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Abstract. In this paper, we introduce the concept of linear Čech closure spaces and establish
the properties of open sets in linear Čech closure spaces (LČCS). Here, we observe that the
concept of linearity is preserved by semi-open sets, g-semi open sets, γ-open sets, sgc-dense
sets and compact sets in LČCS. We also discuss the concept of relative Čech closure operator,
meet and product linear Čech closure operators. Lastly, we describe the Moore class on the
LČCS and prove that it is a vector lattice with sufficient properties.
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1. Introduction

Closure spaces were introduced by Čech [3] and then studied by many authors like
Khampakdee [6], Boonpok [2], Roth [8] and etc. Čech closure spaces is a generaliza-
tion of the concept of topological spaces. Čech described continuity in closure spaces by
means of neighborhoods, nets and etc. Roth and Carlson [8] studied a number of sepa-
ration properties in closure spaces. Thron studied some separation properties in closure
spaces. Sunitha [9] studied higher separation properties in closure spaces. Chattopadhyay
[4] developed an extension theory of arbitrary closure spaces. The concepts of general-
ized closed sets and generalized continuous maps of topological spaces were extended to
closure spaces by Boonpok and Khampakdee [2].
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In this paper, we introduce and study the notion of linear Čech closure spaces. In
section 2, we quote the necessary preliminaries about Čech closure spaces, semi-open
sets, g-semi open sets, γ-open sets, sgc-dense sets, relative Čech closure operator, Moore
class and etc. Section 3 deals with linear Čech closure spaces (LČCS) together with its
characterization. In Section 4, we discuss the linearity of semi-open sets, g-semi open
sets, γ-open sets, sgc-dense sets and compact sets in a LČCS . Section 5 describes some
operations on LČCS like relative Čech closure operator, meet and product of closure
operators. In the last section, we proved the main result that the Moore class in an
idempotent T1 LČCS is a vector lattice.

2. Preliminaries

Definition 2.1 [3] LetX be a set and ℘(X) be its powerset. A function c : ℘(X) → ℘(X)
is called a Čech closure operator for X, if

(1) c(ϕ) = ϕ,
(2) A ⊆ c(A) for all A ⊆ X,
(3) c(A ∪B) = c(A) ∪ c(B) for all A,B ⊆ X.

Then, (X, c) is called Čech closure space or simply closure space.

If in addition c(c(A)) = c(A) for all A ⊆ X, then the space (X, c) is called a Kura-
towski (topological) space. Further, if for any family of subsets of X such as {Ai}(i∈I),
c(∪i∈IAi) = ∪i∈Ic(Ai), then the space is called a total closure space.

Definition 2.2 [3] A function c : ℘(X) → ℘(X) is called a monotone operator for X if

(1) c(ϕ) = ϕ,
(2) A ⊆ c(A) for all A ⊆ X,
(3) A ⊆ B ⇒ c(A) ⊆ c(B) for all A,B ⊆ X.

Then (X, c) is called monotone space.

Note that a subset A of a closure space (X, c) will be closed, if c(A) = A and open, if
its complement is closed, i.e. if c(X −A) = X −A. If (X, c) is a closure space, we denote
the associated topology on X by t, i.e. t = {Ac : c(A) = A}.

Definition 2.3 [9] A map f : (X, c) → (Y, c′) is said to be a c − c′ morphism or just a
morphism, if f(c(A)) ⊆ c′f(A).

Remark 1 [3]

(1) A mapping f of a closure space (X, c) onto another one (Y, c′) is a c−c′ morphism
at a point x ∈ X if and only if the inverse image f−1(V ) of each neighborhood V
of f(x) is a neighborhood of x.

(2) If f is a c − c′ morphism of a space (X, c) into a space (Y, c′), then the inverse
image of each open subset of Y is an open subset of X.

(3) If f : (X, c) → (Y, c′) is a morphism, then f : (X, t) → (X, t′) is continuous.

Definition 2.4 [9] A homeomorphism is a bijective mapping f such that both f and
f−1 are morphisms.

Definition 2.5 Let {(Xi, ci) : i ∈ I} be a family of closure spaces, X be the product of
the family {Xi} of underlying sets and πi be the projection of X onto Xi for each i ∈ I.
Then the product closure c is the coarsest closure on the product of underlying sets such
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that all the projections are morphisms.

Lemma 2.6 [3] A Čech closure space is a monotone space.

Definition 2.7 [8] Let (X, c) be a Čech closure space. If c(A) = A for all A ⊆ X, then
c is called the discrete closure operator on X. If c(A) = X for all A ⊆ X, then c is called
the trivial operator or indiscrete operator on X.

In a Čech closure space (X, c), c is finitely generated, if c(A) = ∪{c(a) : a ∈ A} for
any subset A of X.

Definition 2.8 Let (X, c) be a closure space and A be an arbitrary subset of X. Then
the Čech closure operator cA defined by cA(B) = A ∩ c(B) is called the relative Čech
closure operator on A induced by c.

The pair (A, cA) is said to be a closure subspace of (X, c). It is a closed (open) subspace
if A is closed (open) in (X, c).

Definition 2.9 [9] A closure space (X, c) is said to be compact, if every interior cover
of X has a finite subcover.

Remark 2 [9]

(1) Any image under a c-morphism of a compact space (X, c) is compact.
(2) If (Y, c) is a compact subspace of a Hausdorff closure space (X, c), then Y is

closed in (X, c).
(3) Every closed subspace of a compact closure space is compact.
(4) If (X, c) is compact and Y ⊆ X, then c(Y ) is compact.

3. Linear Čech closure spaces

Definition 3.1 Let V be a vector space and c be a closure operator on V such that

(1) c(A) + c(B) ⊆ c(A+B), ∀A,B ⊂ V ,
(2) λc(A) ⊆ c(λA), ∀A ⊂ V and for all scalars λ,

Then, c is called a Linear Čech Closure Operator(LČCO) and (V, c) is called a linear
Čech closure space (LČCS).

Example 3.2 The discrete Čech closure space defined on a vector space is a linear Čech
closure space. The indiscrete Čech closure space defined on a vector space is a linear
Čech closure space.

Proposition 3.3 Let V be a vector space and c be a closure operator on V . Then (V, c) is
a linear Čech closure space if and only if + : (V ×V, c×c) → (V, c) and λ· : (V, c) → (V, c)
for all λ ∈ K are morphisms, where (V × V, c× c) is the product closure space.

Proof. If (V, c) is a linear Čech closure space, it is clear from the axioms of LČCS
that the mappings + : (V × V, c × c) → (V, c) and λ· : (V, c) → (V, c) for all λ ∈ K
are morphisms. Conversely, assume that the mappings + : (V × V, c × c) → (V, c) and
λ· : (V, c) → (V, c) for all λ ∈ K are morphisms, where V is a vector space and (V, c) is
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a closure space. Let A,B ⊆ V . Then A×B ⊆ V × V . Also,

c(A) + c(B) = +[c(A)× c(B)], by the definition of +

= +[c× c(A×B)], by the definition of closure product space

⊆ c(A+B). by the definition of morphism

Similarly, λc(A) ⊆ c(λA). ■

Proposition 3.4 Let (V, c) be a LČCS. Then, the map Ta : (V, c) → (V, c) given by
Ta(x) = a + x and Mλ : (V, c) → (V, c) given by Mλ(x) = λx are homeomorphisms for
all scalar λ ̸= 0.

Proof. Since + : (V ×V, c× c) → (V, c) is a morphism, Ta is a morphism and T−a is the
inverse morphism for Ta, hence Ta is a homeomorphism. Similarly Mλ is a morphism if
λ ̸= 0 and M1/λ is the inverse morphism for Mλ. ■

Proposition 3.5 Let (V, c) be a LČCS. If A ⊆ V , then a + A is open for all a ∈ V if
and only if A is open.

Proof. By the above proposition Ta is a homeomorphism for all a ∈ V . So if A is open,
the inverse image of A under T−a (i.e. a+A) is open. Again, if a+A is open, then A is
open (since Ta(A) = a+A). ■

Proposition 3.6 Let (V, c) be a LČCS. Then

(1) for every neighborhood W of 0 (the identity element of V ), there exists neigh-
borhoods V1 and V2 of 0 such that V1 + V2 ⊆ W ;

(2) for every neighborhood W of x, there exist a neighborhood V1 of 0 and V2 of x
such that V1 + V2 ⊆ W , which further imply that V1 + x ⊆ W .

Proof. 1. Since 0 + 0 = 0 and + is a morphism, there exists neighborhoods V1 and V2

of 0, such that V1 + V2 ⊆ W .
2. Proof follows directly from 1. ■

4. Linearity of certain subsets of LČCS

Proposition 4.1 If A is a subset of V and B is an open subset of V , then A + B is
open. Also, λA for all scalar λ ̸= 0 is open if and only if A is open.

Proof. Since B is open, a+B is open for all a ∈ A. A+B = ∪{a+B : a ∈ A} is open
being arbitrary union of open sets. By the homeomorphism Mλ, A is open if and only if
λA is open. ■

Proposition 4.2 Compact sets in a LČCS preserve linearity (i.e. if A and B are compact
sets in a LČCS, then A+B and λA are compact sets).

Proof. Since A and B are compact, A × B is compact in (V × V, c × c). Then A + B
is compact, being the image of a compact set under a morphism. Similarly, λA is also
compact. ■

Proposition 4.3 If H is a subspace of a vector space V and (V, c) is a LČCS, then c(H)
is a subspace of V .
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Proof. Since H is a subspace of V , H + H = H and λH = H. Now, c(H) + c(H) ⊆
c(H +H) = c(H) and λc(H) ⊆ c(λH) = c(H). Thus, c(H) is a subspace of V . ■

Definition 4.4 [6] Let (X, c) be a closure space. A subset A of X is called a semi open
set, if there exists an open set G in (X, c) such that G ⊆ A ⊆ c(G). A subset A ⊆ X is
called a semi-closed set if its complement is semi-open.

Definition 4.5 [6] A subset B of a closure space (V, c) is called generalized semi-open
or g-semiopen, if there exists a semi-open subset A of (V, c) such that A ⊆ B ⊆ c(A).

Proposition 4.6 Let (V, c) be a LČCS. If A is any subset of V and B is semi-open
(g-semiopen) in V , then A+B is semi-open (g-semiopen).

Proof. Since B is semi-open, there exists an open set G in V such that, G ⊆ B ⊆ c(G).
By Proposition 4.1, A+G is open and

A+G ⊆ A+B ⊆ A+ c(G) ( since B ⊆ c(G))

⊆ c(A) + c(G) ( since A ⊆ c(A))

⊆ c(A+G) ( since cis a LČCO ).

Hence, A+B is semi-open. The proof in the case of g-semiopen follows similarly. ■

Corollary 4.7 Linearity is preserved by semi-open sets and g-semiopen sets in a LČCS.

Proof. By the above theorem, sum of two semi-open (g-semiopen) sets in a LČCS is
again semi-open (g-semiopen). Also, if A is semi-open in a LČCS, then there exists an
open set G in V such that G ⊆ A ⊆ c(G), which implies λG ⊆ λA ⊆ λc(G). Since c is a
LČCO, λc(G) ⊆ c(λG). Thus, λG ⊆ λA ⊆ c(λG), where λG is open by Proposition 4.1.
Hence, λA is also semi-open. Proof in the case of g-semi-open sets is similar to that of
semi-open sets. ■

Definition 4.8 [6] A set B in a closure space (V, c) is said to be γ-open if there exists
an open subset G of V such that G ⊆ B and c(G) = c(B). A subset B of V is γ-closed
if its complement is γ-open.

Proposition 4.9 Let (L, c) be an idempotent LČCS. If A and B are γ-open subsets of
(L, c), then A+B and λA are also γ-open.

Proof. Since A and B are γ-open there exists two open sets G1 and G2 such that
G1 ⊆ A, c(A) = c(G1), G2 ⊆ B and c(B) = c(G2). We have A ⊆ c(A) and B ⊆ c(B).
Thus, G1 ⊆ A ⊆ c(A) = c(G1) and G2 ⊆ B ⊆ c(B) = c(G2). Then G1 + G2 ⊆
A + B ⊆ c(A) + c(B) = c(G1) + c(G2). Hence, A + B ⊆ c(G1) + c(G2) ⊆ c(G1 + G2)
and c(A+B) ⊆ c[c(G1 +G2)] = c(G1 +G2). Since c is an idempotent closure operator,
we have cc(A) = c(A), ∀A ⊆ G. Now, G1 ⊆ c(A) and G2 ⊆ c(B) implies G1 + G2 ⊆
c(A) + c(B) ⊆ c(A + B). Then, c(G1 + G2) ⊆ c(c(A + B)) = c(A + B), which implies
that c(G1 +G2) = c(A+B). Thus, G1 +G2 ⊆ A+B ⊆ c(A+B) = c(G1 +G2), where
(G1 + G2) is open, showing that A + B is γ-open. Also, since G1 ⊆ A ⊆ c(A) = c(G1),
λG1 ⊆ λA ⊆ λc(A) = λc(G1). But λc(G1) ⊆ c(λG1). Thus, λA ⊆ c(λG1) and so,
c(λA) ⊆ c(c(λG1)) = c(λG1). On the other hand, λG1 ⊆ λc(A) ⊆ c(λA). Since c
is an idempotent linear Čech closure operator, c(λG1) ⊆ c(c(λA)) = c(λA). Hence,
c(λG1) = c(λA). Thus, λA is γ-open. ■

Definition 4.10 [4] A non-empty subset D of V will be called sgc-dense in (V, c) if
c(D) = X.
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Proposition 4.11 Let (V, c) be a linear Čech closure space, A be a sgc-dense subset of
V , B an arbitrary subset of V . Then, A+B and λA(λ ̸= 0) are sgc-dense in V .

Proof. Since A is a sgc-dense subset of V , c(A) = V . Now, c(A)+ c(B) ⊆ c(A+B), i.e.
V + c(B) ⊆ c(A+B), i.e., V ⊆ c(A+B). Since A,B ⊆ V , A+B ⊆ V and c(A+B) ⊆ V .
Thus, c(A+B) = V ; that is, A+B is sgc-dense. Also, λc(A) ⊆ c(λA), i.e., λV ⊆ c(λA)
with λ ̸= 0. Since V ⊆ c(λA), V = c(λA). Hence, λA is sgc-dense. Thus sgc-dense sets
preserves linearity in a LČCS. ■

5. Operations on Linear Čech Closure Operators

Proposition 5.1 The composition of two linear Čech closure operators is again a linear
Čech closure operator.

Proof. Let c1 and c2 be two linear Čech closure operators on a vector space V . Then
(c1 ◦ c2)(ϕ) = c1(c2(ϕ)) = c1(ϕ) = ϕ. Also, A ⊆ c2(A) ⊆ c1(c2(A)) = (c1 ◦ c2)(A).
Moreover, (c1 ◦c2)(A∪B) = c1(c2(A∪B)) = c1(c2(A)∪c2(B)) = c1(c2(A))∪c1(c2(B)) =
(c1 ◦ c2)(A)∪ (c1 ◦ c2)(B). Also, since (c1 ◦ c2)(A)+(c1 ◦ c2)(B) = c1(c2(A))+ c1(c2(B)) ⊆
c1(c2(A) + c2(B)) and c2(A) + c2(B) ⊆ c2(A + B) implies that c1(c2(A) + c2(B)) ⊆
c1(c2(A+B)), we have (c1◦c2)(A)+(c1◦c2)(B) ⊆ (c1◦c2)(A+B). Further, λ(c1◦c2)(A) =
λ(c1(c2(A)) ⊆ c1(λc2(A)) ⊆ c1(c2(λA)) = (c1 ◦ c2)(λA). Thus, the composition of two
linear Čech closure operators is a linear Čech closure operator. ■

Proposition 5.2 Let (V, c) be a LČCS and A is a subspace of the vector space V , then
the closure operator cA is a linear closure operator on A.

Proof. Let H,K ⊂ A and x + y ∈ cA(H) + cA(K). Then x ∈ cA(H) and y ∈ cA(K),
and i.e., x ∈ A ∩ c(H) and y ∈ A ∩ c(K). Thus, x + y ∈ c(H) + c(K) and x + y ∈ A.
Since c(H) + c(K) ⊆ c(H + K), so x + y ∈ A ∩ c(H + K) = cA(H + K). Hence,
cA(H) + cA(K) ⊆ cA(H +K). Similarly, λcA(H) ⊆ cA(λH). Hence, cA is a LČCO on A.
■

Proposition 5.3 Let (X1, c1) and (X2, c2) be two disjoint closure spaces and X =
X1 × X2. Then the product closure operator c = c1 ⊗ c2 on X defined by c(A) =
c1(p1(A)) × c2(p2(A)) is a LČC operator, where p1(A) and p2(A) are the projections of
A onto X1 and X2, respectively.

Proof. We have

c(A) + c(B) =

2∏
i=1

ci(pi(A)) +

2∏
i=1

ci(pi(B))

=

2∏
i=1

[ci(pi(A)) + ci(pi(B))]

⊆
2∏

i=1

ci(pi(A) + pi(B))

=

2∏
i=1

ci(pi(A+B)) = c(A+B).
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Similarly, λc(A) ⊆ c(λA). ■

Proposition 5.4 Let V be a vector space and c1 and c2 be two linear Čech closure
operators on V . Then the meet closure operator c : ℘(X) → ℘(X) defined by c(A) =
c1(A) ∩ c2(A) is a linear Čech closure operator.

Proof. If A,B ⊆ V , then

c(A) + c(B) = c1(A) ∩ c2(A) + c1(B) ∩ c2(B)

⊆ (c1(A) + c1(B)) ∩ (c2(A) + c2(B))

⊆ c1(A+B) ∩ c2(A+B) = c(A+B).

Similarly, λc(A) ⊆ c(λA). ■

6. Moore class in a LČCS

Proposition 6.1 Let (V, c) be a T1 LČCS. The Moore class of closed sets in V , i.e.,
Mc = {A ⊆ V | A = c(A)} is a vector space.

Proof. Since addition and scalar multiplication are homeomorphisms, if A and B are
closed, then A+B and λA are closed for any scalar λ ̸= 0. Since all singletons are closed
in a T1 LČCS, then {0} is closed and it is the zero element in Mc. Now, Let A ∈ Mc. Then
A = c(A). Also, −c(−A) ⊆ c(A) = A implies that c(−A) ⊆ −A. Thus, −A = c(−A).
Hence, −A ∈ Mc. Thus Mc is a vector space. ■

Definition 6.2 An ordered vector space is a real vector space E which is also an ordered
space with the linear and order structures connected by the implications

(1) If x, y, z ∈ E and x ⩽ y then x+ z ⩽ y + z,
(2) If x, y ∈ E, x ⩽ y and 0 ⩽ α ∈ R then αx ⩽ αy.

The set E+ = {x ∈ E : x ⩾ 0} is termed the positive cone in E and its elements
are termed positive (rather than non-negative). An ordered vector space which is also a
lattice is a vector lattice or Riesz space.

Proposition 6.3 The Moore class Mc in an idempotent T1 LČCS is a vector lattice
with inclusion order.

Proof. Venkateswarlu et el. [11] has already proved that in any idempotent closure space
Mc is a complete lattice. Now to prove it is a vector lattice, let A,B ∈ Mc and A ⊆ B.
Then, clearly, A+ C ⊆ B + C for all C ∈ Mc. Also, if 0 ⩽ α and αA ⊆ αB, then Mc is
a vector lattice. ■

Remark 3

(1) The positive cone of Mc is Mc+ = {B ⊆ X | {0} ⊆ B}, i.e., the set of all closed
sets containing the element 0.

(2) The set of all closed subspaces belong to the positive cone.
(3) If B ∈ Mc, the positive part of B is

B+ =

{
B if 0 ∈ B

B ∪ {0} if 0 /∈ B



268 T. M. Chacko and D. Susha / J. Linear. Topological. Algebra. 07(04) (2018) 261-268.

and the negative part of B is

B− =

{
−B if 0 ∈ B

−B ∪ {0} if 0 /∈ B

Also, | B |= B ∪ −B.
(4) The set of all closed subspaces form a meet lattice as the intersection of two closed

subspaces is again a closed subspace.

7. Conclusion

The notions of closure system and closure operator are very useful tools in several
areas of mathematics. They play an important role in the study of topological spaces,
Boolean algebras and convex sets. Also, the theory of generalized closure spaces has been
found very important and useful in the study of image analysis. So, linear Čech closure
spaces is a relevant concept in Čech closure spaces which possess significant properties
that are used in several fields of applications.

Acknowledgement

The author is indebted to the University Grants Commission as the work is under the
Faculty Development Programme of UGC (XII plan).

References

[1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. XXV, Providence, 1967.
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