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1. Introduction and Preliminaries

Fixed point theory has been gained a vital role because of its wide applications in
homotopy theory, integral, integro-differential and impulsive differential equations, ob-
taining solutions of optimization problems, approximation theory and nonlinear analysis.
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Further, many of fixed point theorems are used not only in various mathematical investi-
gations, but also problems in economics, game theory, computer science and digital image
processing. Due to its applications in mathematics and other related disciplines, Banach
contraction principle has been generalized in many directions. Extensions of Banach con-
traction principle have been obtained either by generalizing the domain of the mapping
or by extending the contractive condition on the mappings (see, [1, 2, 813, 16, 21—
23]). Among them, Mutlu and Girdal [18] initiated the notion of bipolar metric spaces
and gave variant related (coupled) fixed point results for covariant and contravariant
contractive mappings. See also ([14, 15, 19, 20]).

The notion of a-admissibility has been introduced by Samet et al. [25] and has been
generalized by Salimi et al. [24]. For other related papers, see ([3-7, 17]) and references
cited therein.

In what follows, we collect relevant definitions needed in our subsequent discussions.

Definition 1.1 [18] Let P and Q be a two non-empty sets. If the function d : P x Q —
[0, +00) verifies:
(B1) d(p,q) = 0 implies that p = ¢;
(B2) p = q implies that d(p, q) = 0;
(B3) if (p,q) € (P, Q), then d(p,q) = d(q,p);
(Bs1) d(p1,q2) < d(p1,q1) + d(p2; ¢1) + d(p2, 2),

for all p,p1,p2 € P and q,q1,q2 € Q, then d is said to be a bipolar metric on (P, Q).
Note that (P, Q, d) is said to be a bipolar metric space.

Exzample 1.2 [18] Let A = (1,400) and B = [—1,1]. Define d : A x B — [0,400) as
d(a,b) = |a? — b?|, for all (a,b) € (A, B). Then the triple (A4, B,d) is a bipolar metric
space.

Exzample 1.3 [18] Let A = {f | f: R — [1,3]} be the set of all functions and B = R.
Define d : A x B — [0,+00) as d(f,a) = f(a), for all (f,a) € (A, B). Then the triple
(A, B,d) is a disjoint bipolar metric space.

Definition 1.4 [18] Let (P1, Q1) and (P2, Q2) be two pairs of sets. Given
S :PrUQ1 — PyU Qs is called

(1) covariant if S(P1) C Py and S(Q1) C Q. This is denoted as S : (Py,Q1) =

(PQa Q2)7
(79) contravariant if S(P;) C Qg and S(Q1) C Ps. It is denoted as S : (P1,Q1) =

(PQa QQ)
Particularly, if d; and dy are bipolar metrics on (Py, Q1) and (P, Q2), respectively, we
often write S : (731, Ql,dl) = (PQ, QQ,dg) and S : (Pl, Ql,dl) = (PQ, QQ,dQ).
Definition 1.5 [18] Given a bipolar metric space (P, Q,d) and £ € P U Q.

(1) Such ¢ is a left point if £ € P;
(74) Such £ is a right point if £ € Q;
(731) Such ¢ is a central point if it is both left and right.

Also, {p,} in P is a left sequence. {g,} in Q is a right sequence. In a bipolar metric space,

we call a sequence, a left or a right one. A sequence {u,,} is said to be convergent to w iff

either {uy} is a left sequence, u is a right point and lim d(uy,u) =0, or {u,} is a right
n—ro0

sequence, v is a left point and 1i_>m d(u, u,) = 0. The bisequence ({p,},{qn}) on (P, Q,d)
n—oo

is a sequence on P x Q. In the case where {p,} and {¢,} are both convergent, then
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({pn},{qn}) is convergent. ({pn},{qn}) is a Cauchy bisequence if lim d(pp,qm) = 0.

n,Mm—00
Note that every convergent Cauchy bisequence is biconvergent. The bipolar metric
space is complete, if each Cauchy bisequence is convergent (and so it is biconvergent).

Definition 1.6 [14] Let S,T : (P,Q) = (P,Q) be two covariant mappings on a
bipolar metric space (P, Q,d). The pair {S, T} is compatible iff le d(STpn, TSqy) =

li_>m d(T'Spp, STqy) = 0, whenever ({pn},{gn}) is a sequence in (P, Q) so that

lim Sp, = lim S¢, = lim Tp, = lim T¢, =T,
n—o00 n—o00 n—00 n—o00

for some 7 € P U Q.

2. Common fixed points for single-valued admissible mappings

Let 2 be the set of increasing continuous functions x : [0,+00) — [0, +00). Denote
by T be the collection of lower-semicontinuous functions ¢ : [0, +00) — [0, +00) so that

((v)=0iff v =0.

Definition 2.1 Let F': PUQ — P U Q be a covariant mapping and given A : PU Q —
[0,4+00). Such F'is called A-admissible, if £ € P U Q with A(§) > 1, implies A(F¢) > 1.

Theorem 2.2 Let S,7 : (P,Q) = (P,Q) be A-admissible mappings on a complete
bipolar metric space (P, Q, d) so that S(PU Q) C T(P U Q). Assume that the following
assertions hold:

(i) there exists pg € P U Q so that A(pg) > 1;
(74) either T is continuous, or;
(13i) if ({an},{bn}) is a bisequence in (P, Q) so that (an,b,) — (k, k) with A(a,) >
1, A(by) = 1 for each n, then A(k) > 1;
(tv) {S,T} is compatible;
(v) A(P)A(g) = 1= x (d(Sp, Sq)) < x (d(Tp,Tq)) —((d(Tp,Tq)) for allp € P,q € Q
where y € Q and ( € T.

Then S, T : PUQ — P U Q have a common fixed point. Moreover, if A(p) > 1 and
A(q) = 1 for all p,q € P U Q are fixed points of S and T, then such common fixed point
is unique.

Proof. Let pp € P and gy € Q. As S(PUQ) CT(PUQ), there is p; € P and q1 € Q
such that Spy = Tp; and Sqg = T'q;. Continuing in same process, we get pp, pp+1 in P
and ¢, gnt1 in Q in order that Sp, = T'ppy1 and Sq, = Tqy+1. Define the bisequence
({Wn} ) {fn}) in (P, Q) as wp = Spp = Tppy1 and &§, = Sqn = T'gn41 for n > 0.

Since S and T' are A-admissible mappings and A(pp) > 1, one has A(wp) = A(Spo) =
ATp1) > 1 and since A(qp) = 1, then A(&) = A(Sqv) = A(Tq1) > 1. By continuing
this process, we get that A(wp) 1, AM&,) = 1 for all n € N U{0}. Equivalently,
Mwn)A(En-1) = 1, Mwn—1)A (&) = 1 and A(wp)A(&,) = 1 for all n > 1. By using the
condition (v), we get

>
>

X (d (wn;&nt1)) = x (d(Spn, Sqn+1))
<X (d(Tpn, Tqn+1)) — C(d(TPn, Tqn+1))
= x (d(wn-1,&)) — ¢ (d(wn-1,&n))
< X (d(wn-1,6n)) (1)
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and thus

d(wn,&n+1) < d(Wn—1,6n) - (2)

Also, one writes

X (d(wnt1,8n)) = x (d (Spn+1,Sqn))

<X (d(Tpn+1,Tan)) = C(d(TPn+1,Tqn))

= X (d (wn, &n—1)) — C(d (wn, &n—1))

< X (d(wn,€n-1)) - (3)
We deduce that

d (Wn+1,6n) < d(Wn,&n—1) - (4)
Moreover,

X (d (wny fn)) =X (d (Spm SQn))

< X (d (Tpna TQn)) - C (d (Tpna TQn))

=X (d (wn—h §n—1)) - C (d (Wn—l, {n—l))

< X (d (wnfh §n71)) . (5)
Consequently,

d(wnyfn) < d(wn—lagn—l) . (6)

Combining (2), (4) and (6) yields that the bisequence ({wn},{&.}) is non-increasing, so
it biconverges to 6 > 0. When n — oo in equations (1), (3) and (5), we get

x(0) < x(0) — ¢(9),
that is, (d) = 0, so § = 0. Therefore,

lim d(wp,&n+1) = 0. (7)

n—oo

Now, we shall show ({wy},{&n}) is a Cauchy bisequence. Suppose there is € > 0, for
which there are {wy, }, {wm, } of {wn} and {&,, }, {&m,} of {&} with ng > my > k so
that

d(wnmé-mk) 2 €,

d(wnk—l’fmk) <€, (8)

and

d (wmkﬂfnk) > 67
d (Wi En—1) < €. (9)
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By view of (8) and triangle inequality, we get

€ d(wnkafmk)
d (wnm gnk_l) +d (wnk_:l? gnk_l) +d (wnk_:l? £mk)
d

(wnk7£nk71) + d (wnk717 é.nk*l) + e

N IN N

Letting k — oo and using (7),
lim d(wp,,&m,) = €.
k—o0

Again, by means of triangle inequality, we have

d (W, &m,) < d(Wny, wny+1) + d (Emy+1, Wny+1) + d (Emit1,Eme)
and

d (Emt 1, Wnt1) < d(Emt1; Em) + d (Wi, Em, ) + d (Wi, Wy 11) -
Taking k — oo and using (7) and (10),

klirgod(wnk+1,§mk+1) = klij{)lod (Empt1s Wnt1) = €.
Similarly, using (9), we can prove
klggo (@merne) = € kllrgod(wmk+1,£nk+1) -
Since A(wp, )A(wp, ) = 1 for all kK € N, by (v), we get
X (d (wnyo415 Emet1)) < X (A (@ny s Emi ) = C(d (Wny s Emy)) s

and

X (d (wmk"rl? gnk"l‘l)) <X (d (wmk7§nk)) —C (d (wmk7£nk)) :

257

(14)

Taking the limsup on (13), (14) and applying (10), (11) and (12), we have x(€) < x(€) —
¢(e). That is, e = 0, which is a contradiction. Hence ({wy},{&,}) is a Cauchy bisequence

in (P, Q). Therefore,
lim  (wp,&n) =0.

n,Mm—00

Since (P, Q,d) is complete, (wy,&,) converges. So it biconverges to some k € P N Q so

that
Jon ey = = i i
That is,

lim Sppy1 = lim Tprio = lim Sguq1 = lim T'gpio = k.
n—oo n—oo n—o0 n—o0

(15)
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The continuity of T' leads to

lim T2pn+2 =Tk, lim TSpyi1 =Tk, lim T2qn+2 =Tk, lim TSqu+1 = Tk.
n— 00 n—0o0 n—0o0

n—oo
The compatibility of {S,T} implies that

11_}111 d(STpn+2,TSqn+1) = h_)m d(TSpn_H, San+2) =0.

So that lim TSqn+1 = lim STppyo =Tk, lim STqpro = lim TSpp+1 = Tk.
n—00 n—00 n—00 n—00

Choosing p = Tpapt2 and ¢ = @op41 in (v) and assuming that (i7i) holds, that is,
AMTpp+2)A(K) = 1, we have

X (d(STpnt2, SPnt1)) < X (A(TTpps2, Tan+1)) — C(d(TTppr2, Tqni1)) -

At the limit,
X (d(Tr, k) < x (d(Tk, k) = C(d(Tk, K)) .

Hence, ¢ (d(Tk,k)) =0 and so Tk = k.
By using conditions (v) and (#ii), we deduce

At the limit,
x (d(Sk, k) < x (d(Tk, k) = C(d(Tk, k) < X (d(Tk, K)) -

Thus, d(Sk, k) < d(Tk, k) = 0. That is, d(Sk, k) = 0 implies Sk = k. Hence Sk =Tk =
K.

Now, let v be so that Sv = Tv = v. Then v € PN Q. Since A(k)A(v) = 1, by (v), one
has

X (d(~, V)) X (d(Sk, Sv))
X (d(Tk, Tl/)) — ((d(Tk,Tv))

<X(d( v)) = C(d(x,v)) .

Hence, ¢ (d(k,v)) =0, and so k = v. That is, we get uniqueness. [ |

Corollary 2.3 Let S : (P,Q) = (P, Q) be an A-admissible mapping on a complete
bipolar metric space (P, Q,d). Suppose that the following assertions hold:

(i) there exists pg € P U Q so that A(pg) > 1;
(79) either S is continuous, or;
(131) if ({pn},{gn}) is a bisequence in (P
1, A(gn) = 1 for all n, then A(k) > 1;
(iv) A(p)A(g) = 1= x (d(Sp,Sq)) < x (d(p,q)) — ¢ (d(p, q)) for all p € P,q € Q where
YeQand CeT.

Then S : PUQ — PUQ has a fixed point. Moreover, if A(p) > 1 and A\(q) > 1 for all
p,q € P U Q are fixed points of S, then S has a unique fixed point.

Q) so that (pn,qn) — (k,k) and A(py) =
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Proof. Let us take T' = I'p o (identity mapping on P U Q), from Theorem 2.2, S has a
unique fixed point. [ |

Ezxzample 2.4 Let Up,(R) (resp. L, (R)) be the set of all m x m real upper (resp. lower)

triangular matrices. Define d : Up,(R) X L, (R) — [0,00) as d(A, B) = Z laij — bijl
7j_1

for all A = (ai;) € Un(R) and B = (b;j) € Ly(R). Then obviously (U,,(R), L (R),d)

is a complete bipolar metric space Define S,T : Up(R) U Ly, (R) — Upn(R) U Ly, (R)

as S(A) = Z(GM) and T(A) = %(a;;) for all A = (a;;) € Upn(R) U Ly(R). Given A :

Un(R) U L (R) — [0, 00) as

S Jagi| = 1, if A = (ai;) € Up(R) U Ly (R),

0, otherwise.

Choose x(t) =t and ((t) = L.

Here, obviously S(U,,(R) U Ly,(R)) = T(Un(R) U Ly, (R)) = Opyxm. Furthermore, we
prove {S,T} is compatible. Let (A,, B,) be a bisequence in (P, Q) so that for some
k= (kij) €EPNQ, nlggo d(TA,, k) =0, nlgrolo d(k,TBy) =0 and 71113;0 d(SA,, k) =0 and

lim d(k,SB;) = 0. Since T and S are continuous, we have
n—oo

lim d(T'SA,,STB,)=d(lim TSA,, li_>m STBy,) =d(Tk, Sk)

n—o0 n—oo

= d(3(kij), 3 (ki)
U 1 1 UL 1

= > lakiy — zril = D0 zlmigl-
ig=1 i1

But Z 1lkij] = 0 & Ky = 0. Similarly, hrn d(STA,,,TSB,) = 0. That is, {S,T} is
,j=1
compatible.

Let A(A) > 1, then A = (a;j) € U (R)UL,,(R). Also, S(A) € Uy, (R)UL,, (R). Therefore,
A(S(A)) = 1. Then S is A-admissible (and the same for T'). Now, let (A, By,) be in (P, Q)
so that A(4,) > 1 and A(B,,) > 1 and (4,, B,) — (k, k) as n — oco. Therefore, k € PNQ,
ie, AM(k) > L

Let AM(A)A(B) > 1, then A = (ai;) € Un(R) and B = (b;j) € L,(R) and so

1 m

X (d(SA,8B)) = d(SA, SB) = 4 Zl |aij — bij]
)=
1 m

<3 > laij — byl

S

<
Il
—_

|aij — by Z |aij — byl

i,J= 1]1

X (d(TA,TB)) — ¢ (d(TA,TB)).

N
| =
SRuNgE

Thus, all conditions of Theorem 2.2 hold, and O,;,x, is the unique common fixed point
of S and T.
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Theorem 2.5 Let S,T : (P,Q) = (P, Q) be A-admissible mappings on a complete
bipolar metric space (P, Q,d) so that S(PU Q) C T(P U Q). Suppose that the following
assertions hold:

(1) there exists py € P U Q such that A\(pg) > 1;
(73) either T is continuous, or;
(13i) if ({pn},{qn}) is a bisequence in (P, Q) such that (p,, ¢,) — (k, k) and A(p,) >
1, A(gn) = 1 for all n, then A(k) > 1;
(tv) the pair {S,T} is compatible;
(v) AMp)A(q)x (d(Sa,Sb)) < x (d(Ta,Tb)) — ¢ (d(Ta,Tb)) for all p € P,q € Q where
xEQand € T.

Then S,T : PUQ — P U Q have a common fixed point. Moreover, if A(p) > 1 and
Aq) = 1 for all p,q € P U Q are fixed points of S and T, then S and T have a unique
common fixed point.

Proof. Let A(p)A(q) > 1 for p € P,q € Q. Then by (v), we get

x (d(Sp, Sq)) < x (d(Tp,Tq)) — ¢ (d(Tp,Tq)).

Thus, the condition (v) of Theorem 2.2 holds. From Theorem 2.2, we get the proof. H

Corollary 2.6 Let S : (P,Q) = (P, Q) be an A-admissible mapping on a complete
bipolar metric space (P, Q,d). Suppose that the following assertions hold:

(i) there exists pg € P U Q such that A\(pg) > 1;
(7i) either S is continuous; or
(23i) if ({pn},{agn}) is a bisequence in (P, Q) so that (pn,qn) — (k, k) and A(p,) =
1,A(gn) = 1 for all n, then \(k) > 1,

(iv) A(P)A(9)x (d(Sp, Sq)) < x (d(p,q)) — ¢ (d(p,q)) for all p € P,q € Q where x € Q2
and ( € T.

Then S : PUQ — PUQ has a fixed point. Moreover, if A(p) > 1 and A(q) > 1 for all
p,q € PUQ are fixed points of S, then such fixed point is unique.

Theorem 2.7 Let S,7 : (P,Q) = (P,Q) be A-admissible mappings on a complete
bipolar metric space (P, Q,d) so that S(PU Q) C T(P U Q). Suppose that the following
assertions hold:

(i) there exists pg € P U Q such that A\(pg) > 1;
(7i) either T is continuous, or;
(13i) if ({pn},{agn}) is a bisequence in (P, Q) so that (pn,qn) — (k, k) and A(p,) >
1, A(gn) = 1 for all n, then A(k) > 1;
(iv) the pair {S,T'} is compatible;
(V) (A(p)A(q) + 1)} EPSD) < ox(d(TpTa))~C(dTr.TD) for all p € P,q € Q, where
x€Nand (€Y.

Then S,T have a common fixed point. Moreover, if A(p) > 1 and A(g) > 1 for all
p,q € P U Q are common fixed points of S and T, then such common fixed point is
unique.

Ezample 2.8 Let P = (1,400) and Q = [-1,1]. Define d : P x Q — [0,+00) as
d(p,q) = |p? — ¢?| for all (p,q) € (P, Q). Then the triple (P, Q,d) is a complete bipolar
metric space. Consider

S,T:PUQ—PUQas S(p)=2pand T(p)=pforall pe (—1,1]. Given A\ : PUQ —
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[0, +00) as

1, if p € [0,1],
0, otherwise.

A = {
Take x(t) =t and ((¢) = 5. For all p € (—1,1] and ¢ € [0, 1], we have

(A(P)A(q) + 1)X(d(SP7Sq)) — 9lgp®—54°|
— 25" =¢*1 < 93lP*—¢"]
< o= l=5 1=

— ox(d(Tp,Tq))—C(d(Tp,Tq))

Otherwise, A(p)A(¢) = 0 and so

(A(p)A(q) + 1)XS5D) — 1  ox(d(Tp.Ta)=((d(Tp.Te))

All conditions of Theorem 2.7 hold, and 0 is the unique common fixed point of S and T.

3. Application to Homotopy

In this section, we study the existence of a unique solution to homotopy theory.

Theorem 3.1 Let (P, Q,d) be a complete bipolar metric space, (4, B) be an open
subset of (P, Q) so that (A4, B) is a closed subset of (P, Q) and (A, B) C (A, B).
Suppose L : (AU B) x [0,1] — P U Q is A-admissible so that

(i) o # L(o, p) for each 0 € JAU OB and p € [0,1] and A(c) > 1. Here, (0AU OB is

the boundary of AU B in P U Q)

(it) A(e)A(s) = 1 = x(d(H(o,5), L(s, ) < x (d(o,5)) = ((d(0,c)) for all o € A,
¢ € B, where p € [0,1], A : AUB — [0,00) where y € Q and { € T.

(iii) there is M > 0, d(L(o,x), L(y,¢)) < M|x — (| for all ¢ € U and ¢ € B and
X, ¢ € [0,1], L

() if ({xn},{yn}) isin (A, B) so that (zn,yn) — (£,€) and A(z,) = 1, XN(y,) = 1 for
all n, then A\(¢) > 1

Then H(.,0) has a fixed point <= H(.,1) has a fixed point.
Proof. Take

X ={x€[0,1]:0=L(o,x), 0 € A},
Y ={Ce0,1]:¢=H(s(), s € B}.

Since L(.,0) has a fixed point in AU B, we have 0 € X NY. So that X NY is nonempty
set. We claim that X NY is both closed and open in [0,1]. The connectedness yields
that X =Y = [0,1]. Let ({xn}rey,{Cutney) € (X,Y) with (xn, ) — (9,9) € [0,1] as
n — oo. We claim that 9 € X NY.

Since (xn,Cn) € (X,Y) for n =0,1,2,3,-- -, there is a bisequence (z,y,) with x,11 =
L(xn, Xn)s Yn+1 = L(yn, (n)- Since H is A-admissible and A(zg) > 1, we get A(L(xq, x0)) =
1 and A(yo) = 1. Hence A(L(yo,¢p)) = 1. Continuing in same direction, A(zp4+1) > 1 and
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AMYn+1) = 1 for n > 0. That is, A(zp,) = 1 and A(y,) = 1 for all n > 0. Namely,
MEn1)A(Yn) 2 1, AM@n)A(Ynt1) 2 1 and AM(@n41)A(Yn+1) = 1. Therefore, by (ii), we
have

(d(L(2n—1, Xn—1)s L(Yn,Cn)))

X
X (d($n—17 yn)) - C (d(xn—la yn))
X (d(xn—la yn)) : (16)

X (d(xn, yn-i—l)) =

NN

Since x is increasing, we get
d(ﬂ?n, yn+1) < d(ﬂ?n_l, yn) (17)

Also, we have

X (d(@n, yn)) = X (d(L(2n-1, Xn—1); L(Yn-1,Cn-1)))

<X (d(xnfla ynfl)) - C (d(mnfly ynfl))

<X (d(@n-1,Yn-1)) - (18)
Similarly,

d(ZCn, yn) < d(wnfly ynfl)' (19)

The inequalities (17) and (19) yield that the bisequence {d,, := (d(xn,yn)} is non-
increasing, so it converges to 91 > 0. Assume that ¢; > 0. Taking n — oo in equations
(16) and (18), we get a contradiction. Therefore,

lim d(zp,yn) = 0. (20)

n—oo

We will prove ({zy},{yn}) is a Cauchy bisequence. Assume there are € > 0 and {my},
{nt} so that for ny > my > k,

d(xnkﬂymk) 2 €,
d(xnk_l’ymk) <¢, (21)

and

d (xmk7ynk) > €,
d (Tmy s Yny—1) < €. (22)

By view of (21) and triangle inequality, we get

€ < d(Tny, Ymy)
< d (@, Yni—1) + d (Tne—1, Ynp—1) + d (Tn—1, Ym,.)
< d (T, Ynp—1) + d (L(Tn, -2, Xn—2), L(Yn,—2, G —2)) + €
< d(Tnys Ynp—1) + M|Xn,—2 — Cnj—2| + €.
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Letting £ — oo and using (20), we obtain

lim d(xn,, Ym,) = €. (23)
k—o00

Using (22), one can prove
lim d(zm,,Yn,) = €. (24)
k—ro00

Since A(@p, )A(Ym, ) = 1 for all k € N, by (i7), we get

X (d (xnkJrl? ykarl)) <X (d (:’an ’ ymk)) - C (d (mnk’ymk)) ’ (25)
and

X (d (xmk+17 ynk+1)) <X (d (xmk7ynk)) —¢ (d (xmk?ynk)) : (26)
Applying (23) and (24), we get at the limit, x(e) < x(e) — ((e). That is, € = 0, which is
a contradiction. Hence ({z,},{yn}) is a Cauchy bisequence in (A, B). By completeness,
there is v € AN B with

T =T = B b ()

Now, consider

X (d(L(77 X)7yn+1)) =X (d L( Y X ) L(y ><n))
< x (d(v;yn)) = C(d(y,yn))
< x(d(y,yn)) -

Since x is increasing, we get d(L(v, X), Yn+1) < d(V, Yn)-

By taking the limsup on both sides, we get d(L(v, x),y) = 0, which implies L(~, x) = .
Similarly, L(vy,¢) = . Therefore, x = ¢ € X NY. Clearly, X NY is a closed in [0, 1].
Let (x0,¢0) € (X,Y). Then there is a bisequence (xo,y0) so that o = L(zo,X0),
yo = L(yo,(p). Since A U B is open, there is » > 0 so that By(zg,r) C U UV
and Bg(r,y0) € AU B. Choose x € (¢o — €¢ +¢) and ¢ € (xo — € X0 + €) s0
that |[x — ¢o| < 37 < S |¢ — X0 € 35 < & and |xo — (| < 3 < §. Then
for y € Bxuy(xo,7) = {y,y0 € B | d(zo,y) <7+ d(x0,90)} and = € Bxuy(yo,7) =
{z,20 € A | d(z,y0) <7+ d(x0,90)} . Also,

d(L('r7X)7y0) = d(L(x7X)7L(y07CO))
< d(L(z, x), L(y, ) + d(L(zo, x), L(y, Co))
+d(L(x07 )7 (y07C0))
< 2M|X CO‘ +d( (x 7X)7L(y7C0))
< ﬁ + d(L(Jio,X),L(y, CO))

Letting n — oo, we get d(L(x, x),yo) < d(L(xo, x), L(y,{p)). By (ii), we have

x (d(L(zx, x),40)) < x (d(L(xo,x), L(y,)))
< x (d(zo,y)) — ¢ (d(z0,9))
< x (d(wo,y)) -
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Since x is increasing, we have d(L(x, x), yo) < d(xo,y) < 7+ d(x0, Yo)-
Similarly, d(zo, L(y, ) < d(z, y0) < 7+ d(x0, yo)-
On the other hand,

d(zo,y0) = d(L(xo, x0), L(y0, (o))
< Mlxo — ol <ﬁ—>0asn—>oo.

So 29 = yo. Thus, for each fixed ¢ = x € (¢o —€,{o +¢€) and L(.,x) : Bxuy(zo,7) —
Bxyy (zo,7). Hence L(.,x) has a fixed point in AU B. But this must be in A U B.
Therefore, L(., x) have a fixed point in ANB, which must be in ANB. Then y = ¢ € XNY
for ¢ € (Co —€,(p + €). Hence ({p —€,(p +€) C X NY. Clearly, X NY is open in [0, 1].
The proof of the reverse could be done similarly. [ ]

4. Application to Integral Equations

We will apply Corollary 2.6 to resolve the integral equation

() = f(z) + / S(@,9)P(y.1(y)dy, =€ By U, (28)
FE UE,

where F1 U F» is a Lebesgue measurable set.

Let P = L*°(F;) and Q = L*(E3) be two normed linear spaces, where Fp, F5 are
Lebesgue measurable sets with m(E; U Fy) < 0o.

Define d : P x Q — [0,400) as d(f,g9) = ||f — 9|l for all (f,g) € P x Q. Note that
(P, Q,d) is a complete bipolar metric space.

Define T': L*°(FE1) U L*™°(FEy) — L>®(E1) U L*®(Es) by

Ty(x) = f(z) +E fE S(x,y)P(y,v(y))dy, x€E1UE;.

Then T is a covariant mapping.

Theorem 4.1 Assume that

(i) S: (E?UE2) = [0,+00), P: (E1 U E) x [0,4+00) — [0, +00) and
f:(E1UE) — [0,+00);

(74) there are continuous functions 6,7 : P U Q — [0, +00) so that if §(y)0(5) > 0 for
some v € P, 8 € Q, then for each y € E1 U Eo,

|P(y,v(y)) — Py, Bl < [7(B)|[v(y) — BWY)l;
(i)

/ S, y)r(B)ldy]| < 1:

1UE, 0o

(tv) 6(y) = 0 for some v € P U Q implies 8(T) > 0;
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(v) if ({n},{Bn}) is a bisequence in (P, Q) such that 6(v,) > 0,0(8,) = 0 for all
n > 0 and (v, Bn) = (K, k) as n — oo, then 6(k) > 0.
Then the integral equation (28) has a solution in L>(E;) U L (E»).

Proof. Let v € P, B € Q be such that 6(y)0(3) > 0. By (ii), we deduce that

Ty(z) — TB(z)| = L/ S(x,y) [P(y,v(v) — Py, B(y))] dy

1UE,

< / S, 9)|P(y, 7)) — Py, Bu))ldy

EluEg

< / S, ) (Bw) () — Bw)ldy

E1 UEz

< / S I BG)IY = Bllsedy

E\UE,
<y = Bl (E/ S(rv,y)f(ﬁ(y))dy) :
1UE,
Then,
1Ty = T8l < L/ S, y)lr(B)ldy|| 17 = Blloo-
1UE, 0o
Choose x(t) =t and
Ct)y=|1- L/ S(z,y)|T(B)|dy t.
1UE, 0o

Define A : PU Q — [0, +00) by

A(t) = {1, 0(t) > 0,

0, otherwise.

Consequently, for all v € P, 5 € Q, we deduce that

AMAB)x (d(T, TH)) < x (d(v, B)) — ¢ (d(v,5)) -
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Thus, all the hypotheses of Corollary 2.6 are satisfied and hence the mapping T has a
fixed point which is a solution of the integral equation (28) in P U Q. [ |

5.

Conclusion

We ensured the existence and uniqueness of a common fixed point for two covariant
mappings in the class of bipolar metric spaces. Two illustrated applications have been
provided.
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