Journal of Linear and Topological Algebra Vol. 07, No. 04, 2018, 307-316



### On the solving matrix equations by using the spectral representation

A. M. Nazari<sup>a,\*</sup>, S. Mollaghasemi<sup>a</sup>, F. Bahmani<sup>a</sup>

<sup>a</sup>Department of Mathematics, Faculty of Science, Arak university, Arak, PO. Box 38156-8-8349, Iran.

Received 3 June 2018; Revised 13 November 2018, Accepted 10 December 2018.

Communicated by Mohammad Sadegh Asgari

Abstract. The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations  $AX + XA^* = C$  and  $AX + XA^T = -bb^T$  for  $A, X \in \mathbb{C}^{n \times n}$  and  $b \in \mathbb{C}^{n \times s}$  with s < n, which X is unknown matrix. Also, we suggest the new method for solving quadratic matrix equations  $AX^2 + BX + C = 0$ , where  $A, B, C, X \in \mathbb{C}^{n \times n}$  and X is unknown matrix with similar method.

© 2018 IAUCTB. All rights reserved.

Keywords: Lyapanov equation, square matrix equations, spectral representation.

2010 AMS Subject Classification: 15A24, 15A18, 15A42.

### 1. Introduction

Consider two square matrices  $A, C \in \mathbb{C}^{n \times n}$ . The problem is to find a square matrix  $X \in \mathbb{C}^{n \times n}$  in

$$AX + XA^* = C, (1)$$

which is called the Lyapunov equation. Many different algorithms are suitable for different situations depending on the properties of matrices A and C. For dense A, the Bartels-Stewart algorithm is the most widely used algorithm. It employs Schur decomposition and then builds simple linear equations which can be solved sequentially [2]. For sparse and large-scale A, if C is low-rank, Krylov-type methods may be more efficient [9]. This Lyapunov matrix equation has form  $AX + XA^T = -bb^T$ , where  $A, X \in \mathbb{C}^{n \times n}$ 

<sup>\*</sup>Corresponding author.

E-mail address: a-nazari@araku.ac.ir (A. M. Nazari); s-mollaghasemi@arshad.araku.ac.ir (S. Mollaghasemi); f-bahmani@arshad.araku.ac.ir (F. Bahmani).

and  $b \in \mathbb{C}^{n \times s}$  with s < n. There is no need to have rank of matrix in this paper which shows our methodology.

In Lyapunov equation (1), suppose that the two matrices A and  $-A^*$  have not any common eigenvalues. It is well known that the Lyapunov equation (1) has an unique solution  $X \in \mathbb{C}^{n \times n}$  if and only if  $\lambda_i \neq \lambda_j$  for all  $i, j = 1, \dots, n$ . In particular, if Ais strictly stable; that is,  $\lambda_i < 1$  for all  $i = 1, \dots, n$ , then (1) has an unique solution, where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues of matrix A. Lyapunov matrix equation has many applications in control and system theory especially in controllability, and control filtering with singular measurement noise [3] and optimal control theory [4], model reduction of linear time-invariant systems [1, 6]. Another application is communicating system theory and power systems. This equation has an unique solution if and only if  $\lambda_i + \lambda_j \neq 0$  for all i and j, where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues of A [5, 10].

In the second part of this paper, we present a new method for solving quadratic matrix equations. Nazari et al. [7] solved the square root of matrix triangular equations for order n = 3 and Sambasiva Rao et al. [8] presented an extension of Nazari et al's method. Here, we solve a general quadratic matrix equations by spectral representation. Some different examples are presented.

#### 2. Spectral representation of a matrix

At the first, we explain the spectral representation of a matrix and some of the applications. Let  $A \in \mathbb{C}^{n \times n}$  and  $\lambda_1, \lambda_2, \dots, \lambda_n$  be its eigenvalues. Assume that vectors  $\mu_1, \mu_2, \dots, \mu_n$  be its corresponding eigenvectors, respectively. Consequently, A is a diagonalizable matrix and is full rank. It is clear that  $A\mu_i = \lambda_i\mu_i$  for every  $i = 1, 2, \dots, n$ . Now, we multiply from the right by  $\mu_i^*$  that gives equation  $A\mu_i\mu_i^* = \lambda_i\mu_i\mu_i^*$  for  $i = 1, 2, \dots, n$ . Then by adding all n obtained above equations, we achieve

$$A\left(\mu_1\mu_1^{\star}+\mu_2\mu_2^{\star}+\cdots+\mu_n\mu_n^{\star}\right)=\lambda_1\mu_1\mu_1^{\star}+\cdots+\lambda_n\mu_n\mu_n^{\star}$$

Assume that  $S = (\mu_1 \mu_1^* + \dots + \mu_n \mu_n^*)^{-1}$  and  $W_i = \mu_i \mu_i^* S$  for  $i = 1, 2, \dots, n$ , where  $W_i$  are rank-one matrices and S is positive definite matrix. It is easy to show that the matrix A can be written as linear combination of its eigenvalues and  $W_i$  is called spectral representation of A; that is,  $A = \lambda_1 W_1 + \lambda_2 W_2 + \dots + \lambda_n W_n$ .

**Theorem 2.1** The matrices  $W_1, ..., W_n$  satisfy in the following conditions: (I) S is symmetric positive definite matrix,

(II)  $\operatorname{rank}(W_i) = 1$  for  $i = 1, 2, \dots, n$ ,

(III)  $W_1 + W_2 + \cdots + W_n = I_n$ ,  $I_n$  denotes the  $n \times n$  identity matrix,

(IV)  $W_i W_j = 0_n$  for  $i, j = 1, 2, \dots, n$  with  $i \neq j, 0_n$  denotes the  $n \times n$  zero matrix,

(V)  $W_i^r = W_i \text{ for } i = 1, 2, \cdots, n \text{ with } r > 0,$ 

(VI)  $P(A)W_i = P(\lambda_i)W_i$  for every polynomial,

(VII)  $W_i A = A W_i = \lambda_i W_i$  for  $i = 1, 2, \cdots, n$ ,

(VIII)  $1 \leq ||W_i||_2 \leq ||S||_2$  for  $i = 1, 2, \dots, n$ ,

(IX) If  $\sigma(A)$  denotes the spectrum of the matrix A, then  $\sigma(W_i) = \{1, 0, \dots, 0\}$ ,

(X) For any complex numbers  $\alpha, \beta$  it hold that

$$\sigma(\alpha W_i + \beta W_j) = \alpha \sigma(W_i) + \beta \sigma(W_j) = \begin{cases} \{\alpha, \beta, 0, \cdots, 0\}, & i \neq j \\ \{\alpha + \beta, 0, \cdots, 0\}, & i = j \end{cases}$$

(XI) Consider a square matrix  $B \neq A$ ). There exist *n* diagonal matrix  $R_1, R_2, \dots, R_n$  can be computed such that  $B = W_1 R_1 + \dots + W_n R_n$ .

**Proof.** We just only prove the last part and the other parts are trivial. The significant property  $W_iW_j = 0_n$  for  $i, j = 1, 2, \dots, n$  with  $i \neq j$  concludes  $W_iB = W_iR_i$  for  $i = 1, 2, \dots, n$ . If  $W_{i,j}^c$  denotes the *j*-th column of  $W_i$  for every  $i, j = 1, 2, \dots, n$  and

$$R_i = \operatorname{diag}(r_{1,1}^i, r_{2,2}^i, \cdots, r_{n,n}^i), \tag{2}$$

then

$$W_i B = W_i R_i = [W_{1,i}^c W_{2,i}^c \cdots W_{n,i}^c] [\operatorname{diag}(r_{1,1}^i, r_{2,2}^i, \cdots, r_{n,n}^i)] = [r_{1,1}^i W_{1,i} r_{2,2}^i W_{2,i} \cdots r_{n,n}^i W_{n,i}]$$

and consequently,

$$r_{j,j}^{i} = \frac{(W_{i}B)_{1,j}}{(W_{j,i})_{1}} \tag{3}$$

for  $i, j = 1, 2, \dots, n$ , where  $(W_i B)_{1,j}$  is the element of the matrix  $W_i B$  in row (arbitrary chosen) 1 and column j. Moreover,  $(W_{j,i})_1$  is the first (due to first row) element of the columns  $W_{j,i}$  by (3).

We show that by helping spectral representation how we can compute  $A_{n \times n}^{-1}$  and  $A_{n \times n}^{r}$ . Let A be an invertible matrix. Thus,  $\lambda_1, \dots, \lambda_n$  are non-zero and it is easy to see that

$$A^{-1} = \frac{1}{\lambda_1} W_1 + \frac{1}{\lambda_2} W_2 + \dots + \frac{1}{\lambda_n} W_n.$$

Moreover, for every  $r \in \mathbb{R}$ , the matrix  $A^r$  satisfies  $A^r = \lambda_1^r W_1 + \lambda_2^r W_2 + \cdots + \lambda_n^r W_n$ .

In the first part of this paper, we explain a method for solving two cases of Lyapunov equation  $AX + XA^* = C$  and  $AX + XA^T = -bb^T$  that discussed above.

#### 3. Solving Lyapunov equation

In this section, we assume that A is invertible and we present a new method of solving

$$AX + XA^{\star} = C. \tag{4}$$

We have

$$A = \lambda_1 W_1 + \lambda_2 W_2 + \dots + \lambda_n W_n, \tag{5}$$

$$C = W_1 R_1 + W_2 R_2 + \dots + W_n R_n, (6)$$

$$X = W_1 D_1 + W_2 D_2 + \dots + W_n D_n, \tag{7}$$

where  $R_i$  for  $i = 1, 2, \dots, n$  is denoted in (2) and (3) and  $D_1, D_2, \dots, D_n$  that are unknown matrices that must be determined for equation  $AX + XA^* = C$ . By substitution (5)-(7) in Lyapanov equation (4), we have

 $(\lambda_1 W_1 + \dots + \lambda_n W_n)(W_1 D_1 + \dots + W_n D_n) + (W_1 D_1 + \dots + W_n D_n)A^* = W_1 R_1 + \dots + W_n R_n$ such that

 $(W_1\lambda_1D_1 + \dots + W_n\lambda_nD_n) + (W_1D_1A^* + \dots + W_nD_nA^*) = W_1R_1 + W_2R_2 + \dots + W_nR_n.$ By classifying above equation, we have

$$W_1(\lambda_1 D_1 + D_1 A^*) + \dots + W_n(\lambda_n D_n + D_n A^*) = W_1 R_1 + \dots + W_n R_n$$

Thus,  $\lambda_i D_i + D_i A^* = R_i$  for  $i = 1, 2, \dots, n$  is achieved. Therefore, the matrices  $D_1, D_2, \dots, D_n$  are computed as following  $D_i = R_i (\lambda_i I_n + A^*)^{-1}$  for  $i = 1, 2, \dots, n$ .

**Example 3.1** For solving Lyapunov equation  $AX + XA^T = -bb^T$ , consider the  $5 \times 5$  full rank following matrix

$$A = \begin{bmatrix} 1 & 2 & -3 & 4 & 2 \\ -2 & 1 & -3 & 7 & -5 \\ 3 & -3 & 1 & 4 & -5 \\ 0 & 1 & -2 & 3 & -4 \\ -2 & 3 & -1 & 5 & 1 \end{bmatrix} , \qquad b = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -5 \\ 4 \end{bmatrix}.$$

We use software Matlab and compute the solution of Lyapanove equation  $AX + XA^T = -bb^T$ . At the first, we obtain the eigenvectors of matrix A, as following matrix

$$\mu_{i} = \begin{bmatrix} 0.3066 & -0.2764 + 0.6004i & -0.2764 - 0.6004i & -0.3730 + 0.1079i & -0.3730 - 0.1079i \\ 0.8028 & -0.1127 - 0.1043i & -0.1127 + 0.1043i & 0.2723 - 0.3409i & 0.2723 + 0.3409i \\ 0.4373 & 0.6647 & 0.6647 & 0.5791 & 0.5791 \\ -0.1658 & 0.0188 + 0.0573i & 0.0188 - 0.0573i & 0.2322 - 0.0981i & 0.2322 + 0.0981i \\ -0.2069 & -0.3042 - 0.0392i & -0.3042 + 0.0392i & -0.2727 - 0.4308i & -0.2727 + 0.4308i \end{bmatrix}$$

and

$$\sigma(A) = \{\lambda_1 = -1.5558, \lambda_2 = 2.6624 + 3.8198i, \lambda_3 = 2.6624 - 3.8199i, \lambda_4 = 1.6155 + 5.3682i, \lambda_5 = 1.6155 - 5.3682i\},\$$

that associated to the eigenvectors of A. So,

$$S = (\mu\mu^{\star})^{-1} = \begin{bmatrix} 1.1425 & -0.2970 & 0.7204 & 0.4961 & 0.5598 \\ -0.2970 & 1.6762 & -1.5053 & 1.0178 & -1.6513 \\ 0.7204 & -1.5053 & 3.1215 & -2.5528 & 3.2401 \\ 0.4961 & 1.0178 & -2.5528 & 9.5772 & -2.6400 \\ 0.5598 & -1.6513 & 3.2401 & -2.6400 & 4.7439 \end{bmatrix}.$$

Thus, matrices  $R_i$  and  $D_i$  for  $i = 1, 2, \dots, 5$  as they are shown above, are presented in the following:

$$\begin{split} R_1 &= \operatorname{diag}\left(\left[-17.0684\ 10.1633\ -89.6434\ -16.4277\ 55.7326\right]\right),\\ R_2 &= \operatorname{diag}\left(\left[1.1302 - 16.4245i\ -33.3898 - 17.8968i\ -30.8001 - 13.7871i\ -38.3588 + 26.2608i\ -62.5822 - 23.5840i\right]\right),\\ R_3 &= \operatorname{diag}\left(\left[1.1302 + 16.4245i\ -33.3898 + 17.8968i\ -30.8001 + 13.7871i\ -38.3588 - 26.2608i\ -62.5822 + 23.5840i\right]\right),\\ R_4 &= \operatorname{diag}\left(\left[-96.5124 - 3.0525i\ -65.9130 + 29.5523i\ -53.3405 - 34.0764i\ -38.7462 + 21.3551i\ -33.9249 - 22.8532i\right]\right),\\ R_5 &= \operatorname{diag}\left(\left[-96.5124 + 3.0525i\ -65.9130 - 29.5523i\ -53.3405 + 34.0764i\ -38.7462 - 21.3551i\ -33.9249 + 22.8532i\right]\right)\end{split}$$

and

| $\begin{bmatrix} -2.2144 & 0.1681 & 4.2221 & -0.3877 & -2.2090 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -2.6138 $-2.2132$ $-0.9100$ $0.0932$ $-0.0646$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $D_1 = \begin{vmatrix} -19.6751 & -1.1401 & -8.3363 & -8.7737 & 0.7154 \end{vmatrix}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -1.7248 $-3.5827$ $2.7825$ $2.3113$ $2.6545$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.8059 13.3522 16.5956 7.3191 $-2.3172$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{bmatrix} -1.1071 - 2.2871i & -0.9303 - 0.1774i & 0.4354 + 0.7158i & 0.0506 - 0.0892i & -0.2935 - 0.4802i \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.1943 + 1.1459i - 4.9332 + 3.4206i - 1.0338 + 2.3994i - 0.8207 - 1.3558i - 1.7427 - 1.4840i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $D_2 = \begin{bmatrix} -1.2733 + 1.2896i & -1.6759 + 1.0771i & -6.1326 + 0.8245i & -1.4314 + 0.5095i & 0.1345 - 0.7887i \end{bmatrix},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -1.7745 - 1.6297i - 6.8371 - 11.1354i - 5.5727 - 9.1883i - 2.6287 + 3.2181i - 3.8724 - 2.7097i - 2.707i - 2.707i - 2.707i - 2.707i - 2                                                                                                                                                         |
| $ \left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{bmatrix} -1.1071 + 2.2871i & -0.9303 + 0.1774i & 0.4354 - 0.7158i & 0.0506 + 0.0892i & -0.2935 + 0.4802i \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.1943 - 1.1459i - 4.9333 - 3.4206i - 1.0338 - 2.3994i - 0.8207 + 1.3558i - 1.7427 + 1.4840i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $D_3 = \begin{bmatrix} -1.2733 - 1.2896i & -1.6759 - 1.077i & -6.1326 - 0.8245i & -1.4314 - 0.5095i & 0.1345 + 0.7887i \end{bmatrix},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $-1.7745 + 1.6297i \ -6.8371 + 11.1354i \ -5.5727 + 9.1883i \ -2.6287 - 3.2181i \ \ 3.8724 + 2.7097i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.6023 + 2.3514i - 6.7103 + 0.7777i - 9.1271 - 3.8297i - 5.2301 - 3.2357i - 7.6078 + 2.5234i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{bmatrix} -11.8361 + 10.4423i & 1.5012 + 4.9073i & 2.3249 - 4.9892i & -0.4762 + 0.3532i & -1.8107 + 3.4898i \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $2.2610 - 2.6180i \qquad 0.0674 + 8.4109i \qquad 2.5443 + 2.1430i \qquad -2.3504 - 1.8132i \\ -1.5340 - 4.2153i \qquad -2.5443 + 2.1430i \qquad -2.3504 - 1.8132i \\ -1.5340 - 4.2153i \qquad -2.5443 + 2.1430i \\ -2.5444 + 2.1440i \\ -2.5444i \\ -2.544i \\ -2.54i \\ -2.$ |
| $D_4 = \begin{bmatrix} -0.9908 + 2.6725i & -3.2591 + 3.0570i & -12.0836 - 4.3282i & -2.6638 + 2.4017i & -1.0698 - 2.2036i \end{bmatrix},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -0.2100 - 0.4351i - 9.7579 - 7.0743i - 9.6808 - 4.8815i - 4.1294 + 3.5173i - 2.6023 - 6.1498i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{bmatrix} 2.4845 - 2.6157i & -5.5814 + 1.5571i & -5.5854 + 5.6476i & -3.1861 + 3.2901i & -6.6945 - 2.9140i \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{bmatrix} -11.8361 - 10.4423i & 1.5012 - 4.9073i & 2.3249 + 4.9892i & -0.4762 - 0.3523i & -1.8107 - 3.4898i \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $2.2610 + 2.6180i \qquad 0.0674 - 8.4109i \qquad 2.5443 - 2.1430i \qquad -2.3504 + 1.8132i \\ -1.5340 + 4.2153i \qquad -2.5443 - 2.1430i \\ -2.5442 - 2.140i \\ -2.544i \\ -2.54i \\ $                    |
| $D_5 = \begin{bmatrix} -0.9908 - 2.6725i & -3.2591 - 3.0570i & -12.0836 - 4.3282i & -2.6638 - 2.4017i & -1.0698 + 2.2036i \end{bmatrix}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -0.2100 + 0.4351i  -9.7579 + 7.0743i  -9.6808 - 4.8815i  -4.1294 - 3.5173i  2.6023 + 6.1498i = 0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{bmatrix} 2.4845 + 2.6157i & -5.5814 - 1.5571i & -5.5854 - 5.6476i & -3.1861 - 3.2901i & -6.6945 + 2.9140i \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

So the unknown matrix X is achieved from the following form:

$$X = W_1 D_1 + W_2 D_2 + W_3 D_3 + W_4 D_4 + W_5 D_5 = \begin{bmatrix} -5.0309 & -1.7875 & -1.3281 & 0.8757 & 0.3085 \\ -1.7840 & -16.8314 & -25.4596 & -12.0316 & -3.8204 \\ -1.3271 & -25.4591 & -38.4578 & -12.9268 & -2.6543 \\ 0.8752 & -12.0329 & -12.9285 & -4.7302 & 3.0333 \\ 0.3090 & -3.8229 & -2.6544 & 3.0329 & -13.7378 \end{bmatrix}.$$

**Example 3.2** For solving Lyapunov equation  $AX + XA^* = C$ , consider the following matrixs  $3 \times 3$ , where  $A, A^*, C \in \mathbb{C}^{n \times n}$  and A is a full rank matrix.

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 4 & -5 & 2 \\ 3 & -4 & -1 \end{bmatrix}, \quad A^* = \begin{bmatrix} 1 & 4 & 3 \\ -2 & -5 & -4 \\ 3 & 2 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 27 & 22 & 32 \\ 21 & 52 & 50 \\ 22 & 78 & 31 \end{bmatrix},$$

At the first, we compute the eigenvalues and associated eigenvectors of matrix  ${\cal A}$  as following:

A. M. Nazari et al. / J. Linear. Topological. Algebra. 07(04) (2018) 307-316.

$$\mu_i = \begin{bmatrix} 0.3341 & -0.7061 & -0.7061 \\ -0.4131 & -0.6307 + 0.0739i & -0.6307 - 0.0739i \\ -0.8472 & -0.0831 - 0.3023i & -0.0831 + 0.3023i \end{bmatrix}$$

is the matrix eigenvectors of A and the associated eigenvalues are:

$$\sigma(A) = \{-4.1337, -0.4331 + 1.4938i, -0.4331 - 1.4938i\}.$$

So,

$$S = (\mu\mu^{\star})^{-1} = \begin{bmatrix} 4.6175 & -4.8144 & 2.9964 \\ -4.8144 & 6.2806 & -3.6898 \\ 2.9964 & -3.6898 & 3.2919 \end{bmatrix}$$

Thus, matrices  $R_i$  and  $D_i$  for i = 1, 2, 3 as they are shown above, are presented in the following:

$$\begin{split} R_1 &= \mathrm{diag}\left(\left[-1.6089\ 50.7883\ 114.8284\right]\right), \\ R_2 &= \mathrm{diag}\left(\left[25.0852 + 6.0470i\ -24.6205 - 22.0309i\ 1.6998 + 23.4335i\right]\right), \\ R_3 &= \mathrm{diag}\left(\left[25.0852 - 6.0470i\ -24.6205 + 22.0309i\ 1.6998 - 23.4335i\right]\right) \end{split}$$

and

$$D_{1} = \begin{bmatrix} 0.4627 & 0.2237 & 0.0961 \\ 5.9250 & -1.8859 & 4.9318 \\ -14.0779 & -10.9895 & -22.0317 \end{bmatrix},$$

$$D_{2} = \begin{bmatrix} -12.4816 - 31.4939i & -5.2289 - 25.7143i & -8.4475 - 2.9609i \\ 20.7342 - 32.6695i & 23.6428 - 19.9112i & -4.4235 - 17.4249i \\ 21.9898 - 8.9857i & 19.4954 - 6.1768i & 4.3673 - 13.3693i \end{bmatrix},$$

$$D_{3} = \begin{bmatrix} -12.4816 + 31.4939i & -5.2289 + 25.7143i & -8.4475 + 2.9609i \\ 20.7342 + 32.6695i & 23.6428 + 19.9112i & -4.4235 + 17.4249i \\ 21.9898 + 8.9857i & 19.4954 + 6.1768i & 4.3673 + 13.3693i \end{bmatrix}.$$

So the unknown matrix X is achieved from the following form:

$$X = W_1 D_1 + W_2 D_2 + W_3 D_3 = \begin{bmatrix} 0.9949 - 4.0042 \ 2.9999 \\ 1.9971 - 7.0032 \ 1.0015 \\ 3.9985 - 6.0016 \ 5.005 \end{bmatrix}.$$

## 4. Solving quadratic matrix equations

A manual approach in calculating the root of square matrix is studied in [10]. At first, consider  $X^2 = A$  for  $A, X \in \mathbb{C}^{n \times n}$ , which X is unknown matrix. We compute square root of  $n \times n$  as a prescribed matrix.  $\sqrt{A}$  can be obtained as  $\sqrt{\lambda_1}W_1 + \cdots + \sqrt{\lambda_n}W_n$ . Therefore,  $X = \sqrt{A} = \sqrt{\lambda_1}W_1 + \cdots + \sqrt{\lambda_n}W_n$ . So, we can compute  $(X + A)^2 = C$ . As we know  $C = \lambda_1W_1 + \cdots + \lambda_nW_n$ ,  $(X + A) = \sqrt{\lambda_1}W_1 + \cdots + \sqrt{\lambda_n}W_n$ ,  $X = (\sqrt{\lambda_1}W_1 + \cdots + \sqrt{\lambda_n}W_n) - A$ .

312

Now, consider  $X^2 + AX = C$  for  $A, X \in \mathbb{C}^{n \times n}$ , which X is unknown matrix. So, we can compute square root of matrix A. Consequently

$$\left(X + \frac{A}{2}\right)^2 = C + \frac{A^2}{4}, \qquad Y = X + \frac{A}{2}, \qquad H = C + \frac{A^2}{4}.$$

We have  $H = \lambda_1 W_1 + \lambda_2 W_2 + \dots + \lambda_n W_n$ , where scalars  $\lambda_1, \dots, \lambda_n$  are eigenvalues of matrix H and  $y = \sqrt{\lambda_1} W_1 + \dots + \sqrt{\lambda_n} W_n$ , as a result  $X = Y - \frac{A}{2}$ . Finally, for solving  $AX^2 + BX = C$ , where  $A, B, C, X \in \mathbb{C}^{n \times n}$  and X is unknown matrix, we have  $AX^2 + BX = C$ . By multiplying it by  $A^{-1}$  from the left, we conclude  $A^{-1}AX^2 + A^{-1}BX = A^{-1}C$  and  $X^2 + A^{-1}BX = A^{-1}C$ , that  $A^{-1}$  can be obtained by using spectral representation as the following

$$A^{-1} = \frac{1}{\lambda_1}W_1 + \frac{1}{\lambda_2}W_2 + \dots + \frac{1}{\lambda_n}W_n.$$

Let  $A^{-1}B = D$ ,  $A^{-1}C = H$ . Then

$$X^{2} + DX = H, \left(X + \frac{D}{2}\right)^{2} = H + \frac{D^{2}}{4}, Y = X + \frac{D}{2}, Z = H + \frac{D^{2}}{4}, Y^{2} = Z.$$
 (8)

Thus, we have  $Z = \lambda_1 W_1 + \dots + \lambda_n W_n$  that scalars  $\lambda_1, \dots, \lambda_n$  are eigenvalues of matrix Z. Also,  $Y = \sqrt{\lambda_1} W_1 + \sqrt{\lambda_2} W_2 + \dots + \sqrt{\lambda_n} W_n$ , as a result  $X + \frac{D}{2} = Y$ ,  $X = Y - \frac{D}{2}$ .

**Example 4.1** For solving  $X^2 = A$ , consider the following  $4 \times 4$  matrix

$$A = \begin{bmatrix} 0 & 10 & 10 & 0 \\ -20 & 54 & -14 & -16 \\ -4 & 28 & 0 & -59 \\ -2 & 5 & 9 & 29 \end{bmatrix}$$

At first, we obtain the eigenvectors of matrix A as following matrix

$$\mu_i = \begin{bmatrix} -0.9169 \ 0.2315 & 0.2292 - 0.2839i & 0.2292 + 0.2839i \\ -0.3074 \ 0.8981 & 0.4187 - 0.0019i & 0.4187 + 0.0019i \\ 0.2394 & 0.0590 & 0.7672 & 0.7672 \\ -0.0867 \ 0.3692 \ -0.0828 - 0.3101i \ -0.0828 + 0.3101i \end{bmatrix}$$

,

and its associated eigenvalues are

 $\sigma(A) = \left\{ \lambda_1 = 0.7417, \lambda_2 = 41.3485, \lambda_3 = 20.4549 + 25.2592i, \lambda_4 = 20.4549 - 25.2592i \right\}.$ So,

$$S = \begin{bmatrix} 1.4099 & -0.6843 & 0.1154 & -0.6126 \\ -0.6843 & 2.0900 & -1.1267 & -1.5458 \\ 0.1154 & -1.1267 & 1.5002 & 1.3746 \\ -0.6126 & -1.5458 & 1.3746 & 5.1663 \end{bmatrix}$$

Consequently, matrices  $W_i$  for i = 1, 2, 3, 4 as they are shown above, are presented in

,

the following form:

$$W_{1} = \begin{bmatrix} 0.9182 & 0.1382 & -0.4406 & -0.8416 \\ 0.3079 & 0.0463 & -0.1477 & -0.2822 \\ -0.2398 & -0.0361 & 0.1150 & 0.2198 \\ 0.0869 & 0.0131 & -0.0417 & -0.0796 \end{bmatrix}, W_{2} = \begin{bmatrix} -0.1175 & 0.2503 & -0.0901 & 0.1061 \\ -0.4559 & 0.9713 & -0.3495 & 0.4116 \\ -0.0300 & -0.0638 & -0.0230 & 0.0270 \\ -0.1874 & 0.03993 & -0.1437 & 0.1692 \end{bmatrix}$$
$$W_{3} = \begin{bmatrix} 0.0996 - 0.0020i & -0.1943 - 0.1483i & 0.2653 - 0.0633i & 0.3677 + 0.3723i \\ 0.0740 + 0.0872i & -0.0088 - 0.2804i & 0.2486 + 0.1902i & -0.0647 + 0.5970i \\ 0.1349 + 0.1604i & -0.0139 - 0.5138i & 0.4540 + 0.3505i & -0.1234 + 1.0933i \\ 0.0503 - 0.0718i & -0.2062 + 0.0610i & 0.0927 - 0.2213i & 0.4552 - 0.0681i \end{bmatrix},$$

Then the unknown matrix X computes as the following

$$X = \sqrt{A} = \sqrt{\lambda_1}W_1 + \sqrt{\lambda_2}W_2 + \sqrt{\lambda_3}W_3 + \sqrt{\lambda_4}W_4.$$

Hence,

$$X = \begin{bmatrix} 1.0705 & 0.4576 & 2.0826 & 1.9146 \\ -2.3328 & 7.5712 & -0.7497 & -1.1931 \\ 0.2017 & 2.7586 & 2.9028 & -6.2737 \\ -0.2604 & 0.1572 & 1.0804 & 6.0386 \end{bmatrix}.$$

**Example 4.2** For solving  $X^2 + AX = C$ ,  $A_{4\times 4}$  and  $C_{4\times 4}$  as they are given. Then we compute X as it is described above.

$$A = \begin{bmatrix} -4 & 3 & -4 & 0 \\ -1 & 3 & 8 & -2 \\ 2 & -5 & 0 & -1 \\ -4 & 3 & 2 & -3 \end{bmatrix} , \qquad C = \begin{bmatrix} 21 & 0 & -27 & 7 \\ -9 & 10 & 16 & -6 \\ -26 & -2 & 31 & -13 \\ 14 & -15 & 1 & 47 \end{bmatrix}.$$

The matrix eigenvectors and its associated eigenvalues are computed in the following:

$$\mu_i = \begin{bmatrix} -0.3015 & -0.1921 + 0.1007i & -0.1921 - 0.1007i & -0.5095 \\ 0.2736 & 0.8457 & 0.8457 & 0.2655 \\ 0.3732 & 0.1570 + 0.1607i & 0.1570 - 0.1607i & 0.5201 \\ -0.8336 & 0.4310 - 0.0396i & 0.4310 + 0.0396i & 0.6320 \end{bmatrix}$$

and

$$\sigma(H) = \{\lambda_1 = 57.4109, \lambda_2 = 0.6322 + 4.2275i, \lambda_3 = 0.6322 - 4.2275i, \lambda_4 = 29.3247\}.$$

Thus,

$$S = (\mu\mu^{\star})^{-1} = \begin{bmatrix} 9.9279 & 1.0381 & 6.7054 & 0.5379 \\ 1.0381 & 1.2468 & -0.3104 & -0.3654 \\ 6.7054 & -0.3106 & 7.4384 & 0.5461 \\ 0.5379 & -0.3654 & 0.5461 & 0.8843 \end{bmatrix}.$$

Consequently, matrices  $W_i$  for i = 1, 2, 3, 4 as they are shown above, are presented in the following form:

$$W_{1} = \begin{bmatrix} 0.1974 & -0.0654 & -0.0647 & 0.2398 \\ -0.1792 & 0.0594 & 0.0587 & -0.2177 \\ -0.2444 & 0.0810 & 0.0801 & -0.2969 \\ 0.5459 & -0.1808 & -0.1788 & 0.6632 \end{bmatrix},$$

$$W_{2} = \begin{bmatrix} 0.1579 + 0.4207i & -0.1177 + 0.0786i & 0.2144 + 0.3403i & 0.0003 + 0.0260i \\ 0.2164 & -1.7388i & 0.5487 - 0.0585i & -0.1243 - 1.5637i & 0.0462 - 0.0904i \\ 0.3706 & -0.2817i & 0.1130 + 0.0934i & 0.2741 - 0.3140i & 0.0258 - 0.0080i \\ 0.0289 & -0.8964i & 0.2769 - 0.0555i & -0.1365 - 0.7912i & 0.0193 - 0.0483i \end{bmatrix},$$

$$W_{3} = \begin{bmatrix} 0.1579 - 0.4207i & -0.1177 - 0.0786i & 0.2144 - 0.3403i & 0.0003 - 0.0260i \\ 0.2164 + 1.7388i & 0.5487 + 0.0585i & -0.1243 + 1.5637i & 0.0462 + 0.0904i \\ 0.3706 + 0.2817i & 0.1130 - 0.0934i & 0.2741 + 0.3140i & 0.0258 + 0.0080i \\ 0.0289 + 0.8964i & 0.2769 + 0.0555i & -0.1365 + 0.7912i & 0.0193 + 0.0483i \end{bmatrix},$$

$$W_{4} = \begin{bmatrix} 0.4867 & 0.3007 & -0.3642 & -0.2404 \\ -0.2537 & -0.1567 & 0.1898 & 0.1253 \\ -0.4968 & -0.3069 & 0.3718 & 0.2454 \\ -0.6038 & -0.3730 & 0.4518 & 0.2982 \end{bmatrix}.$$

Then the unknown matrix X is computed as the following:

$$X = \begin{bmatrix} 5.4909 & -0.9479 & -0.7092 & 0.4460 \\ 3.1398 & -0.0223 & 1.3038 & 0.4179 \\ -3.6208 & 1.5531 & 4.3259 & -0.3186 \\ 5.3766 & -3.8728 & 1.7995 & 8.3304 \end{bmatrix}.$$

**Example 4.3** For solving  $AX^2 + BX = C$  with the following matrix  $A_{3\times 3}, B_{3\times 3}, C_{3\times 3}$ , we compute X.

$$A = \begin{bmatrix} -4 & 2 & -1 \\ 3 & 7 & -3 \\ 4 & -5 & 6 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 3 \\ 4 & -2 & 3 \\ 5 & -1 & 6 \end{bmatrix}, C = \begin{bmatrix} -38 & 8 & -18 \\ 120 & -54 & 164 \\ 58 & -60 & 206 \end{bmatrix},$$

Since the matrix A is invertible, we compute the matrix  $A^{-1}$  and multiply the above quadratic matrix equation from the left by  $A^{-1}$ . Thus,

$$A^{-1} = \begin{bmatrix} -0.2160 \ 0.0560 \ -0.0080 \\ 0.2400 \ 0.1600 \ 0.1200 \\ 0.3440 \ 0.0960 \ 0.2720 \end{bmatrix}$$

Then, by relations (8), we have

$$H = \begin{bmatrix} 14.4639 & -4.2720 & 11.4239 \\ 17.0400 & -13.9200 & 46.6400 \\ 14.2240 & -18.7520 & 65.5840 \end{bmatrix}, \qquad D = \begin{bmatrix} 0.4000 & -0.5360 & -0.5280 \\ 1.0000 & 0.0400 & 1.9200 \\ 1.4000 & 0.2240 & 2.9520 \end{bmatrix},$$
$$Z = \begin{bmatrix} 14.1851 & -4.3605 & 10.7242 \\ 17.8220 & -13.9461 & 47.9441 \\ 15.4532 & -18.7720 & 67.6853 \end{bmatrix}.$$

and the unknown matrix X is computed in the following:

$$X = \begin{bmatrix} 3.5705 - 0.4204 \ 1.4301 \\ 2.5657 - 1.4077 \ 4.9393 \\ 1.0828 - 2.4447 \ 7.4329 \end{bmatrix}.$$

# References

- [1] A.C. Antoulas, D. C. Sorensen, Projection methods for balanced model reduction, Technical report, Rice university, Houston, 2001.
- [2] R. Bartels, G. W. Stewart, Solution of the matrix equation AX + XB = C, Comm A.C.M. 15 (9) (1972), 820-826.
- [3] P. Benner, T. Damm, Lyapunov equations, energy functions and model order reduction of bilinear and stochastic system, SIAM J. Control Optim. 49 (2011), 686-711.
- [4] K. Glover, D. J. N. Limbeer, C. Doyle, E. M. Kasenally, M. G. Safonov, A characterisation of all solutions to the four block general distance problem, SIAM J. Control optim. 29 (1991), 283-324.
- [5] R. A. Horn, D. R. Johnson, Topic in matrix analysis, Cambridge university press, cambridge, 1994.
- B. C. Moore, Principal component analysis in linear systems: controllabality, observability and model reduction, IEEE Trans. Auto. Control. 26 (1981), 17-31.
- [7] A. Nazari, H. Fereydooni, M. Bayat, A manual approach for calculating the root of square matrix of dimension  $\leq 3$ , Math. Sci. 2013, 2013:6 pages.
- [8] S. Sambasiva Rao, M. Srinivas, V. Arvind Kumar, Square root of certain matrices, J. Global Res. Math. Arc. 2 (11) (2014), 19-24.
- [9] B. Vandereycken, S. Vandewalle, A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl. 31 (5) (2010), 2553-2579.
- [10] P. Van Dooren, Gramain based model reduction of large-scale dynamical systems, Numerical Analysis, Chapman and Hall, CRC press, London, 2000.