaces that are ruled out by just allowing the specializations for C and C’. We
consider a possible invariant subspace when the zero argument cannot be applied. That
is, at least one vector of the subspace has no zero components.

Let A = (aie1 + ases + ageg, ages + ageq + ages, ases + ageg + arer, eg). Along the
same lines as in dimension 3 and performing several computations, we get oy = 1 and

e This implies that

NG eny

(80" —2)4/1 — 02 —8CC"™
- (13)

g =
L/ -0?) (5 -7
4(% o C2)(% - 0/2) + 4cr2cl2
a6 = (14)
(807 —2)y/1 —c2—scCm) /(4 - ) (4 - C7)
1—40"” —4C?), /1 - 2
g = ( : (15)
Ccr2—20"/1 - C2
CC’ + (8C™ —2)\/1 —4C2 +8CC" = (16)

By (13) and (14), it follows that

40" (—4C?*\/1 — 4C2 +C"'(1-8C? —16C*) +16C*C"?\/1 — 4C%+4C"3(4C%*—1) = 0 (17)
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By (15) and (16), it follows that

o

(1-4C%—4C")\/1 — 402 —-C"(2C" —/1 — 402)(3 —02)(—8020’2(46”2—1)(%—02) =
(18
Solving equations (17) and (18), we get (C, C") = (£3,0), (C,C") = (0,£3) and (C, C")
(0.45—0.09¢, —0.36 — 0.0144) which are all rejected by our hypothesis. Thus, the subspace
A = (a1e1 + ases + ageg, ages + ageyq + ages, ages + ageg + arer, eg) is not invariant.
Necessary conditions of irreducibility: We assume that C? = C"2. In the case C = (', i
is easy to see that a+e =a+o+s=e+s+v=1and f+i=g+k=u+n= b+p+t =
m+x =d+q+ z = 0. Hence, the one-dimensional subspace generated by (e; + e5 + eg)

~—

is invariant. In the case C = —(C’, we also see that —a +e¢ = -1, —a — 0+ s = —1,
—e—s+v=1land —f+i=—-g+k=—u+n=-b—p+t=—-m+ar=—-d—q+2=0.
Hence, the one-dimensional subspace generated by (—e; — e5 + eg) is invariant. [ |

7. On the Irreducibility of the Tensor Product of the Complex
Specializations of Albeverio’s Representations of B,

We specialize the indeterminates u and u’ to non zero complex numbers. Our aim is
to study the irreducibility of the tensor product of complex specializations of Albeverio’s
representations of By. The representations are 9 x 9 matrices. We determine whether or
not there are invariant subspaces under the tensor product of the representation. Now,
we prove Theorem 3.2.

We show that there are no non trivial proper invariant subspaces. Assume that u # v’
and uu’ # 1 in order to reduce the number of possible invariant subspaces where we need
to study.

Invariant Subspaces of Dimension one. If there exists a one-dimensional invariant

subspace spanned by z = (ai,..., ag)T, assuming that v # o/ and wu’ # 1, then
pa(o1)(z) = Az for some scalar X forces the following set of conditions on the /s :
1) a1 # 0 implies o; = 0 for all 4 # 1.
2) ag # 0 implies a;; = 0 for all i # 2, 3.
3) aq # 0 implies a; = 0 for all i # 4, 7.
4) a5 # 0 implies o; = 0 for all ¢ # 5,6,8,9.
Then, the one dimensional invariant subspaces candidates to study are:

1)

<
(ages + ages).
(
(

) S
)

N —

S =
3) S = ogeq + Oé7e7>
) S = {ases + ageg + ageg + 059€9>
Case 1. Consider S = (e1). p4 (02) (e1) = (xz’ r 07/ v0' 000 O)T r # 0 implies that S
is not invariant.
Case 2. Consider S = (ageg + ages). Then

p4 (02) (ageq + ages) = (’I“Oég Yy s zaz v’ o 2 ag vaz 00 O)T

If S is invariant then r # 0 implies that as must be zero and v # 0 implies that ag must
be zero, a contradiction.
Case 3. Consider S = (ayeq + arer). Then

p4 (02) (ageq + azer) = (r’a4 vv'ay 0 yay zay 0 2’ oz v'ar O)T

The values of 7’ and v’ are both non zero which force respectively that ay = 0 and a7 = 0.
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Case 4. Consider S = (ases + ages + ageg + ageg). Then

pa (02) (ases + ages + ages + ageg) = (vv’a5 2 as vog zas ww'as wag vog wog ag)T
Same reasoning as in Case 3, using v and v’ to get a5 = 0, ag = 0, ag = 0. Thus, we
have py (03) (ases + ages + ages + ageg) = (0 000 iag kag 0 nag oag )T. This implies
that ag = 0, a contradiction.

Invariant Subspaces of Dimension Two. As before, we could apply the zero argu-
ment and we take

S = (aueq + azer, ases + ages + ages + ageg).
We have
p4 (02) (geq + azer) = (T”a4 vv'ay 0 yay zay 0 2/ vVar O)T
and
pa(03) (ases + azer) = (000 day + lag 00 eaq +maz 00)7 .

Since r’ is non zero, it follows from p4 (02) (aseq + arer) that ey = 0 and so ay = 0 by
considering the fourth component of p4 (03) (aseq + azer) is a contradiction.

Invariant Subspaces of Dimension Three. As in dimension 2, we can use the zero
argument. To see this, take

S = <a262 + azes, aueq + arer, ases + ages + ages + ageg) .
We have
pa (02) (agea + azes) = (7“042 Y as ' az vv'ag 2'ag vag 00 O)T
and
p4 (03) (a2ea + ases) = (O aa + bag bas +caz3 00000 O)T )

Since 7 is non zero, it follows from p4 (02) (a2e2 + ages) that ay = 0 and so ag = 0 by
considering the second component of p4 (03) (a2e2 + azes), a contradiction.

Invariant Subspaces of Dimension Four. We cannot always use zero argument as
in dimension 3. For instance, we take

S = (ageay + ases, ageq + arer, ases + ages + ages + ageg, eq).
Let Vi = ases + asges, Vo = aygeq + aver and V3 = ases + ageg + ages + ageg. Then

o py(02) (V1) = K1Vi + KoVa + K3V, where

a2 o -1 . \/(us—u2+u)(u’3—u’2+u)
En=—n® = K, gopa = Kos, =D =1) az = Kooy,
u'?y/(—ud+u?—u)

(u—1)(uw'—1) u—1

o py(02) (Vo) = miVi + maVa + m3Vs, where

as = K3as and as = Ksag.

\/(u3—u2+u) (u3—u"24u) 2 1
(u—1)(u —1) Q= MIQ2, Gy = M2, ot = mearg,

. d /(_u/3+u/2_u/) .
T w—Dw-1) Q4 = M35 and —— 77— Q7 = TM3aQg.
o 4 (02) (Vg) = d1V1 + daVs + d3V3, where
w2/ (—ud+u—u) (—ud+u?—u) u?y/(—u3+u?2—u’)
= % = diae, ——m—as = dias, D=1~ = daou,
(7u'3+u’27u’) 2,2 2 2
T ag = dao7, Goymn@s = d3os, yopas = dzagymgos = dzag and
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ag = d3ag. Solving all the above we get the following equations.

u? —u'+1=0

w2y — (v —1)asag =0
wW—u+1=0

uas + g — gasay — kagay =0
ulagasg — (u—1)asar =0
u?azas — (1 — 1)agag =0
wrasar — (v — 1)agag =0
wr(v —1) —u?(u—1)=0

wi' — (u—1)(u —1) =0

115

Solving equations (20) and (27), we get (u—1)(u') — (u—1)(u'—1) = 0. So, (u—1)(uv/ —

u' + 1) = 0. Then, we have v = 1, which is a contradiction. So, S is not invariant.
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