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Abstract. The purpose of this paper is to solve two types of Lyapunov equations and
quadratic matrix equations by using the spectral representation. We focus on solving Lya-
punov equations AX +XA* = C and AX+XAT = —bbT for A, X € C"*"™ and b € C™** with
s < n, which X is unknown matrix. Also, we suggest the new method for solving quadratic
matrix equations AX? + BX 4+ C = 0, where A, B,C, X € C"*" and X is unknown matrix
with similar method.
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1. Introduction

Consider two square matrices A,C € C"*". The problem is to find a square matrix
X e C"™in
AX + XA* =C, (1)
which is called the Lyapunov equation. Many different algorithms are suitable for dif-
ferent situations depending on the properties of matrices A and C. For dense A, the
Bartels-Stewart algorithm is the most widely used algorithm. It employs Schur decom-
position and then builds simple linear equations which can be solved sequentially [2]. For
sparse and large-scale A, if C is low-rank, Krylov-type methods may be more efficient
[9]. This Lyapunov matrix equation has form AX + X AT = —bb?, where A, X € C™*"
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and b € C"*® with s < n. There is no need to have rank of matrix in this paper which
shows our methodology.

In Lyapunov equation (1), suppose that the two matrices A and —A* have not any
common eigenvalues. It is well known that the Lyapunov equation (1) has an unique
solution X € C™ ™ if and only if \; # A; for all 4,5 = 1,--- ,n. In particular, if A
is strictly stable; that is, \; < 1 for all ¢ = 1,--- ,n, then (1) has an unique solution,
where A1, -+, A\, are the eigenvalues of matrix A. Lyapunov matrix equation has many
applications in control and system theory especially in controllability, and control filtering
with singular measurement noise [3] and optimal control theory [4], model reduction of
linear time-invariant systems [1, 6]. Another application is communicating system theory
and power systems. This equation has an unique solution if and only if A; + A; # 0 for
all 7 and j, where Ay, --- , A, are the eigenvalues of A [5, 10].

In the second part of this paper, we present a new method for solving quadratic matrix
equations. Nazari et al. [7] solved the square root of matrix triangular equations for order
n = 3 and Sambasiva Rao et al. [8] presented an extension of Nazari et al’s method. Here,
we solve a general quadratic matrix equations by spectral representation. Some different
examples are presented.

2. Spectral representation of a matrix

At the first, we explain the spectral representation of a matrix and some of the ap-
plications. Let A € C™™ and A, A2, -+, A, be its eigenvalues. Assume that vectors
141, fa, - - -, i, be its corresponding eigenvectors, respectively. Consequently, A is a diago-
nalizable matrix and is full rank. It is clear that Au; = \;u; for every ¢ = 1,2,--- ,n. Now,
we multiply from the right by pf that gives equation Ap;u; = Ny for i =1,2,--- ,n.
Then by adding all n obtained above equations, we achieve

A (P py + pops + -+ pnpy) = A pa gy + o Anfinfiy.

Assume that S = (plu{+--~+unu;)_1 and W; = p;urS for @ = 1,2,--- ,n, where
W; are rank-one matrices and S is positive definite matrix. It is easy to show that the
matrix A can be written as linear combination of its eigenvalues and W; is called spectral
representation of A; that is, A = \{W1 + AaWo +--- + X\, W,.

Theorem 2.1 The matrices Wy, ..., W,, satisfy in the following conditions: (I) S is
symmetric positive definite matrix,

(IT) rank(W;)=1fori=1,2,--- ,n,

(II1) Wi+ Wo + -+ W,, = I,, I, denotes the n x n identity matrix,

(IV) W;W; =0, fori,j =1,2,--- ,n with i # j, 0, denotes the n x n zero matrix,

(V) W/ =W;fori=1,2,--- ,n withr >0,

(VI) P(A)W; = P(\;)W; for every polynomial,

(VII) WzA = AWl = )\sz for i = 1, 2, e, N,
(VIII
(IX)
(

If 0(A) denotes the spectrum of the matrix A, then o(W;) ={1,0,---,0},
X) For any complex numbers «, 3 it hold that

{aaﬁaoa'”70}7 2#;7

{a+6707 70}72:]
(XI) Consider a square matrix B(# A). There exist n diagonal matrix R, Ro, -, R,
can be computed such that B=WR; +--- + W,R,.

o(aW; 4+ BW;) = ac(W;) + po(W;) =
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Proof. We just only prove the last part and the other parts are trivial. The significant
property W;W; = 0, for ¢, = 1,2,--- ,n with ¢ # j concludes W;B = W;R; for i =
1,2,---,n. If W7, denotes the j-th column of W; for every ¢,j =1,2,---,n and

R; = diag(ril, ré,Q, st ), (2)

s in,n

then

WiB =W;R; = [W{ ,Ws - Wy ][diag(r} 1,755, 70, 0)] = [P i Wairh oWai -1, Wil

n,n

and consequently,

. (WiB)1,
" = ((Wj,i))? (3)

fori,j=1,2,--- ,n, where (W;B)1; is the element of the matrix W;B in row (arbitrary
chosen) 1 and column j. Moreover, (W, ;)1 is the first (due to first row) element of the
columns Wj; by (3). [ |

We show that by helping spectral representation how we can compute AL and A7 .

Let A be an invertible matrix. Thus, Ay, --- , A\, are non-zero and it is easy to see that

1 1
1_*W1+*

A =
A1 Ao

1
Wo+--+ —W,.
An
Moreover, for every r € R, the matrix A" satisfies A" = A\JW1 + A\gWa + - - + AL W,

In the first part of this paper, we explain a method for solving two cases of Lyapunov
equation AX + XA* = C and AX + XAT = —bb” that discussed above.

3. Solving Lyapunov equation

In this section, we assume that A is invertible and we present a new method of solving

AX + XA* =C. (4)
We have
A:)\lwl +)\2W2+"'+>\an7 (5)
C=WiRy +WeRy +---+Wy,R,, (6)
X = WlDl + WQDQ + st + WnDn’ (7>

where R; for i = 1,2,--- ,n is denoted in (2) and (3) and Dy, Ds,---, D, that are
unknown matrices that must be determined for equation AX +X A* = C. By substitution
(5)-(7) in Lyapanov equation (4), we have

(MW A XN W) (WD 4 -+ W, Dy )+ (WiD1+- - -+ Wy, Dy ) A* = Wi R +- - -+ W, Ry,
such that

(WiMiDi+- -4+ WpAyDp) + (Wi D1 A* + -+ W, Dy A*) = WiR1 +WaRy +- - -+ Wy R,,.
By classifying above equation, we have

Wi (MD1+ D1A*) + -+ Wy (A Dy + Dy A*) = WiRy + - - + Wi Ry,

Thus, \;D; + D;A* = R; for i = 1,2,---,n is achieved. Therefore, the matrices
Dy, Ds, -+, D,, are computed as following D; = R; (AL, + A*)_1 fori=1,2,---,n.
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Ezxample 3.1 For solving Lyapunov equation AX + XAT = —bbT, consider the 5 x 5
full rank following matrix

1 2 —-34 2 1
-2 1 -37-5 -2
A=1]3 -314-5 ., b=|3
0 1 —23—-4 -5
—23 -15 1 4

We use software Matlab and compute the solution of Lyapanove equation AX + X AT =
—bbT. At the first, we obtain the eigenvectors of matrix A, as following matrix

[ 0.3066 —0.2764 + 0.60047 —0.2764 — 0.60047 —0.3730 + 0.1079¢ —0.3730 — 0.1079¢7
0.8028 —0.1127 — 0.10437 —0.1127 + 0.10437 0.2723 — 0.3409:  0.2723 4 0.3409:
w; = | 0.4373 0.6647 0.6647 0.5791 0.5791

—0.1658 0.0188 +0.05737 0.0188 — 0.05737 0.2322 — 0.09817 0.2322 + 0.0981:

| —0.2069 —0.3042 — 0.03927 —0.3042 4 0.03927 —0.2727 — 0.4308¢ —0.2727 4 0.4308¢ |

and

o(A) = {A\1 = —1.5558, Ay = 2.6624 + 3.8198i, \3 = 2.6624 — 3.8199i, \y =
1.6155 + 5.3682i, A5 = 1.6155 — 5.3682:},

that associated to the eigenvectors of A. So,

r1.1425 —0.2970 0.7204 0.4961 0.5598
—0.2970 1.6762 —1.5053 1.0178 —1.6513
S = (up*)"t = | 0.7204 —1.5053 3.1215 —2.5528 3.2401

0.4961 1.0178 —2.5528 9.5772 —2.6400

| 0.5598 —1.6513 3.2401 —2.6400 4.7439 |

Thus, matrices R; and D; for ¢ = 1,2,--- ,5 as they are shown above, are presented in
the following:

R, = diag ([—17.0684 10.1633 — 89.6434 — 16.4277 55.7326]),

Ry = diag( [1.1302 ~16.4245i — 33.3898 — 17.8968i — 30.8001 — 13.7871i
— 38.3588 + 26.2608i — 62.5822 — 23.58401} )

Ry = diag( [1.1302 +16.4245i — 33.3808 + 17.8968i — 30.8001 -+ 13.7871i
— 38.3588 — 26.2608i — 62.5822 + 23.58401} )

Ry = diag( [ — 96.5124 — 3.0525i — 65.9130 + 29.5523i — 53.3405 — 34.0764i
— 38.7462 + 21.3551i — 33.9249 — 22.85322} )

Rs = diag( [ — 96.5124 + 3.0525i — 65.9130 — 29.5523i — 53.3405 + 34.0764i

— 38.7462 — 21.3551i — 33.9249 + 22.85322})
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and
[ —2.2144 0.1681 4.2221 —0.3877 —2.2090
—2.6138 —2.2132 —0.9100 0.0932 —0.0646
D; = [—19.6751 —1.1401 —8.3363 —8.7737 0.7154
—1.7248 —3.5827 2.7825 2.3113 2.6545
L 2.8059 13.3522 16.5956 7.3191 —2.3172
[—1.1071 — 2.2871% —0.9303 — 0.1774% 0.4354 + 0.71587 0.0506 — 0.08927 —0.2935 — 0.48021]
1.1943 4+ 1.1459¢ —4.9332 + 3.42067 —1.0338 + 2.3994¢ 0.8207 — 1.3558¢ 1.7427 — 1.4840¢
Do = [—1.2733 + 1.2896¢ —1.6759 + 1.0771¢ —6.1326 4 0.82457 —1.4314 + 0.5095¢ 0.1345 — 0.7887: | ,
—1.7745 — 1.6297¢ —6.8371 — 11.1354¢ —5.5727 — 9.1883¢ —2.6287 4 3.2181¢ 3.8724 — 2.7097¢
L 3.6023 — 2.3514¢ —6.7103 — 0.7777i —9.1271 + 3.8297¢ —5.2301 + 3.2357¢ —7.6078 — 2.52341 |
[—1.1071 4+ 2.28717 —0.9303 4+ 0.1774¢ 0.4354 — 0.71587 0.0506 + 0.08927 —0.2935 + 0.48027
1.1943 — 1.14597 —4.9333 — 3.42067 —1.0338 — 2.39947 0.8207 4 1.3558¢  1.7427 + 1.48404
D3z = |—1.2733 — 1.28967 —1.6759 — 1.077¢ —6.1326 — 0.82457 —1.4314 — 0.50957 0.1345 4 0.78877 | ,
—1.7745 4+ 1.6297¢ —6.8371 + 11.1354% —5.5727 4+ 9.18837 —2.6287 — 3.2181¢ 3.8724 + 2.7097%
L 3.6023 + 2.3514% —6.7103 + 0.7777: —9.1271 — 3.8297¢ —5.2301 — 3.2357¢ —7.6078 + 2.52347 |
[—11.8361 4 10.4423¢ 1.5012 4 4.90737 2.3249 — 4.98927 —0.4762 + 0.3532¢ —1.8107 + 3.48981
2.2610 — 2.6180% 0.0674 4 8.4109: 2.5443 + 2.1430¢ —2.3504 — 1.81327 —1.5340 — 4.2153%
Dy = —0.9908 + 2.6725¢ —3.2591 4+ 3.05707 —12.0836 — 4.32827 —2.6638 4 2.40177 —1.0698 — 2.20361% | ,
—0.2100 — 0.43517 —9.7579 — 7.07437 —9.6808 — 4.88157 —4.1294 + 3.51737 2.6023 — 6.14987
2.4845 — 2.6157% —5.5814 + 1.5571¢ —5.5854 + 5.64767 —3.1861 + 3.29017 —6.6945 — 2.9140¢ |
[—11.8361 — 10.44237 1.5012 — 4.9073% 2.3249 + 4.98927 —0.4762 — 0.35237 —1.8107 — 3.48981
2.2610 4 2.618017 0.0674 — 8.41097 2.5443 — 2.14307 —2.3504 + 1.8132¢ —1.5340 + 4.21531%
Ds = —0.9908 — 2.6725¢ —3.2591 — 3.05707 —12.0836 — 4.3282¢ —2.6638 — 2.40177 —1.0698 + 2.20364
—0.2100 + 0.43517 —9.7579 + 7.07437 —9.6808 — 4.8815¢ —4.1294 — 3.5173% 2.6023 + 6.1498¢
2.4845 + 2.6157¢ —5.5814 — 1.55717 —5.5854 — 5.64767 —3.1861 — 3.2901¢ —6.6945 4 2.9140¢ |
So the unknown matrix X is achieved from the following form:
[—5.0309 —1.7875 —1.3281 0.8757  0.3085 7

—1.7840 —16.8314 —25.4596 —12.0316 —3.8204
X = Wi D14+ Wo Do+ W3 D3+W,yDy+Ws5Ds = | —1.3271 —25.4591 —38.4578 —12.9268 —2.6543
0.8752 —12.0329 —12.9285 —4.7302 3.0333

—3.8229 —-2.6544 3.0329

| 0.3090 —13.7378]

Example 3.2 For solving Lyapunov equation AX + X A* = C, consider the following
matrixs 3 x 3, where A, A*,C € C"*" and A is a full rank matrix.

1-2 3 1 4 3 27 22 32
A=|4-5 2|, A*=|-2-5-4|, C=|215250|,
3-4-1 3 2 -1 22 78 31

At the first, we compute the eigenvalues and associated eigenvectors of matrix A as
following:



312 A. M. Nazari et al. / J. Linear. Topological. Algebra. 07(04) (2018) 307-316.
0.3341 —0.7061 —0.7061
i = |—0.4131 —0.6307 4- 0.0739: —0.6307 — 0.0739¢

—0.8472 —0.0831 — 0.3023¢ —0.0831 4 0.3023%
is the matrix eigenvectors of A and the associated eigenvalues are:
o(A) ={—-4.1337,—-0.4331 + 1.4938i, —0.4331 — 1.4938i} .
So,
4.6175 —4.8144 2.9964
S = (up*)~! = |—4.8144 6.2806 —3.6898].

2.9964 —3.6898 3.2919

Thus, matrices R; and D; for i« = 1,2,3 as they are shown above, are presented in the
following:

Ry = diag ([—1.6089 50.7883 114.8284]) ,
Ry = diag ([25.0852 + 6.0470i — 24.6205 — 22.0309; 1.6998 + 23.4335]) ,
Ry = diag ([25.0852 — 6.0470i — 24.6205 + 22.0309; 1.6998 — 23.4335])

and

[ 0.4627  0.2237  0.0961
Dy = 59250 —1.8859 4.9318

)

| —14.0779 —10.9895 —22.0317
[—12.4816 — 31.4939¢ —5.2289 — 25.71437 —8.4475 — 2.9609: |

Dy = | 20.7342 — 32.66957 23.6428 — 19.91127 —4.4235 — 17.4249¢

| 21.9898 — 8.9857: 19.4954 — 6.17687 4.3673 — 13.3693¢ |
[—12.4816 + 31.4939¢ —5.2289 + 25.71437 —8.4475 + 2.9609: |

D3 = | 20.7342 + 32.6695¢ 23.6428 + 19.9112¢ —4.4235 + 17.4249;

| 21.9898 4-8.98577  19.4954 4 6.17687 4.3673 + 13.3693¢ |
So the unknown matrix X is achieved from the following form:
0.9949 —4.0042 2.9999
X =W1D{ +WyDy + W3D3z = |1.9971 —7.0032 1.0015 | .

3.9985 —6.0016 5.005

4. Solving quadratic matrix equations

A manual approach in calculating the root of square matrix is studied in [10]. At first,
consider X2 = A for A, X € C™", which X is unknown matrix. We compute square root
of nxn as a prescribed matrix. VA can be obtained as VA Wi+ - -+ VA Wi,. Therefore,
X =VA=\/XWi+--+vVAW,. So, we can compute (X 4+ A)2 = C. As we know C =
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Now, consider X2 + AX = C for A, X € C»", which X is unknown matrix. So, we
can compute square root of matrix A. Consequently

A\? A2 A A2
(X+2>—C+4, Y =X+, H=C+.

We have H = MW7 4+ oWy + -+ + A\, W,,, where scalars A1,---, A\, are eigenvalues
A
of matrix H and y = VAW + -+ + VA, W,, as aresult X =Y — 5 Finally, for

solving AX? + BX = C, where A, B,C,X € C™" and X is unknown matrix, we

have AX? 4+ BX = C. By multiplying it by A~! from the left, we conclude A= AX? 4

AT'BX = A7'C and X2+ A" 'BX = A~'C, that A~! can be obtained by using spectral
representation as the following

1 1 1

Al = — W+ —Wat -+ — W,

N 1+ " 2+ -+ N,

Let A7'B =D, A~'C = H. Then

D\? D? D D?
W+DX:H(X+2>:H+4,Y:X+2Z:H+4,W:Z.(&

Thus, we have Z = \{W1 + - - -+ A\, W, that scalars Ay, --- , A\, are eigenvalues of matrix

D D
Z. Also, Y = VAW + VAo Wo + - - - + VA, W, as a result X + 5= Y, X=Y - 5

Ezxample 4.1 For solving X2 = A, consider the following 4 x 4 matrix

0 10 10 O

A —20 54 —14 —16
| -4 28 0 —-59(°

-2 5 9 29

At first, we obtain the eigenvectors of matrix A as following matrix
—0.9169 0.2315 0.2292 — 0.2839: 0.2292 + 0.2839;

—0.3074 0.8981 0.4187 — 0.0019z 0.4187 4 0.0019:
0.2394 0.0590 0.7672 0.7672

—0.0867 0.3692 —0.0828 — 0.31017 —0.0828 4 0.3101%

and its associated eigenvalues are
o(A) = {)\1 = 0.7417, Ay = 41.3485, A\ = 20.4549 + 25.2592i, Ay = 20.4549 — 25.25922’}.
So,

1.4099 —0.6843 0.1154 —0.6126

—0.6843 2.0900 —1.1267 —1.5458

S =
0.1154 —1.1267 1.5002 1.3746
—0.6126 —1.5458 1.3746 5.1663

Consequently, matrices W; for ¢ = 1,2, 3,4 as they are shown above, are presented in
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the following form:

r0.9182 0.1382 —0.4406 —0.8416 —0.1175 0.2503 —0.0901 0.1061
0.3079 0.0463 —0.1477 —0.2822 —0.4559 0.9713 —0.3495 0.4116

W1 = 5 W2 = )
—0.2398 —0.0361 0.1150 0.2198 —0.0300 —0.0638 —0.0230 0.0270
L 0.0869 0.0131 —0.0417 —0.0796 —0.1874 0.03993 —0.1437 0.1692

r0.0996 — 0.00207 —0.1943 — 0.14837 0.2653 — 0.0633¢ 0.3677 + 0.37237 T

0.0740 + 0.0872¢ —0.0088 — 0.2804¢ 0.2486 + 0.19027 —0.0647 + 0.5970:

W= 0.1349 + 0.1604¢ —0.0139 — 0.5138¢ 0.4540 + 0.35057 —0.1234 + 1.0933: 7
L0.0503 — 0.07187 —0.2062 4 0.0610z 0.0927 — 0.22137 0.4552 — 0.06817 |
r0.0996 + 0.0020z —0.1943 4 0.14837 0.2653 + 0.0633¢ 0.3677 — 0.37237 T

W 0.0740 — 0.0827¢ —0.0088 + 0.28047 0.2486 — 0.1902¢ —0.0647 — 0.59707

=

0.1349 — 0.16047 —0.0139 + 0.51387 0.4540 — 0.35057 —0.1234 — 1.0933¢

10.0503 4 0.07187 —0.2062 — 0.0610z 0.0927 + 0.22137 0.4552 + 0.06817 |

Then the unknown matrix X computes as the following

X = VA= VNWi +V2Wa + VAsWs + VAW

Hence,
1.0705 0.4576 2.0826 1.9146

—2.3328 7.5712 —0.7497 —1.1931
X = .
0.2017 2.7586 2.9028 —6.2737

—0.2604 0.1572 1.0804 6.0386

Example 4.2 For solving X? + AX = C, Ayxs and Cyyy as they are given. Then we
compute X as it is described above.

-4 3 -4 0 21 0 —-27 7
-13 8 —2 -9 10 16 —6
A=19 50 1 ’ C=1_9 —2 31 —13|"
-4 3 2 -3 14 —15 1 47

The matrix eigenvectors and its associated eigenvalues are computed in the following:
—0.3015 —0.1921 4+ 0.1007¢ —0.1921 — 0.10077 —0.5095

0.2736 0.8457 0.8457 0.2655
0.3732 0.1570 + 0.1607¢ 0.1570 — 0.1607z 0.5201

—0.8336 0.4310 —0.0396: 0.4310 4 0.0396: 0.6320

and

o(H) = {\; = 57.4109, Ay = 0.6322 + 4.2275i, A = 0.6322 — 4.2275i, A, = 29.3247}.
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Thus,
9.9279 1.0381 6.7054 0.5379
1.0381 1.2468 —0.3104 —0.3654
6.7054 —0.3106 7.4384 0.5461

0.5379 —0.3654 0.5461 0.8843

Consequently, matrices W; for i = 1, 2, 3,4 as they are shown above, are presented in the
following form:

r0.1974 —0.0654 —0.0647 0.2398
—0.1792 0.0594 0.0587 —0.2177
Wy =
—0.2444 0.0810 0.0801 —0.2969
L 0.5459 —0.1808 —0.1788 0.6632
r0.1579 + 0.4207i —0.1177 +0.0786i 0.2144 + 0.3403i 0.0003 + 0.0260i7
0.2164 — 1.7388i 0.5487 — 0.0585i —0.1243 — 1.5637i 0.0462 — 0.0904i
e 0.3706 — 0.2817i 0.1130 + 0.0934i  0.2741 — 0.3140i 0.0258 — 0.0080i |
[0.0289 — 0.8964i 0.2769 — 0.0555i —0.1365 — 0.7912i 0.0193 — 0.0483]
r0.1579 — 0.4207i —0.1177 — 0.0786i 0.2144 — 0.3403i 0.0003 — 0.0260i]
0.2164 + 1.7388i 0.5487 + 0.0585i —0.1243 4 1.5637i 0.0462 + 0.0904i
e 0.3706 + 0.2817i 0.1130 — 0.0934i  0.2741 + 0.3140i 0.0258 + 0.0080 |
[0.0289 + 0.8964i 0.2769 + 0.0555i —0.1365 + 0.7912i 0.0193 + 0.0483]
r0.4867 0.3007 —0.3642 —0.2404
—0.2537 —0.1567 0.1898 0.1253
W, =
—0.4968 —0.3069 0.3718 0.2454
[—0.6038 —0.3730 0.4518 0.2982

Then the unknown matrix X is computed as the following;:
5.4909 —0.9479 —0.7092 0.4460

3.1398 —0.0223 1.3038 0.4179
X = .
—3.6208 1.5531 4.3259 —0.3186

5.3766 —3.8728 1.7995 8.3304

Ezxample 4.3 For solving AX? + BX = C with the following matrix Aszys, Bsx3, Csx3,
we compute X.

-4 2 -1 -1 2 3 —-38 8 —18
A=|3 7 -3|,B=|4 23| ,C= 120—541641,
4 -5 6 5 16 58 —60 206
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Since the matrix A is invertible, we compute the matrix A~! and multiply the above
quadratic matrix equation from the left by A~!. Thus,

—0.2160 0.0560 —0.0080
A=l =0.2400 0.1600 0.1200

0.3440 0.0960 0.2720

Then, by relations (8), we have

14.4639 —4.2720 11.4239 0.4000 —0.5360 —0.5280

H = |17.0400 —13.9200 46.6400 D = |1.0000 0.0400 1.9200

) )

14.2240 —18.7520 65.5840 1.4000 0.2240 2.9520
14.1851 —4.3605 10.7242

Z = |17.8220 —13.9461 47.9441

15.4532 —18.7720 67.6853

and the unknown matrix X is computed in the following:

3.5705 —0.4204 1.4301

X = [2.5657 —1.4077 4.9393

1.0828 —2.4447 7.4329
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