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Abstract. In this paper, an accelerated gradient based iterative algorithm for solving systems
of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence
analysis of the algorithm is investigated. We show that the proposed algorithm converges to
the exact solution for any initial value under certain assumptions. Finally, some numerical
examples are given to demonstrate the behavior of the proposed method and to support the
theoretical results of this paper.
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1. Introduction

In this paper, we consider the system of coupled generalized Sylvester-transpose matrix
equations

n∑
i=1

AijXiBij + CijX
T
i Dij = Fj j = 1 . . . , n, (1)
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where Aij , Bij , Cij , Dij , Fj ∈ Rn×n are given matrices and Xi ∈ Rn×n are the unknown
matrices.

Numerical methods for solving matrix equations become interesting as soon as they
play an important role in several areas such as control theory, stability theory, perturba-
tion analysis and some other fields of applied and pure mathematics. In the matrix algebra
field, matrix equations have attracted much attention from many researchers. Ding et
al. [6] derived iterative solutions of the Sylvester matrix equation AXB + CXD = F
and linear matrix equation AXB = F the. In [7], Huang et al. proposed an iterative
method for solving the linear matrix equation AXB = F over a skew-symmetric ma-
trix. The least squares gradient based iterative algorithm and gradient based iterative
algorithm for solving (coupled) matrix equations is a novel and efficient numerical algo-
rithms were presented in Ding and Chen [3–5]. Also, Niu et al. [8] proposed a relaxed
gradient based iterative algorithm for solving Sylvester equations AX +XB = C. The
numerical experiments show that the convergence behavior of Niu et al. algorithm is
better than Ding algorithm [2]. Moreover, Wang et al. [10] proposed a modified gradient
based algorithm for solving the Sylvester equation AX+XB = C. Recently, by applying
the hierarchical identification principle, an iterative algorithm was constructed in [12]
for solving extended Sylvester-conjugate matrix equations. Ramadan et al. [9] proposed
a relaxed gradient based iterative algorithm for solving extended Sylvester-conjugate
matrix equations AXB + CX̄D = F . Wu et al. [13] considered the matrix equation
X − AX̄B = C which includes the Yakubovich-conjugate, Sylvester-conjugate matrix
equations as special cases. Then, Wu et al. [11] proposed a finite iterative algorithm to
solve more general complex matrix equations. In [14], Xie et al. presented an accelerated
gradient based algorithm for solving the generalized Sylvester-transpose matrix equation
AXB + CXTD = F . In [1], Bayoumi and Ramadan presented an accelerated gradient
based iterative algorithm for solving extended Sylvester-conjugate matrix equations.

2. Preliminaries

The following notations and lemma will be used to develop the proposed work. We use
AT and tr(A) to denote the transpose and the trace of A, respectively. We denote the
set of all m× n real matrices by Rn×n. The Frobenius norm of the matrix is denoted by
∥A∥2 = tr(ATA).

Lemma 2.1 [6] For matrix equation AXB = F , if is a full column-rank matrix and is
a full row-rank matrix, then the iterative solution X(k) given by the following gradient
based iterative algorithm converges to the exact solution X (i.e., limk→∞X(k) = X)
for any initial value X(0): X(k) = X(k − 1) + µAT [F − AX(k − 1)B]BT for 0 < µ <

2
λmax[ATA]λmax[BTB] .

3. The accelerated iterative algorithm for solving the matrix (1)

The basic idea is to regard (1) as two subsystems, and based on the least-squares
optimization, the parameters of each subsystem are identified, respectively. In this way,
we attain the iterative method. The details are shown as follows. Define the two matrices

Mij = Fj −
n∑

k=1,k ̸=i

AkjXkBkj −
n∑

k=1

CkjX
T
k Dkj , Nij = Fj −

n∑
k=1

AkjXkBkj −
n∑

k=1,k ̸=i

CkjX
T
k Dkj .



A. M. E. Bayoumi et al. / J. Linear. Topological. Algebra. 08(02) (2019) 117-126. 119

From (1), we get two fictitious subsystems

AijXiBij = Mij , CijX
T
i Dij = Nij (2)

Now, for the two subsystems (2) we consider merit functions L′
j = 1

2

n∑
k=1

∥AkjXkBkj −

Mkj∥2 and L′′
j = 1

2

n∑
k=1

∥CkjXkDkj−Nkj∥2. We use the following properties of the matrix

trace tr(AXB) = tr(BAX) = tr(XBA) and dtr(AX)
dx = dtr(XTAT )

dx = AT . Now, in order
to identify the gradient, we have

δL′
j(X)

δXi
=

1

2

δ

δXi
∥AijXiBij −Mij∥2δL′

j

X

δXi

=
1

2

dtr[(AijXiBij −Mij)
T (AijXiBij −Mij)]

dX

=
1

2

dtr[(BT
ijX

T
i A

T
ij −MT

ij )(AijXiBij −Mij)]

dX

=
1

2

dtr[BT
ijX

T
i A

T
ijAijXiBij −BT

ijX
T
i A

T
ijMij −MT

ijAijXiBij +MT
ijMij ]

dX

=
1

2

dtr[BT
ijX

T
i A

T
ijAijXiBij ]

dX
−

dtr[BT
ijX

T
i Aij

TMij ]

dX

=
1

2

dtr[XT
i A

T
ijAijXiBijB

T
ij ]

dX
−

dtr[BT
ijX

T
i A

T
ijMij ]

dX

=
1

2
(AT

ijAijXiBijB
T
ij +AT

ijAijXiBijB
T
ij)−AT

ijMijB
T
ij

= AT
ij(AijXiBij −Mij)B

T
ijA

T
ij(AijXiBij)B

T
ij

and

δL′′
j (X)

δXi
=

1

2

δ

(δXi)
∥CijX

T
i Dij −Nij∥2

δL′′
j (X)

δXi

=
1

2

(dtr[(CijX
T
i Dij −Nij)

T (CijX
T
i Dij −Nij)])

dX

=
1

2

dtr[(DT
ijXiC

T
ij −NT

ij )(CijX
T
i Dij −Nij)]

dX

=
1

2

dtr[DT
ijXiC

T
ijCijX

T
i Dij −DT

ijXiC
T
ijNij −NT

ijCijX
T
i Dij +NT

ijNij ]

dX

=
1

2

dtr[DT
ijXiC

T
ijCijX

T
i Dij ]

dX
−

dtr[DT
ijXiC

T
ijNij ]

dX

=
1

2

dtr[CT
ijCijX

T
i DijD

T
ijXi]

dX
−

dtr[CT
ijNijD

T
ijXi]

dX

=
1

2
(DijD

T
ijXiC

T
ijCij +DijD

T
ijXiC

T
ijCij)−DijN

T
ijCij = Dij(CijX

T
i Dij −Nij)

TCij

= (DijD
T
ijXiC

T
ijCij)−DijN

T
ijCij = Dij(CijX

T
i Dij −Nij)

TCij

Now, we are in the position to present the accelerated gradient based iterative algorithm
for solving systems of coupled generalized Sylvester-transpose matrix equations (1).
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Algorithm 3.1
Step 1. Input matrices Aij , Bij , Cij , Dij , F1j ∈ Rn×n and given any small pos-
itive numbers ϵi and ωi. Choose initial matrices X ′

i(0) and X ′′
i (0). Compute

Xi(0) = (1− ωi)X
′
i(0) + ωiX

′′
i (0). Set k := 1 .

Step 2. if δkj =∥
n∑

i=1
AijXi(k − 1)Bij + CijX

T
i (k − 1)Dij − Fj ∥ / ∥ Fj ∥< ϵj , stop;

otherwise go to step 3.
Step3. Update the sequence

X ′
i(k) = Xi(k − 1) + ωiτi

n∑
j=1

AT
ij(Fj −AijXi(k − 1)Bij − CijX

T
i (k − 1)Dij)B

T
ij

Step 4. Compute Xi(k − 1) = (1− ωi)X
′
i(k) + ωiX

′′
i (k − 1).

Step 5. Update the sequence

X ′′
i (k) = Xi(k − 1) + (1− ωi)τi

n∑
j=1

Dij(Fj −AijXi(k − 1)Bij + CijX
T
i (k − 1)Dij)

TCij

Step 6. Compute Xi(k) = (1− ωi)X
′
i(k) + ωiX

′′
i (k).

Step 7. Set k := k + 1 and return to step 2.
Step 8. End.
ωi are relaxation parameters satisfying 0 < ωi < 1, where they control the relative
importance of two residual matrices and τi are the convergence factors.

4. convergence analysis

In this subsection, the theorem is stated and proved to investigate the convergence prop-
erties of the proposed algorithm.

Theorem 4.1 If the system of matrix equation (1) is consistent and has a unique
solutions X∗

i and

0 < τi < min

{
2

ωi
∑n

j=1 ∥Aij∥2∥Bij∥2
,

2

(1− ωi)
∑n

j=1 ∥Cij∥2∥Dij∥2
}

(3)

then the iterative sequence {Xi(k)} generated by our algorithm converges to X∗
i that is

limk→∞Xi(k) = X∗
i ;or the error X̃i(k) = Xi(k) = X∗

i converges to zero for any initial
matrices Xi(0) .

Proof. First, we define the estimation error matrices as

X̃i(k) = Xi(k)−X∗
i , X̃ ′

i(k) = X ′
i(k)−X∗

i ,

X̃ ′′
i (k) = X ′′

i (k)−X∗
i ,

˜̂
Xi = X̃i(k)−X∗

i

(4)

for k = 1, 2, · · · and

ϵi(k) =
n∑

j=1

AijX̃i(k − 1)Bij , ηi(k) =
n∑

j=1

CijX̃T
i (k − 1)Dij ,

δi(k) =

n∑
j=1

Aij
˜̂
Xi(k − 1)Bij , ζi(k) =

n∑
j=1

Cij
˜̂

XT
i (k − 1)Dij

(5)
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for i = 1, 2, · · · . Using the above error matrices (4), (5), our algorithm and the matrix
equation (1), it is easy to get

X̃ ′
i = X̃i(k − 1) + ωiτi

n∑
j=1

AT
ij(

n∑
j=1

AijX
∗
i Bij + CijX

∗T
i Dij −AijXi(k − 1)Bij

− CijX
T
i (k − 1)Dij)B

T
ij

= X̃i(k − 1) + ωiτi

n∑
j=1

AT
ij(−ϵi(k)− ηi(k))B

T
ij . (6)

Similarly to the above, we can write

X̃ ′′
i =

˜̂
Xi(k − 1) + (1− ωi)τi

n∑
j=1

Dij(−δi(k)− ζi(k))Cij (7)

Now, by taking the frobenius norm of both sides of (6) and (7), it follows that

∥X̃ ′
i(k)∥

2 = tr(X̃i
′T
(k)X̃ ′

i(k))

= ∥X̃i(k − 1)∥2 − 2ωiτitr(B
T
ijX̃i

T
(k)AT

ij(ϵi(k)

+ ηi(k)) + ω2
i τ

2
i [

∥∥∥∥ n∑
j=1

AT
ij(−ϵi(k)− ηi(k))B

T
ij

∥∥∥∥2]
= ∥X̃i(k − 1)∥2 − 2ωiτitr(ϵ

T
i (k)(ϵi(k) + ηi(k))

+ ω2
i τ

2
i [

n∑
j=1

∥Aij∥2∥Bij∥2∥ϵi(k) + ηi(k)∥2]

⩽ ∥X̃i(k − 1)∥2 − [2ωiτi − ω2
i τ

2
i

n∑
j=1

∥Aij∥2∥Bij∥2]∥ϵi(k) + ηi(k)∥2

Similarly,

∥X̃ ′′
i (k)∥

2 = tr(X̃i
′′T

(k)X̃ ′′
i (k))

= ∥ ˜̂
Xi(k − 1)∥2 − 2(1− ωi)τi tr(Cij

˜̂
XT

i (k − 1)Dij(δi(k) + ζi(k))
T

+ (1− ωi)
2τ2i [∥

n∑
j=1

Dij(−δi(k)− ζi(k)Cij∥2]

= ∥ ˜̂
Xi(k − 1)∥2 − 2(1− ωi)τi tr(ζi(k)(δi(k) + ζi(k))

T

+ (1− ωi)
2τ2i [∥

n∑
j=1

Dij(−δi(k)− ζi(k)Cij∥2]

⩽ ∥ ˜̂
Xi(k − 1)∥2 − [2(1− ωi)τi − (1− ωi)

2τ2i

n∑
j=1

∥Cij∥2∥Dij∥2]∥δi(k) + ζi(k)∥2
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According to X̃i(k) = (1− ωi)X̃i
′
(k) + ωiX̃i

′′
(k), we have

∥X̃i(k)∥2 = ∥(1− ωi)X̃i
′
(k) + ωiX̃i

′′
(k)∥2

⩽ (1− ωi)
2∥X̃i

′
(k)∥2 + ω2

i ∥X̃i
′′
(k)∥2

⩽ (1− ωi)
2∥X̃i(k − 1)∥2 − (1− ωi)

2[2ωiτi − ω2
i τ

2
i

n∑
j=1

∥Aij∥2∥Bij∥2]∥ϵi(k) + ηi(k)∥2

+ ω2
i ∥

˜̂
Xi(k − 1)∥2 − ω2

i [2(1− ωi)τi − (1− ωi)
2τ2i

n∑
j=1

∥Cij∥2∥Dij∥2]∥δi(k) + ζi(k)∥2

⩽ ∥X̃i(k − 1)∥2 + ω2
i ∥

˜̂
Xi(k − 1)∥2

− (1− ωi)
2[2ωiτi − ω2

i τ
2
i

n∑
j=1

∥Aij∥2∥Bij∥2]∥ϵi(k) + ηi(k)∥2

− ω2
i [2(1− ωi)τi − (1− ωi)

2τ2i

n∑
j=1

∥Cij∥2∥Dij∥2]∥δi(k) + ζi(k)∥2

⩽ ∥X̃i(0)∥2 + ω2
i

k∑
s=1

∥ ˜̂
Xi(k − s)∥2

− (1− ωi)
2[2ωiτi − ω2

i τ
2
i

n∑
j=1

∥Aij∥2∥Bij∥2]
k∑

s=1

∥ϵi(k) + ηi(s)∥2

− ω2
i [2(1− ωi)τi − (1− ωi)

2τ2i

n∑
j=1

∥Cij∥2∥Dij∥2]
k∑

s=1

∥δi(s) + ζi(s)∥2

Thus,
k∑

s=1
∥ ˜̂
Xi(k − s)∥2 < ∞. For the necessary condition of the series convergence, we

have lim
k→∞

˜̂
X(k) = 0 when the convergence factor τi satisfies 0 < τi <

2

ωi

n∑
j=1

∥Aij∥2∥Bij∥2

and 0 < τi <
2

(1−ωi)
n∑

j=1

∥Cij∥2∥Dij∥2
. Namely,

0 < τi < min

{
2

ωi

n∑
j=1

∥Aij∥2∥Bij∥2
, 2

(1−ωi)
n∑
j=

∥Cij∥2∥Dij∥2

}
.

We have
k∑

s=1
∥ϵi(s)ηi(s)∥2 < ∞ ,

k∑
s=1

∥δi(s)ζi(s)∥2 < ∞.

It follows from the convergence of the series that lim
k→∞

∞∑
s=1

∥ϵi(s) + ηi(s)∥2 = 0 and

lim
k→∞

∞∑
s=1

∥δi(s) + ζi(s)∥2 = 0. This implies that lim
k→∞

ϵi(k) + ηi(k) = 0 and lim
k→∞

δi(k) +

ζi(k) = 0, i.e.,
n∑

i=1
AijX̃i(k − 1)Bij + CijX̃i

T
(k − 1)Dij → 0, which give X̃i(k) → 0 as

k → ∞ and we get lim
k→∞

Xi(k) = X∗
i . This completes the proof of the theorem.
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5. Numerical examples

In this section, we present two numerical examples to demonstrate the efficiency of our
proposed iterative methods.

Example 5.1 In this example, we consider systems of coupled generalized Sylvester-
transpose matrix equations of two unknowns in the following form{

A11X1B11 +A21X2B21 + C11X
T
1 D11 + C21X

T
2 D21 = F1

A12X1B12 +A22X2B22 + C12X
T
1 D12 + C22X

T
2 D22 = F2

(8)

Given

A11 =

[
−1 2
−2 3

]
, B11 =

[
0 −1
0.5 3

]
, A21 =

[
1 −3
0 2

]
, B21 =

[
2 3
1 −2

]
, C11 =

[
1 −2
3 3

]
, D11 =

[
−2 0
1 2

]

C21 =

[
2.5 −4
−2 0

]
, D21 =

[
1 0
3 −1

]
, A12 =

[
2 3
1 2

]
, B12 =

[
4 1
0.5 −2

]
, A22 =

[
−1 0
3 1

]
, B22 =

[
0 2
2 −2

]

C12 =

[
1 2
2 0

]
, D12 =

[
0 −2
−1 −1

]
, C22 =

[
12 3
1 2

]
, D22 =

[
1 −3
2 −1

]
, F1 =

[
−26 35
−21 −25

]
, F2 =

[
19 −29
3 11

]

This system of matrix equation has unique solution X1 =

[
1 2
−1 0

]
and X2 =

[
2 −2
0 3

]
We apply Algorithm 3.1 to solve generalized Sylvester matrix equation (8). When the

initial matrices are chosen as X1 = X2 =

[
0 0
0 0

]
. According theorem 3.1 the generalized

Sylvester matrix equation (8) is convergent for 0 < τ1 < 0.0082 and 0 < τ2 < 0.0092.
While, the relaxation parameters ω is chosen as ω = 0.5. We can see in Fig.1 that for
τ10.0082 and τ2 = 0.0092, then the iteration stops at k = 79. Define the relative iterative
error as

f(k) =
√

∥X1(k)−X1∥2+∥X2(k)−X2∥2

∥X1∥2+∥X2∥2

From Fig.1, it is clear that the error f(k) is becoming smaller and approaches zero as
iteration number k increases. This indicates that the proposed algorithm is effective and
convergent.

Figure 1. the convergence performance of Algorithm 3.1
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Table 1. The convergence factors τ1 and τ2 versus the relaxation parameters ω and the number of
iteration k.

convergence factor µ the relaxation parameter ω the number of iterations k
τ1 = .0082, τ2 = .0092 .5 79

Example 5.2 In this example, we illustrate our theoretical results of Algorithm 3.1
for solving system of coupled generalized Sylvester-transpose matrix equations of two
unknowns in the form (8) Given

A11 =


−1 2 −3 4 1
−2 3 1 −1 4
4 2 1 −2 0
1 3 −2 1 2
1 3 −2 1 4

 , B11 =


0 −1 −1 4 −2
1 3 2 1 1
3 −2 1 −4 2
0 2 −4 1 3
1 −3 −2 0 4

 , A21 =


1 −3 1 3 1
−3 2 5 4 2
1 −2 1 3 2
−3 2 1 4 3
1 −4 3 1 −2



B21 =


2 3 −1 2 1
1 −2 3 −1 3
3 −2 −1 1 0
2 4 1 3 −1
1 −1 4 1 1

 , C11 =


1 −2 1 2 0
3 3 1 −2 1
4 1 2 0 −2
2 1 0 4 3
1 −2 0 4 3

 , D11 =


−2 −1 1 4 2
1 2 −1 3 3
−1 2 3 −2 2
1 4 −2 1 4
−1 1 −1 2 3



C21 =


2 4 1 −1 3
−2 0 0 1 2
−1 3 2 −1 2
1 4 −2 −1 1
1 2 −3 4 0

 , D21 =


1 −2 2 3 −1
3 −1 −1 1 2
1 −1 −3 4 0
−3 1 −2 3 −2
1 −1 −2 −3 −2

 , A12 =


2 3 −2 −1 0
1 2 3 −2 −2
0 −1 −2 3 −4
−1 3 0 2 −1
−3 1 1 −1 1



B12 =


0 2 −1 3
3 −2 1 1 4
−1 −1 1 0 3
0 −3 0 2 1
1 −1 2 −4 −1

 , A22 =


−1 0 1 1 2
3 1 2 1 4
−2 3 −1 −4 1
1 1 2 2 5
1 −1 −3 −4 0

 , B22 =


0 0 1 0 −1
2 −1 −2 −1 3
1 0 2 0 1
−1 2 3 −1 0
0 1 2 −1 −3



C12 =


1 2 −1 3 2
2 1 1 −1 3
1 3 −2 −1 2
1 4 2 −1 4
4 1 1 2 3

 , D12 =


0 −1 1 3 −1
−1 −1 4 1 3
−1 −2 −3 1 1
0 0 4 −3 1
3 1 −2 −3 1

 , C22 =


1 3 −4 2 1
1 2 −2 −1 0
−2 2 1 −2 −3
1 0 −1 −4 −1
1 1 −3 0 1



D22 =


1 −1 0 2 −1
2 −1 3 4 1
1 3 −2 0 1
1 2 3 2 −1
1 1 2 −2 −4

 , F1 =


2 −14 −58 −12 −22
2 22 4 8 53

−35 13 −66 10 −2
59 −12 16 42 158
33 −17 −89 95 79

 , F2 =


11 −98 9 144 39
−1 −35 42 15 −59
−51 −70 −65 −12 205
−44 −33 43 −25 −96
−3 −34 −46 48 −28


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This system of matrix equations has a unique solution

X1 =


1 1 0 2 0
−1 1 −2 1 1
1 2 −1 0 2
0 2 1 0 0
−1 −2 −1 0 1

 and X2 =


1 −2 −2 1 2
1 3 −1 2 2
1 −1 −2 1 −1
1 −1 3 −1 2
1 −2 −1 −2 1


We apply Algorithm 3.1 to solve generalized Sylvester matrix equation (8). When the
initial matrices are chosen as

X1 = X2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

According Theorem 4.1 the generalized Sylvester matrix equation (8) is convergent for
0 < τ1 < 0.00045281 and 0 < τ2 < 0.00051403 meanwhile, the relaxation factor ω is set
to be . We can see in Fig.2 that for τ1 = 0.00045281 and τ2 = 0.00051403 , the iteration
stops at k = 3419 . Define the relative iterative error as

f(k) =

√
∥X1(k)−X1∥2 + ∥X2(k)−X2∥2

∥X1∥2 + ∥X2∥2

From Fig. 2, it is clear that the error f(k) is becoming smaller and approaches zero as
iteration number k increases. This indicates that the proposed algorithm is effective and
convergent.

Figure 2. the convergence performance of Algorithm 3.1 for Example 5.2

Table 2. The convergence factors τ1 and τ2 versus the relaxation parameters ω and the number of
iteration k.

convergence factor µ the relaxation parameter ω the number of iterations k
τ1 = .00045281, τ2 = .0051403 .5 3419
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6. Conclusions

In this study, we considered the accelerated gradient based iterative algorithm for solv-
ing systems of coupled generalized Sylvester-transpose matrix equations

∑n
i=1AijXiBij+

CijX
T
i Dij = Fj . A sufficient convergence condition for the proposed algorithm is pre-

sented. The iterative solution converges to the exact solution for any initial value. We
presented four numerical examples, which demonstrate the superiority, efficiency and
accuracy of the proposed method. We test the proposed algorithm using MATLAB and
the results verify our theoretical findings.
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