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Abstract. The main objective of the paper is to state newly fixed point theorems for set-
valued mappings in the framework of 0-complete partial metric spaces which speak about a
location of a fixed point with respect to an initial value of the set-valued mapping by using
some C-class functions. The results proved herein generalize, modify and unify some recent
results of the existing literature. As an application, we provide an existence theorem for a
coupled elliptic system subject to various two-point boundary conditions.
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1. Introduction

In the study of differential inclusions or differential equations, the topological methods
are used to give us the qualitative information about existence, stability, periodicity
of solutions. The fixed point theorem and topological degree are the most topological
techniques used, which are closely connected. In the present paper we are interesting
about fixed point theory for set-valued mappings on 0-complete partial metric spaces.

Recall that the partial metric is an interesting distance function introduced by
Matthews [22]. The motivation behind introducing the concept of a partial metric space
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is to solve certain problems arising in computer science. In [26], Romaguera introduced
the notion of a 0-Cauchy sequence in a partial metric space and then the 0-complete
partial metric space.

The aim of the paper is to improve the fixed point theorem mentioned on [8] to
0-complete partial metric spaces by using the concept of C-class function, which is intro-
duced by Ansari in [4], and state an existence theorem for the following coupled elliptic
system subject to various two-point boundary conditions

−u′′1 = f(t, u1, u2)− λ t ∈ (0, 1)
−u′′2 = g(t, u1, u2)− µ t ∈ (0, 1)
αiui(0)− βiu

′
i(0) = 0 i=1,2

γiui(1) + δiu
′
i(1) = 0 i=1,2

(1)

where f, g : [0, 1]×R×R → R are continuous functions. The constants λ, µ, αi, βi, γi and
δi are such that, for each i ∈ {1, 2},

λ, µ, βi, δi ⩾ 0, αi + βi > 0, γi + δi > 0, ki := αiγi + αiδi + βiγi > 0.

The paper is organized as follows: in section 2, we give some definitions and recall a few
preliminary results. In section 3, we introduced a type of functions needed to prove our
main results. Moreover, we give some related corollaries. To illustrate an application of
our results, we prove the local existence of solutions to boundary value problem mentioned
below in the last section.

2. Notations and preliminary results

We begin with the following definition.

Definition 2.1 Let X be a nonempty set. A function p : X ×X → R+ is said to be a
partial metric on X if for any x, y, z ∈ X, the following conditions hold:

(P1) p(x, x) = p(y, y) = p(x, y) ⇔ x = y;
(P2) p(x, x) ⩽ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ⩽ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is then called a partial metric space. Each partial metric p on X
generates a T0 topology τp on X with a base of the family of open p-balls {Bp(x, ϵ) : x ∈
X, ϵ > 0}, where

Bp(x, ϵ) = {y ∈ X : p(x, y) < p(x, x) + ϵ}

for all x ∈ X and ϵ > 0. The closed p-ball of radius r centered at x is denoted by Bp(x, r)
where

Bp(x, r) = {y ∈ X : p(x, y) ⩽ p(x, x) + r}.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)
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is a metric on X.
Let (X, p) be a partial metric space. Then

• A sequence {xn} converges to a point x ∈ X if and only if p(x, x) = lim
n→+∞

p(x, xn).

• A sequence {xn} is called a Cauchy sequence if there exists (and is finite)
lim

n,m→+∞
p(xn, xm). If lim

n,m→+∞
p(xn, xm) = 0, then {xn} is said to be a 0-Cauchy se-

quence in (X, p).

• (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with
respect to τp, to a point x ∈ X such that p(x, x) = lim

n,m→+∞
p(xn, xm).

• (X, p) is said to be 0-complete if every 0-Cauchy sequence {xn} in X converges, with
respect to τp, to a point x ∈ X such that p(x, x) = 0.

• Each 0-Cauchy sequence in (X, p) is a Cauchy in (X, ps).

• Every complete partial metric space is 0-complete.

• 0-complete partial metric space need not be complete.

Lemma 2.2 Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, ps).

(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps)
is complete. Furthermore,

lim
n→+∞

ps(xn, x) = 0 ⇔ p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm),

where x is a limit of {xn} in (X, ps).

Lemma 2.3 [22] Let (X, p) be a partial metric space. Then

(1) if p(x, y) = 0, then x = y. But if x = y, then p(x, y) may not be zero;
(2) if x ̸= y, then p(x, y) > 0.

Let Cp(X) be the family of all nonempty and closed subsets of the partial metric
space (X, p). For x ∈ X and A,B ∈ Cp(X), we define p(x,A) = inf{p(x, a), a ∈ A} and
δp(A,B) = sup{p(a,B), a ∈ A} with the convention

δp(∅, B) = 0. (2)

Lemma 2.4 [3] Let (X, p) be a partial metric space and A ⊂ X. Then p(a,A) =
p(a, a) ⇔ a ∈ A. Moreover, p(a,A) = 0 ⇔ p(a, a) = 0 and a ∈ A, where A denotes the
closure of A with respect to the partial metric p.

Proof. For the second part, we argue by contradiction. Let a ∈ X and A ⊂ X where
p(a,A) = 0 such that p(a, a) ̸= 0 or a /∈ A. Let z ∈ A such that p(a,A) = p(a, z). If
p(a, a) ̸= 0 then the use of property (P2) of partial metric gives

0 < p(a, a) ⩽ p(a, z) = p(a,A) ⩽ p(a,A) = 0

which is a contradiction. If a /∈ A then a ̸= z and, by using Lemma 2.3, we have

0 < p(a, z) = p(a,A) ⩽ p(a,A) = 0

which is also a contradiction. Hence p(a,A) = 0 implies that p(a, a) = 0 and a ∈ A. ■

Note that A is closed in (X, p) if and only if A = A.
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Lemma 2.5 [8] Let (X, p) be a partial metric space. Let x ∈ X and A ∈ Cp(X). If
p(x,A) < µ (µ > 0) then there exists a ∈ A such that p(x, a) < µ.

Note that the mapping δp : C
p(X) × Cp(X) → [0,+∞] satisfying the following prop-

erties.

Proposition 2.6 [5] Let (X, p) be a partial metric space. For any A, B, C ∈ Cp(X),
we have the following:

(i) δp(A,A) = sup{p(a, a), a ∈ A};
(ii) δp(A,A) ⩽ δp(A,B);
(iii) δp(A,B) = 0 ⇒ A ⊆ B;
(iv) δp(A,B) ⩽ δp(A,C) + δp(C,B)− inf

c∈C
p(c, c).

In the sequel, J and J ′ will denote intervals on R+ containing 0, that are intervals of
the form [0, a), [0, a] or [0,+∞).

Definition 2.7 [9] A nondecreasing function φ : J → J is said to be a Bianchini-
Grandolfi gauge function (or (c)-comparison) on J if

s(t) :=
∞∑
n=0

φn(t) is convergent for all t ∈ J ,

where φn denotes the n-th iteration of the function φ and φ0(t) = t i.e.

φ0(t) = t, φ1(t) = φ(t), φ2(t) = φ(φ(t)), . . . , φn(t) = φ(φn−1(t)).

In [4], Ansari introduced the concept of C-class functions as follows:

Definition 2.8 [4] Let F : J × J ′ → R be a continuous mapping. We say that F is a
C-class function if it satisfies the following conditions:

(F1) F (s, t) ⩽ s, for all (s, t) ∈ J × J ′.
(F2) F (s, t) = s implies that s = 0 or t = 0.

Note that F (0, 0) = 0. We denote by C the set of all C-class functions on J × J ′

Example 2.9 The following functions F : J × J ′ → R are elements of C:

(1) F (s, t) = s− t, J = J ′ = [0,∞);
(2) F (s, t) = ms, 0⩽m<1, J = J ′ = [0,∞);
(3) F (s, t) = s − φ(t), where φ : [0,∞) → [0,∞) is a continuous function such that

φ(t) = 0 ⇔ t = 0 and J = J ′ = [0,∞);
(4) F (s, t) = sα, where α > 1 and J × J ′ = [0, 1)× [0,∞);.
(5) F (s, t) = stk, where k > 1 and J × J ′ = [0,∞)× [0, 1)

For more examples on C-class functions one can refer to [4, 11, 18].

Definition 2.10 We denote by CI the collection of C-class functions satisfying the
following

• F (s, t) is nondecreasing in s and in t

• for any fixed t ∈ J ′ we have

w(s, t) :=
∞∑
n=0

Fn(s, t) is convergent for all s ∈ J ,

where Fn denotes the n-th iteration of the function F satisfying the following:

F 0(s, t) = s, F 1(s, t) = F (s, t) and Fn+1(s, t) = F (Fn(s, t), t).
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Definition 2.11 We denote by CII the collection of C-class functions satisfying the
following

• F (s, t) is nondecreasing in s and nonincreasing in t

• for any fixed t ∈ J ′ we have

w(s, t) :=
∞∑
n=0

Fn(s, t) is convergent for all s ∈ J ,

where Fn denotes the n-th iteration of the function F satisfying the following:

F 0(s, t) = s, F 1(s, t) = F (s, t) and Fn+1(s, t) = F (Fn(s, t), Fn(s, t)).

Remark 1 The functions w and F satisfy the functional equation

w(s, t) = s+ w(F (s, t), t), if F ∈ CI
and

w(s, t) = s+ w(F (s, t), F (s, t)), if F ∈ CII .

The following examples illustrate Definition 2.10 and 2.11.

Example 2.12

• F (s, t) = s− t⇒ w(s, t) = 2s− t and then F ∈ CII .
• F (s, t) = λs⇒ w(s, t) =

s

1− λ
for λ ∈ [0, 1) and then F ∈ CI ∩ CII .

• F (s, t) = φ(s) where φ is a Bianchini-Grandolfi gauge function and then F ∈ CI ∩CII .
• F (s, t) = s2

2
√
s2+a2

, where a ⩾ 0 ⇒ w(s, t) = s +
√
s2 + a2 − a for s, t ⩾ 0 and then

F ∈ CI ∩ CII .
• F (s, t) = stk ⇒ w(s, t) =

s

1− tk
, where k > 1 and then F ∈ CI .

3. The main results

In this section, we denote

M(x, y) := max

{
p(x, y), p(x, ϕ(x)), p(y, ϕ(y)),

p(x, ϕ(y)) + p(y, ϕ(x))

2

}
.

At first, we introduce the following concept needed on the rest.

Definition 3.1 We denote by Ξ the class of functions τ : X2 × (2X)2 → J ′ satisfying
the following: τ(x, y,A,C) = 0 implies at least p(x, y) = 0 or x = y, for any x, y ∈ X
and A,C ∈ 2X

Example 3.2

• τ(x, y,A,C) = L(δp(A,C) + p(x, y)) where L > 0.

• τ(x, y,Ax, Cy) = p(x, y)−min{p(x, x), p(y, y)}.
• τ(x, y,Ax, Cy) = ps(x, y) + min{p(x,Ax), p(y, Cy), p(x,Cy), p(y,Ax), δp(Ax, Cy)}.

• τ(x, y,Ax, Cy) =
p(x,y)∫
0

f(s) ds where f be positive function.

Definition 3.3 We say that τ ∈ Ξ is a nondecreasing on (X, p) if

p(x, y) ⩽ p(a, b) ⇒ τ(x, y,Ax, Cy) ⩽ τ(a, b, Aa, Cb) ∀Ax, Aa, Cy, Cb ∈ 2X .
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Now, we are ready to state and prove our main result.

Theorem 3.4 Let (X, p) be a partial metric space such that, for x ∈ X and r > 0,
Bp(x, r) be a 0-complete subspace of X. Let ϕ : Bp(x, r) → Cp(X) be a set-valued
mapping. Let F ∈ C, τ ∈ Ξ and α ∈ J satisfying one of the following

• F ∈ CI and τ is nondecreasing,

• F ∈ CII and τ(x, y, ϕ(x), ϕ(y)) ⩾ α where x, y ∈ Bp(x, r).

We assume that the following two conditions hold:

(a) δp(ϕ(x) ∩Bp(x, r), ϕ(y)) ⩽ F (M(x, y), τ(x, y, ϕ(x), ϕ(y))) ∀ x, y ∈ Bp(x, r),
(b) p(x, ϕ(x)) < α where w(α, ·) ⩽ p(x, x) + r.

Then ϕ has a fixed point x∗ in Bp(x, r). If ϕ is a single-valued mapping and p(x, x)+2r ∈ J
then x∗ is the unique fixed point of ϕ in Bp(x, r).

Proof. If x ∈ ϕ(x) or F ≡ 0 the proof is finished. So we assume that x ̸∈ ϕ(x) and F ̸≡ 0.
According to the second condition, and using lemma 2.5, there exists x1 ∈ ϕ(x)∩Bp(x, r)
such that

p(x, x1) =

{
F 0(p(x, x1), τ(x, x1, ϕ(x), ϕ(x1))) < α or
F 0(p(x, x1), p(x, x1)) < α,

By induction we construct a sequence {xk} satisfying:

x0 = x

xk+1 ∈ ϕ(xk) ∩Bp(x0, r) (3)

p(xk, xk+1) ⩽ ψk(p(x0, x1)) ⩽ p(x0, x1)

ψk(p(x0, x1)) =

{
F k(p(x0, x1), τ(x0, x1, ϕ(x0), ϕ(x1))), if F ∈ CI and τ is nondecreasing;
F k(p(x0, x1), p(x0, x1)), if F ∈ CII and τ(xk, xk+1, ϕ(xk), ϕ(xk+1) ⩾ α

If xk = xk+1 or xk ∈ ϕ(xk) for some k ∈ N, we are done. So we suppose that, for all
k ∈ N, xk /∈ ϕ(xk) and xk ̸= xk+1 and then p(xk, xk+1) > 0.

First, we show that the sequence {xk} satisfying (3) givesM(xk−1, xk) ⩽ p(xk−1, xk) ∈
J. Indeed, let k ∈ N∗. Then we have

M(xk−1, xk) = max
{
p(xk−1, xk), p(xk−1, ϕ(xk−1)), p(xk, ϕ(xk)),

p(xk−1, ϕ(xk)) + p(xk, ϕ(xk−1))

2

}
= max

{
p(xk−1, xk), p(xk, ϕ(xk)),

p(xk−1, ϕ(xk)) + p(xk, xk)

2

}
⩽ max

{
p(xk−1, xk), p(xk, xk+1),

p(xk−1, xk+1) + p(xk, xk)

2

}
⩽ max

{
p(xk−1, xk), p(xk, xk+1),

p(xk−1, xk) + p(xk, xk+1)

2

}
= max {p(xk−1, xk), p(xk, xk+1)} .
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If max {p(xk−1, xk), p(xk, xk+1)} = p(xk, xk+1), then by condition (a) and the definition
of F yields a contradiction. Therefore, we must have M(xk−1, xk) ⩽ p(xk−1, xk) ∈ J . We
start then by using assumption (a) and we have

p(xk+1, ϕ(xk+1)) ⩽ δp(ϕ(xk) ∩Bp(x0, r), ϕ(xk+1))

⩽ F (M(xk, xk+1), τ(xk, xk+1, ϕ(xk), ϕ(xk+1)))

⩽M(xk, xk+1).

If we assume that M(xk, xk+1) ⩽ p(xk+1, ϕ(xk+1)) or τ(xk, xk+1, ϕ(xk), ϕ(xk+1)) = 0 for
some k ∈ N then we have F (M(xk, xk+1), τ(xk, xk+1, ϕ(xk), ϕ(xk+1))) = M(xk, xk+1),
which implies that M(xk, xk+1) = 0 or τ(xk, xk+1, ϕ(xk), ϕ(xk+1)) = 0 and then xk =
xk+1 or p(xk, xk+1) = 0 which is a contradiction.

So we assume that p(xk+1, ϕ(xk+1)) < M(xk, xk+1) and τ(xk, xk+1, ϕ(xk), ϕ(xk+1)) ̸=
0 for all k ∈ N and then there exists xk+2 ∈ ϕ(xk+1) such that

p(xk+1, xk+2) < M(xk, xk+1) ⩽ p(xk, xk+1).

Moreover, if F ∈ CI and τ is nondecreasing then we have

p(xk+1, xk+2) ⩽ δp(ϕ(xk) ∩Bp(x0, r), ϕ(xk+1))

⩽ F (M(xk, xk+1), τ(xk, xk+1, ϕ(xk), ϕ(xk+1)))

⩽ F (p(xk, xk+1), τ(x0, x1, ϕ(x0), ϕ(x1)))

⩽ F (ψk(p(x0, x1)), τ(x0, x1, ϕ(x0), ϕ(x1)))

⩽ ψk+1(p(x0, x1))

else if F ∈ CII and τ(xk, xk+1, ϕ(xk), ϕ(xk+1) ⩾ α, then

p(xk+1, xk+2) ⩽ δp(ϕ(xk) ∩Bp(x0, r), ϕ(xk+1))

⩽ F (M(xk, xk+1), τ(xk, xk+1, ϕ(xk), ϕ(xk+1)))

⩽ F (p(xk, xk+1), α)

⩽ F (ψk(p(x0, x1)), p(x0, x1))

⩽ F (ψk(p(x0, x1)), ψ
k(p(x0, x1)))

⩽ ψk+1(p(x0, x1)).

On the other hand, xk+2 be an element of the closed p-ball Bp(x0, r). Indeed,

p(xk+2, x0) ⩽
k+1∑
j=0

p(xj+1, xj)−
k+1∑
j=1

p(xj , xj)

⩽
+∞∑
j=0

ψj(p(x1, x0))

⩽ w(α, ·)

⩽ p(x0, x0) + r.
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For all integers n and m such that n > m, we have

p(xn, xm) ⩽
n−1∑
k=m

p(xk, xk+1)−
n−1∑

k=m+1

p(xk, xk)

⩽
n−1∑
k=m

ψk(p(x0, x1))

⩽
+∞∑
k=0

ψk(p(x0, x1))

⩽ w(α, ·).

Since w(s, ·) is convergent for each s ∈ J , we obtain that {xn} is a 0-Cauchy sequence
in Bp(x0, r). Since Bp(x0, r) is 0-complete subspace then {xn} converges, with respect to
τp, to a point x∗ ∈ Bp(x, r) such that

p(x∗, x∗) = lim
n→+∞

p(xn, x
∗) = 0.

We assert now that x∗ ∈ ϕ(x∗). The modified triangle inequality and assumption (a) give

p(x∗, ϕ(x∗)) ⩽ p(x∗, xk) + p(xk, ϕ(x
∗))− p(xk, xk)

⩽ p(x∗, xk) + δp(ϕ(xk−1) ∩Bp(x0, r), ϕ(x∗))

⩽ p(x∗, xk) + F (M(xk−1, x
∗), τ(xk, x

∗, ϕ(xk), ϕ(x
∗))))

⩽ p(x∗, xk) +M(xk−1, x
∗)

⩽ p(x∗, xk) + p(xk−1, x
∗)

Taking limit as k → +∞, we obtain p(x∗, ϕ(x∗)) = 0 = p(x∗, x∗) which from Lemma 2.4

implies that x∗ ∈ ϕ(x∗) = ϕ(x∗). If ϕ is a single-valued mapping and p(x, x) + 2r ∈ J ,
we suppose that there exist two fixed points x∗, x∗∗ ∈ Bp(x0, r). Then, we have

M(x∗, x∗∗) ⩽ p(x∗, x∗∗)

⩽ p(x∗, x0) + p(x0, x
∗∗)− p(x0, x0)

⩽ p(x0, x0) + 2r ∈ J

and

M(x∗, x∗∗) ⩽ p(x∗, x∗∗)

= p(x∗, ϕ(x∗∗))

⩽ δp(ϕ(x
∗) ∩Bp(x0, r), ϕ(x∗∗))

⩽ F (M(x∗, x∗∗), τ(x∗, x∗∗, ϕ(x∗), ϕ(x∗∗)))

⩽M(x∗, x∗∗).
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Hence, we have

F (M(x∗, x∗∗), τ(x∗, x∗∗, ϕ(x∗), ϕ(x∗∗))) =M(x∗, x∗∗)

which implies that M(x∗, x∗∗) = 0 or τ(x∗, x∗∗, ϕ(x∗), ϕ(x∗∗)) = 0, thus p(x∗, x∗∗) = 0 or
x∗ = x∗∗ which is a contradiction and the proof is completed. ■

For F (s, t) = φ(s) a Bianchini-Grandolfi gauge function we get the following corollary.

Corollary 3.5 Let (X, p) be a partial metric space. Let x ∈ X and r > 0 such that
Bp(x, r) be a 0-complete subspace of X. Let ϕ : Bp(x, r) → Cp(X) be a set-valued
mapping and let φ a Bianchini-Grandolfi-gauge function on J . If there exists α ∈ J such
that the following two conditions hold:

(a) p(x, ϕ(x)) < α where s(α) ⩽ p(x, x) + r,
(b) δp(ϕ(x) ∩Bp(x, r), ϕ(y)) ⩽ φ(M(x, y)) ∀x, y ∈ Bp(x, r),

then ϕ has a fixed point x∗ in Bp(x, r). If ϕ is a single-valued mapping and p(x, x)+2r ∈ J ,
then x∗ is the unique fixed point of ϕ in Bp(x, r).

Proof. Since F (s, t) = φ(s) be a C-class function does not depend on second variable
t, it can be choose any τ ∈ Ξ such that τ is nondecreasing or greater than α and then
apply Theorem 3.4. ■

Remark 2 Corollary 3.5 extends [8, Theorem 3.2] on 0-complete partial metric spaces
and then the results in [3, 5–7, 14–17, 19–22, 24, 27]).

As special case, for F (s, t) = λs we have

Corollary 3.6 Let (X, p) be a partial metric space. Let x ∈ X, λ ∈ [0, 1) and r > 0
such that Bp(x, r) be a 0-complete subspace of X. Let ϕ : Bp(x, r) → Cp(X) be a
set-valued mapping such that the following two conditions hold:

(a) p(x, ϕ(x)) < (p(x, x) + r)(1− λ),
(b) δp(ϕ(x) ∩Bp(x, r), ϕ(y)) ⩽ λM(x, y) ∀x, y ∈ Bp(x, r),

then ϕ has a fixed point x∗ in Bp(x, r). If ϕ is a single-valued mapping, then x∗ is the
unique fixed point of ϕ in Bp(x, r).

Proof. We apply Corollary 3.6 for φ(t) = λt which is a Bianchini-Grandolfi gauge

function on J = [0,+∞) and s(t) =
t

1− λ
. Take α = (p(x, x) + r)(1 − λ) ∈ J and

complete the proof. ■

For F (s, t) = s − t and τ(x, y, ϕ(x), ϕ(y)) = α + ψ(x, y, ϕ(x), ϕ(y)) such that ψ :
X ×X × Cp(X)× Cp(X) → [0,+∞) a function, then we get the following corollary.

Corollary 3.7 Let (X, p) be a partial metric space. Let x ∈ X and r > 0 such that
Bp(x, r) be a 0-complete subspace of X. Let ϕ : Bp(x, r) → Cp(X) be a set-valued
mapping. If there exists α ⩾ 0 such that the following two conditions hold:

(a) p(x, ϕ(x)) < α ⩽ 1

2
(p(x, x) + r),

(b) δp(ϕ(x) ∩Bp(x, r), ϕ(y)) + α ⩽M(x, y)− ψ(x, y, ϕ(x), ϕ(y)) ∀x, y ∈ Bp(x, r),

then ϕ has a fixed point x∗ in Bp(x, r). If ϕ is a single-valued mapping then x∗ is the
unique fixed point of ϕ in Bp(x, r).
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Proof. Since F (s, t) = s− t be a C-class function for J = J ′ = [0,+∞) then we get

w(α, t) = 2α− t ⩽ 2α

for each t ∈ J ′. As p(x, x) + 2r ∈ J , it sufficient to take 2α ⩽ p(x, x) + r and apply
Theorem 3.4 to complete the proof. ■

Similarly, for F (s, t) = s − t and τ(x, y, ϕ(x), ϕ(y)) =
α

ψ(x, y, ϕ(x), ϕ(y))
such that

ψ : X ×X × Cp(X)× Cp(X) → (0, 1] then we have the following corollary.

Corollary 3.8 Let (X, p) be a partial metric space. Let x ∈ X and r > 0 such that
Bp(x, r) be a 0-complete subspace of X. Let ϕ : Bp(x, r) → Cp(X) be a set-valued
mapping. If there exists α ⩾ 0 such that the following two conditions hold:

(a) p(x, ϕ(x)) < α ⩽ 1

2
(p(x, x) + r),

(b) ψ(x, y, ϕ(x), ϕ(y))δp(ϕ(x) ∩ Bp(x, r), ϕ(y)) ⩽ M(x, y) − p(x, ϕ(x)) ∀x, y ∈
Bp(x, r),

then ϕ has a fixed point x∗ in Bp(x, r). If ϕ is a single-valued mapping then x∗ is the
unique fixed point of ϕ in Bp(x, r).

4. Application to coupled elliptic systems

In this section, we consider X = C([0, 1]) the space of all continuous functions defined
on I = [0, 1] endowed with the maximum norm ∥u∥ = sup

t∈I
|u(t)|. Let us consider the

cartesian product X ×X endowed with the partial metric

p((x, y), (u, v)) = ∥x− u∥+ ∥y − v∥+ c

where c is a nonnegative constant and then X ×X is a 0-complete partial metric. Note
that the coupled elliptic system (1) contains several problems with different choices on
the constants and the functions as [1, 10, 12, 13, 23, 25, 28–30]. We can see that coupled
elliptic system (1) is equivalent to the following system of integral equations

u1(t) =
1∫
0

G1(t, s)[f(s, u1(s), u2(s))− λ]ds := A(u1, u2)(t) t ∈ I

u2(t) =
1∫
0

G2(t, s)[g(s, u1(s), u2(s))− µ]ds := B(u1, u2)(t) t ∈ I

(4)

where Gi(t, s), for i ∈ {1, 2}, is the Green function of the second-order Sturm-Liouville
boundary value problem{

−z′′(t) = 0, t ∈ (0, 1);
αiz(0)− βiz

′(0) = 0, γiz(1) + δiz
′(1) = 0

It is known that [2, 31]

Gi(t, s) =
1

ki

{
(βi + αis)[δi + γi(1− t)], 0 ⩽ s ⩽ t ⩽ 1,
(βi + αit)[δi + γi(1− s)], 0 ⩽ t ⩽ s ⩽ 1.
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and then for all t ∈ I and for each i ∈ {1, 2}, we have

1∫
0

Gi(t, s)ds =

t∫
0

Gi(t, s)ds+

1∫
t

Gi(t, s)ds

=
1

ki

 t∫
0

(βi + αis)[δi + γi(1− t)]ds+

1∫
t

(βi + αit)[δi + γi(1− s)]ds


=

1

2ki

(
βiγi + 2βiδi + (αiγi + 2αiδi)t− kit

2
)
,

which implies that sup
t∈I

1∫
0

Gi(t, s)ds =
1

8k2i

(
4ki(βiγi + 2βiδi) + (αiγi + 2αiδi)

2
)
=Mi ̸= 0

and we denote by M := max{M1,M2}.
Let ϕ(u1, u2)(t) = (A(u1, u2)(t), B(u1, u2)(t)). Then the system (4) is equivalent to the

fixed point equation ϕ(u1, u2) = (u1, u2).
Now, we consider the following conditions:

(1) There exist a constant C ⩾ 0 and K(λ, µ) a positive continuous function defined,
w.l.o.g., for λ ⩾ µ ⩾ C,

(2) There exists F ∈ C, τ ∈ Ξ and α ∈ J satisfying one of the following

• F ∈ CI and τ is nondecreasing,

• F ∈ CII and τx,y,u,v := τ((x, y), (u, v), ϕ(x, y), ϕ(u, v)) ⩾ α where (x, y), (u, v) ∈
X ×X,

(3) w(α, ·) ⩽ c+K(λ, µ),

(4) ∥f(·, 0, 0)− λ∥+ ∥g(·, 0, 0)− µ∥ < α− c

M
,

(5)
1

2M
(F (|a− b|+ |a′ − b′|+ c, τa,a′,b,b′)− c) ⩾

{
|f(·, a, a′)− f(·, b, b′)|,
|g(·, a, a′)− g(·, b, b′)|,

for all

{
a, a′, b, b′ ∈ R,
|a− b|, |a′ − b′| ⩽ K(λ, µ),

Theorem 4.1 For a fixed c ⩾ 0, suppose that conditions (1)-(5) holds. Then (1) has at
least one solution (u∗, v∗) in (C([0, 1]) ∩ C2((0, 1)))2 such that ∥u∗∥ + ∥v∗∥ ⩽ K(λ, µ).
Moreover, if c+ 2K(λ, µ) ∈ J then the solution is unique.

Proof. Let us define a sample set-valued mapping ϕ : X ×X → Cp(X ×X) by

ϕ(u, v)(t) = (A(u, v)(t), B(u, v)(t))

=

 1∫
0

G1(t, s)[f(s, u(s), v(s))− λ]ds,

1∫
0

G2(t, s)[g(s, u(s), v(s))− µ]ds


for all u, v ∈ X.

Now, we check that ϕ satisfies all assumptions of Theorem 3.4 on the closed p-ball of
radius K(λ, µ) centered at (0X , 0X) which denotes by Bp((0X , 0X),K(λ, µ)) where 0X
be the null function of X.
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First, the use of assumptions (1)-(4) give the following

p((0X , 0X), ϕ(0X , 0X))

= p((0X , 0X), (A(0X , 0X), B(0X , 0X)))

= ∥A(0X , 0X)∥+ ∥B(0X , 0X)∥+ c

= sup
t∈I

∣∣∣∣∣∣
1∫

0

G1(t, s)[f(s, 0X(s), 0X(s))− λ]ds

∣∣∣∣∣∣+ sup
t∈I

∣∣∣∣∣∣
1∫

0

G2(t, s)[g(s, 0X(s), 0X(s))− µ]ds

∣∣∣∣∣∣+ c

⩽

sup
t∈I

1∫
0

G1(t, s)ds

 ∥f(·, 0, 0)− λ∥+

sup
t∈I

1∫
0

G2(t, s)ds

 ∥g(·, 0, 0)− µ∥+ c

⩽M1∥f(·, 0, 0)− λ∥+M2∥g(·, 0, 0)− µ∥+ c

⩽M(∥f(·, 0, 0)− λ∥+ ∥g(·, 0, 0)− µ∥) + c

< M
α− c

M
+ c = α

and w(α, ·) ⩽ c +K(λ, µ) = p((0X , 0X), (0X , 0X)) +K(λ, µ). Thus the condition (b) of
Theorem 3.4 is satisfied.

Let (x, y), (u, v) ∈ Bp((0X , 0X),K(λ, µ)) then we have two cases. The first one, if
ϕ(x, y) /∈ Bp((0X , 0X),K(λ, µ)) then according to convention (2) we have

0 = δp(ϕ(x, y) ∩Bp((0X , 0X),K(λ, µ)), ϕ(u, v))

⩽ F (M((x, y), (u, v)), τ((x, y), (u, v), ϕ(x, y), ϕ(u, v))).

So we assume that ϕ(x, y) ∈ Bp((0X , 0X),K(λ, µ)) and, from condition (5), we have

δp(ϕ(x, y) ∩Bp((0X , 0X),K(λ, µ)), ϕ(u, v))

= p(ϕ(x, y), ϕ(u, v))

= ∥A(x, y)−A(u, v)∥+ ∥B(x, y)−B(u, v)∥+ c

= sup
t∈I

∣∣∣∣∣∣
1∫

0

G1(t, s)(f(s, x(s), y(s))− f(s, u(s), v(s)))ds

∣∣∣∣∣∣
+ sup

t∈I

∣∣∣∣∣∣
1∫

0

G2(t, s)(g(s, x(s), y(s))− g(s, u(s), v(s)))ds

∣∣∣∣∣∣+ c

⩽ sup
t∈I

1∫
0

G1(t, s) |f(s, x(s), y(s))− f(s, u(s), v(s))| ds

+ sup
t∈I

1∫
0

G2(t, s) |g(s, x(s), y(s))− g(s, u(s), v(s))| ds+ c
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by using the positivity of Gi, the increasing of F at the first variable and the condition
(5) we have

δp(ϕ(x, y) ∩Bp((0X , 0X),K(λ, µ)), ϕ(u, v))

⩽ M1 +M2

2M
(F (∥x− u∥+ ∥y − v∥+ c, τx,y,u,v)− c) + c

⩽ F (p((x, y), (u, v)), τx,y,u,v)− c+ c

⩽ F (M((x, y), (u, v)), τx,y,u,v).

Thus all conditions are satisfied and then A has a fixed point (u∗, v∗) in
Bp((0X , 0X),K(λ, µ)) i.e.,

p((u∗, v∗), (0X , 0X)) ⩽ p((0X , 0X), (0X , 0X)) +K(λ, µ) ⇔ ∥u∗∥+ ∥v∗∥ ⩽ K(λ, µ).

If c+2K(λ, µ) ∈ J , i.e. p((0X , 0X), (0X , 0X)) + 2K(λ) ∈ J and since ϕ is a single-valued
then (u∗, v∗) is unique. ■
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