Journal of ————
. , J
Linear and Topological Algebra Topelsicl Aluches

Vol. 07, No. 03, 2018, 219- 231

Some fixed point results for contractive type mappings
in b-metric spaces

I. Eroglu®
& Department of Mathematics, Ordu University, Altinordu 52200 Ordu, Turkey.

Received 28 April 2018; Revised 18 July 2018; Accepted 7 August 2018.

Communicated by Ghasem Soleimani Rad

Abstract. In this work, we prove some fixed point theorems by using wit-distance on b-
metric spaces. Our results generalize some fixed point theorems in the literature. Moreover,
we introduce wto-distance and by using the concept of wto-distance, we obtain some coupled
fixed point results in complete b-metric spaces.

© 2018 TAUCTB. All rights reserved.

Keywords: Fixed Point, wt-distance, wto-distance, b-metric.

2010 AMS Subject Classification: 47TH10, 54H25.

1. Introduction and preliminaries

There has been numerous generalizations of metric spaces. One such well-known gen-
eralization is b-metric space defined by Czerwik [11]. After that many authors have ob-
tained some fixed point theorems in b-metric spaces (see [10, 15, 19, 21-23, 28]). Hussain
et al. [13] introduced the notion of wt-distance on b-metric spaces, which is a b-metric
version of w-distance of Kada et al. [14] and they obtained some fixed point theorems
in a partially ordered b-metric space by using wt-distance. Then, Mohanta [20] proved
some fixed point theorems by using the wt-distance on a b-metric space. Saadati et al.
[12] obtained some fixed point theorems for classes of contractive type multi-valued op-
erators via wt-distances in the setting of a complete b-metric space. Mbarki et al. [18]
introduced the probabilistic aspect of the b-metric spaces and they discussed some topo-
logical properties of these structures. Saadati et al. [1] defined the concept of rt-distance
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on a Menger probabilistic b-metric space and they investigated some fixed point theorems
by using rt-distance which is a probabilistic version of wit-distance. In 2012, Samet et al.
[26] introduced the concepts of a-1)-contractive and a-admissible mappings. Then, many
authors investigated some fixed point results by using this idea (see, [4]). Karapinar et al.
[8] extended the results of Samet et al. [26] to the setting of b-metric space and they in-
vestigated Ulam-Hyers stability results for fixed point theorems by using a-y-contractive
mapping of type-(b) in the sense of b-metric spaces. In this paper, we first prove some
fixed point theorems by using wi-distance on complete b-metric spaces and we extend
the results of Karapinar et al. [8]. Also, we introduce the notion of wt-distance and we
obtain some coupled fixed point theorems via witg-distance on b-metric spaces.
Now, we recall some well known notions about b-metric space and wt-distance.

Definition 1.1 [11] Let X be aset. Let D : X x X — [0, 00) be a function which satisfies
the following conditions:

(i) D(z,y) =0 if and only if x = y;
(ii) D(x,y) = D(y,z) for all z,y € X;
(iii) D(z,y) < K[D(z,2) + D(z,y)] for all z,y,z € X, for some constant K > 1.

Then, (X, D, K) is called a b-metric space.

Ezxzample 1.2 [13] Let X = R and define D : X x X — [0,00) by D(z,y) = |z — y|*.
Then, (X, D,2) is a b-metric space, but not a metric space.

Ezample 1.3 Let (X, D, K) be a b-metric space. Then, the functional D, : X% x X? —
[0, 00) defined by D, ((z,v), (2,t)) = D(x,z)+ D(y,t) is a b-metric on X? with coefficient
K.

Exzample 1.4 [8] Let X be a set with the cardinal card(X) > 3. Suppose that X =
X1 U Xy is a partition of X such that card(X;) > 2. Let K > 1 be arbitrary. Then the
functional D : X x X — [0,00) is defined by

0 T=1y
D(z,y) =< 2K =z,ye X
1 otherwise

is a b-metric on X with the coefficient K > 1.

The concept of a wt-distance on a b-metric space has been introduced by Hussain et
al. [13] by the following:

Definition 1.5 [13] Let (X, D, K) be a b-metric space. Then, a function P: X x X —
[0,00) is called a wt-distance on X if the following conditions are satisfied:

(wt-1) P(z,2) < K[P(z,y) + P(y, 2)] for any z,y,z € X;

(wt-2) for any z € X, P(x,.) : X — [0,00) is K-lower semi-continuous;

(wt-3) for any € > 0, there exists § > 0 such that P(z,z) < ¢ and P(z,y) < ¢ imply
D(z,y) < e.

Let us recall that a real-valued function f defined on a b-metric space X is said
to be lower K-semi-continuous at a point xg € X if either liminf, _., f(x,) = oo or
f(zo) < liminf, ., Kf(z,), whenever x,, € X for each n € N and z,, — z¢ (see [13]).

Exzample 1.6 [13] Let (X, D, K) be a b-metric space. Then the metric D is a wt-distance
on X.
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Exzample 1.7 [13] Let X =R and D(x,y) = (z — y)?. Then the function P: X x X —
[0, 00) defined by P(z,y) = |z|? + |y|* for every x,y € X is a wt-distance on X.

Ezxzample 1.8 [13] Let X = R and D(z,y) = (¢ — y)?. Then the function P: X x X —
[0,00) defined by P(x,y) = |y|? for every z,y € X is a wt-distance on X.

Following lemma has been proved by Hussain et al. [13] and it is necessary to prove
our main theorem.

Lemma 1.9 [13] Let (X, D, K) be a b-metric space and P be a wt-distance on X. Let
{zn} and {y,} be sequences in X, let {c,} and {5, } be sequences in [0, 00) converging
to zero, and let z,y,z € X. Then, the following hold:

(i) if P(zn,y) < ap and P(xy,, 2) < B, for any n € N, then y = 2.

(ii) if P(xn,Yyn) < oy and P(zy, z) < B, for any n € N, then D(y,,z) — 0.
(iii) if P(xp,zm) < oy, for any n,m € N with m > n, then {z, } is a Cauchy sequence.
(iv) if P(y,zpn) < ay, for any n € N, then {z,} is a Cauchy sequence.

We denote by ¥ the family of all functions % : [0,00) — [0, c0) satisfying the following
conditions:

(1) % is nondecreasing,
(2) D02 ¥ (t) < oo forall t > 0.

Remark 1 [17] For each ¢ € ¥, we have

(1) limy, 00 ™ (t) = 0 for all t > 0.

(2) ¥(t) <t forallt > 0.

(3) ¥(0) =
In the following definition, Berinde [6] introduced the notion of (b)-comparison function
in order to extend some fixed point results to the class of b-metric spaces.

Definition 1.10 [6] Let s > 1 be a real number. A mapping ¢ : [0,00) — [0, 00) is called
(b)-comparison function if the following conditions satisfy:

(1) ¢ is monotonically increasing;
(2) there exist kg € N, a € (0,1) and convergent series of nonnegative terms » p- ; vy,
such that s*t1F+1(t) < asFeF(t) + v, for k > ko and any ¢ € [0, 00).

In this paper, we will denote by ¥} the family of all (b)-comparison functions.

Lemma 1.11 [5] If ¢ : [0,00) — [0, 00) is a (b)-comparison function, then the following
are true:

(i) the series Y 2, s¥F(t) converges for any t € [0, 00).

(ii) the function by : [0,00) — [0,00) defined by bs(t) = S 72, s¥o*(2), t € [0,00), is

increasing and continuous at 0.

Samet et al. [26] introduced the concept of a—1)-contractive and a-admissible mappings
as follows.

Definition 1.12 [26] Let (X, d) be a metric space and f : X — X a given mapping.
Then, f is called a — 1-contractive mapping if there exist two functions o : X x X —
[0,00) and ¢ € ¥ such that a(x,y)d(f(z), f(y)) < ¥(d(z,y)) for all z,y € X.

Definition 1.13 [26] Let f : X — X and o : X x X — [0,00). Then, f is called
a-admissible mapping if a(z,y) > 1 for all z,y € X, then a(f(x), f(y)) > 1.
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Samet et al. [26] obtained some fixed point theorems for a—1)-contractive mappings sat-
isfying a-admissibility condition in complete metric spaces. Then many authors extended
the concepts of aw — 1-contractive and a-admissible mappings. (see [2, 3, 9, 17, 27-29]).

Karapinar et al. [8] extended the concept of o — 1)-contractive and a-admissible map-
pings to the b-metric spaces. They introduced the concept of o — ¢-contractive mapping
of type-(b) and obtained the following results.

Definition 1.14 [8] Let (X, d) be a b-metric space and f : X — X be a given mapping.
Then f is called o — v-contractive mapping of type-(b) if there exist two functions
a: X xX — [0,00) and ¥ € ¥y such that a(z,y)d(f(x), f(y)) < ¥(d(z,y)) for all
z,y € X.

Theorem 1.15 [8] Let (X, d) be a complete b-metric space with constant s > 1. Let f :
X — X be an a — 1-contractive mapping of type-(b) satisfying the following conditions:
(i) f is a-admissible;
(ii) there exists o € X such that a(zo, f(z0)) > 1;
(iii) fis continuous.
Then, f has a fixed point.
Theorem 1.16 [8] Let (X, d) be a complete b-metric space with constant s > 1. Let f :
X — X be an a — t-contractive mapping of type-(b) satisfying the following conditions:
(i) f is a-admissible;
(ii) there exists xg € X such that a(xzo, f(xo)) = 1;

(iii) if {x,} is a sequence in X such that a(x,,zp41) > 1 for all n and x,, - 2 € X
as n — oo, then a(z,,x) > 1 for all n.

Then, f has a fixed point.

2. Main Results

We now prove some new fixed point results for generalized («, 1), P)-contractive map-
pings with wt-distances in b-metric spaces. Before starting our main theorem, we intro-
duce a new notion as follows:

Definition 2.1 Let (X, D, K) be a b-metric space with the wt-distance P and f : X —
X a given mapping. We say that f is («,, P)-contractive mapping if there exist two
functions a : X x X — [0,00) and ¢ € ¥}, such that for all z,y € X,

a(z, y)P(f(z), f(y)) < ¥(P(z,y)) (1)

We can give the following example to illustrate the notion of (a,, P)-contractive
mapping.

Exzample 2.2 Let X = [0,00) and D(z,y) = |x — y|? be a b-metric on X and consider
the wt-distance P(z,y) = |z|*+|y|* on (X, D,2). Let f : X — X defined by f(z) = Z.
Moreover, let the function @ : X x X — [0,00) defined by

0 ifzorye]0,1]
alz,y) = { 1 otherwise

t
Then, f is an («, v, 2)-contractive for v : [0,00) — [0, 00) which is defined by ¥(t) = 7
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Now, we give our main result.

Theorem 2.3 Let P be a wt-distance on a complete b-metric space (X, D, K) and let
f:X — X be an (a, 1, P)-contractive mapping. Suppose that the following hold:

(i) f is an a-admissible mapping;
(ii) there exists a point xp € X such that a(zo, f(x0)) > 1;
(iii) f is continuous.

Then f has a fixed point.

Proof. Let zp € X such that a(zo, f(x0)) = 1. We define a sequence z, in X by
Tpy1 = f(zn) = fT(x0) for all n € N. If 2, = 2,41 for some n € N, then z,, = z is a
fixed point of f. Hence, we assume that x,, # x,+1 for all n € N. Since f is a-admissible
mapping, we have

a(xo, 1) = a(zo, f(z0)) 2 1 = a(f(x0), f(z1)) = a(z1,22) > 1.

By induction, we get
T, Tpi1) = 1 (2)
for all n € N. By (1) and (2), we have

P(xn, 2ny1) = P(f(@n-1), f(2n)) < (@n—1,20) P(f(@n-1), f(2n)) < Y(P(2n-1,2n))
for all n € N. Iteratively, we get that
P(zp, xni1) < Y"(P(z0,21)) for all n € N. (3)
From (3) and using triangle inequality, for all p > 1, we have

P(l’n, xn+p) < KP(l'n, anrl) + KQP(l'nJrlv xn+2) + -+ Kpp(anrpfl, anrp)
< Ky"(P(x0,21)) + K" (P(ao, a1)) + -+ + KPY" P~ (P, 21))
1
- W[K"ﬂ}n(l’?(%w’ﬂl)) + K"y Pag, 1) + - -
+ KLyt =l (P(gg, 1))

n

Let us say Tj, = . K**(P(20,21)) for n > 1. Therefore, we get that
k=0

1
P(xnaxn+p) < W[Tn—kp—l - Tn—l]a nzlp=l (4)

(o]
From Lemma 1.11, we have Y K¥*(P(zg, 1)) is convergent. Also, from Lemma 1.9,
k=0
we get that x,, is a Cauchy sequence in (X, D, K). Since X is complete, there exists z*
such that z,, — =* as n — oo. From the continuity of f, we have
2 = T wngn = I fan) = f( lm z,) = f(27).

Thus, x* is a fixed point of f. [ |
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In the next theorem, we omit the continuity hypothesis of f.

Theorem 2.4 Let P be a wt-distance on a complete b-metric (X, D, K) and let f: X —
X be an («, 1, P)-contractive mapping. Suppose that the following conditions hold:

(i) f is an a-admissible;
(ii) there exists a point zg € X such that a(zo, f(x0)) = 1;
(iii) if {x,} is a sequence in X such that a(z,,zp+1) > 1 for all n and z,, » z € X
as n — oo, then a(x,,x) > 1 for all n.

Then, f has a fixed point.

Proof. Following the proof of Theorem 2.3, we have that z, is a Cauchy sequence in
the complete b-metric space (X, D, K). Then, there exists * € X such that z, — z*.
Moreover, from (2) and the hypothesis (iii), we have a(x,,2*) > 1 for all n € N. Since f
is a-admissible, a(f(xy,), f(z*)) > 1. From, (wt-2) and (4), we get

P(xy,z*) < liminf, o0 KP(2y, Tnip)

for all n € N. Thus, we have

lim P(zy,z")=0. (5)

n— oo
Then,

P(zny1, f(27) = P(f(2n), f(27)) < a(@n, %) P(f(2n), f(27)) < Y(P(zn, 7))
for all n € N. Using (5) in the above inequality we obtain that ILm P(xpy1, f(z*)) = 0.
By the triangle inequality, we have that

P(zn, f(2*)) < K[P(@n, tni1) + P(@ns1, f(27))].

Hence,
lim P(zn, (")) = 0. (6)
Hence by (i) of the Lemmal.9, (5) and (6) we conclude that f(z*) = z*. [ |

Next example shows that, setting P = D, Theorem 2.3 and Theorem 2.4 are general-
izations of Theorem 17 and Theorem 18 in [8] respectively.

Ezxzample 2.5 Consider X = [0, 00) with the b-metric D(z,y) = |y —x|? and wt-distance
P: X x X — [0,00) is defined by P(z,y) = |y|*>. Let f: X — X be a function defined
by f(x) = % and a: X x X — [0,00) is defined by

1 z>
o) ={y 521

It is clear that f is a-admissible. Moreover, f is («,1, P)-contractive mapping with
respect to ¢(t) = £. Indeed, let # < y. Then, a(z,y) = 0. Thus, it is obvious that

y2

) =0<9(P(x,y) = 5

(. y) P .

L
V2 V2
Now, suppose that 2 > y. Then, a(x,y) = 1 and we have

2

2
a(z,y)P( )= L <w(Ply) = T

Sl

.
V2 V2
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Also, there exists xg € X such that a(zo, f(zo)) > 1. Indeed, we have a(zo, f(xo)) > 1
for 29 = 0. Now, let {z,,} be a sequence in X such that a(zp,zp41) > 1 for alln € N
and z, — = € X as n — oo. By the definition of the function «, we have that {x,} is
a decreasing sequence. Then, it is clear that x,, > x and «a(z,,x) > 1. Therefore, all the
hypotheses of Theorem 2.3 and Theorem 2.4 are satisfied. 0 is the fixed point of f.

Our main results does not guarantee the uniqueness of the fixed point.

Exzample 2.6 Let X = [0,00) and D(z,y) = |z — y|? be a b-metric on X and consider
the wt-distance P(z,y) = |z|>+|y|? on (X, D,2). Let f: X — X defined by f(z) = /.
Moreover, let the function o : X x X — [0,00) defined by

[0 ifzoryel0,1]
alz,y) = { 1 otherwise

t
Then f is a (a, 1, P)-contractive mapping, where 1 (t) = 7 All the hypotheses of Theo-
rem 2.3 holds, but f has not a unique fixed point.

To assure the uniqueness of the fixed point, we will consider the following hypothesis:
(H) Vx,y € X there exists z € X such that a(z,z) > 1, a(y, z) > 1.

Theorem 2.7 Adding property (H) to the hypothesis of Theorem 2.3 we obtain the
uniqueness of the fixed point of f.

Proof. Suppose that z* and y* are two fixed points of f. By property (H), there exists
z* € X such that a(z*,2*) > 1 and a(z*,y*) > 1. Since f is a-admissible, we get that
alf"(z%), f(z*)) = 1 and o(f"(z*), f"(y*)) = 1. Since f is («, ), P)-contraction, we
have that

P(f"*(z"),a*) = P(f(f"(2")), f(z"))

for each n € N. By induction, we get P(f"T1(z*),z*) < ¢"(P(z*,2*)) for all n €
N. In a similar way, we get that P(f""1(z*),y*) < ¢"(P(z*,y*)). Then, we have
lim ¢Y"P(z*,2*) =0 and lim ¢"P(z*,y*) = 0. From Lemma 1.9, we obtain y* = z* W
n—o0 n—oo

The next two theorems generalize the results of Ran and Reurings [25] and Nieto-
Rodrigues-Lopez [24].

Theorem 2.8 Let (X, D, K) be a complete b-metric space such that (X, <) is a partially
ordered set. Let f : X — X be a nondecreasing mapping with respect to ” < ”. Suppose
that the following conditions hold:

(i) There exists k € [0, 1) such that
D(f(x), f(y)) < kD(z,y) for each z,y € X such that z < y;

(ii) There exists zo € X such that z¢ < f(x0);
(iii) f is continuous.

Then f has a fixed point.

Proof. Consider the mapping o : X x X — [0, 00) defined by
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1 ifx =Xy
oz, y) = {0 otherwise

We will show that the contractive condition (1) is satisfied with respect to the wt-distance
D on the b-metric space (X, D, K). By (i), we have that a(z,y)D(f(z), f(y)) < kD(z,y)
for all x,y € X. Then, f is (a, v, D)-contractive mapping with ¢ (t) = kt for all ¢ > 0.
Now, we assume that a(x,y) > 1. Then, x < y. Since f is nondecreasing with respect to
7 <7 we get that f(z) < f(y) and so a(f(x), f(y)) = 1. Therefore, f is a-admissible.
From (ii), there exists xp € X such that z¢g < f(zg). This implies that a(zg, f(x0)) > 1.
Then, the hypotheses of Theorem 2.3 are satisfied and f has a fixed point. [ ]

Theorem 2.9 Let (X, D, K) be a complete b-metric space such that (X, <) is a partially
ordered set. Let f : X — X be a nondecreasing mapping with respect to 7 < ”. Suppose
that the following conditions hold:

(i) There exists k € [0, 1) such that
D(f(x), f(y)) < kD(x,y) for each z,y € X such that x < y;

(ii) There exists xo € X such that z¢ < f(x0);
(iii) If {z,} is a nondecreasing sequence in X such that z € X z,, — x as n — oo,
then z,, < x for all n.

Then f has a fixed point.
Proof. Define the mapping a: X x X — X by

1 ifx=xy
ow,y) = {0 otherwise

Then, f is («,, D)-contractive, where ¢(t) = kt and k € [0,1). Moreover, f is «a-
admissible. Let x,, be a sequence in X such that a(z,,zp4+1) > 1 forallnand z, -z € X
as n — 00. Then, a(x,,x) = 1. Thus, all the hypotheses of Theorem 2.4 are satisfied and
f has a fixed point. [ |

Theorem 2.10 Adding the condition (H’):
For all z,y € X there exists z € X such that t < zand y X 2
to the Theorem 2.8 and Theorem 2.9, we obtain the uniqueness.

Proof. Suppose that z* and y* are two fixed point of f. Then, there exists z € X such
that * < z and y* < z. Then, a(z*,2) > 1 and a(y*, z) > 1. Then the hypothesis (H)
is satisfied and f has a unique fixed point. [ |

3. Some coupled fixed point results and wty-distance

In [16], Radenovié¢ et al. introduced the notion of wp-distance to obtain some fixed
point results. In this section, we will introduce wtg-distance which is a b-metric version
of wg-distance. Then, we will show that our previous results help us to obtain some
coupled fixed point theorems in complete b-metric spaces.

Definition 3.1 Let (X, D, K) be a b-metric space. Then, a function P : X x X — [0, c0)
is called a wty-distance on X if the following are satisfied:

(wto)-1 P(z,y) < K[P(x,2) + P(z,y)];
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(wtp)-2 for any = € X, the functions P(z,.),P(.,z) : X — [0,00) are K-lower semi-
continuous;

(wtp)-3 for any € > 0, there exists 6 > 0 such that P(z,z) < ¢ and P(z,y) < ¢ imply
D(z,y) <e.

Ezxzample 3.2 Let consider the b-metric space (R, D, 2), where D(z,y) = (z —y)? for all
z,y € R. Then, the function P : X x X — [0,00) defined by P(z,y) = |z|?> + |y|?. Then,
P is a wty distance on (R, D, 2), but not a b-metric.

Ezxzample 3.3 Let X = [0,00) and consider the b-metric (X, D,2), where D(z,y) =
(r — y)? for all 2,y € X and wt-distance function P : X x X — [0,00) defined by
P(z,y) = |y|*. Inspired by the Example 1.3 given in [16], we will construct the following
wt-distance. Let o : X — [0, 00) defined by

e x>0
alw) =9 3 =0

The function P’ : X x X — [0, 00) defined by P'(x,y) = maz{a(z), P(z,y)}. Then, P is
a wt—distance on (X, D, 2). However, P’ is not a wtg-distance on X . Indeed, consider the
sequence {x,} in X, where x,, = — for all n € N. Then, x,, converges to 0 in (X, D, 2).
n
But, for £ = 0, we have the following lim inf 2max{e_%,0} =2 < P'(0,0) = 3. Thus,
n—oo

the function P’(.,0) is not 2—lower semi-continuous. Hence, P’ is not a wt( distance on
(X,D,2).

Lemma 3.4 Let (X, D, K) be a complete b-metric space and P be a wtp-distance on
X. Then the function § : X? x X2 — [0, 00) defined by

5((z,y), (2,t)) = max{P(z,2z) + P(y,t), P(z,2) + P(t,y)}

for all (z,v),(2,t) € X? is a symmetric wto-distance on the complete b-metric space
(X2, Dy, K), where D, is defined on X? by D,((z,y), (z,t)) = D(z, 2) + D(y,t).

Proof. (wtp)-1 Let (x,y), (2,t), (u,v) € X2. Then, we have

K[5((z,y), (u,v)) +6((u, v), (,1))]

[max{P(z,u) + P(y,v), P(u,z) + P(v,y)} + max{P(u, z) + P(v,t), P(z,u) + P(t,v)}]
[max{P(x,u) + P(y,v) + P(u, z) + P(v,t), P(u,x) + P(v,y) + P(z,u) + P(t,v)}]
max{K[P(z,u) + P(y,v) + P(u,z) + P(v,t)], K[P(u,z) + P(v,y) + P(z,u) + P(t,v)]|}
> max{P(z,z) + P(y,t), P(z,z) + P(t,y)} = 6((x,y), (z,1)).

K
K

WV

(wtp)-2 Let (x,y) be a point of X2. Now we show that the function 6((xz,y),.) : X2 —

[0,00) is K-lower semi-continuous. To this end, let (x,,y,) be a sequence in X? and

there exists a point (a,b) € X? such that lim D,((xn,yn), (a,b)) = 0. Thus, we have
n—oo

lim D(zp,a) =0and lim D(y,,b) = 0. Since P is a wtp-distance, we have the following
n—00 n—00
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inequalities from (wt()-2 condition:

P(z,a) < linrr_l)icgf KP(x,x,), (7)
P(a,z) < liznl}i(gf KP(xy, ), (8)
P(y.b) < liminf K P(y,y,), (9)
P(b,y) < liminf KP(yn,,y). (10)

Adding (7) to (9) and (8) to (10), we get the following:

P(z,a) + P(y,b) < liniinf KP(z,z,) + lirginf KP(y,yn)

< liminf K[P(z, 2,) + P(y, yn)]

n—oo

< liminf[max{K[P(z, zn) + P(y,yn)], K[P(zn, ) + P(yn, y)]}

n—oo

and

P(a,z) + P(b,y) < liminf K P(x,,x) + lirginf KP(yn,y)

n—oo

< liminf K[P(zp, 2) + P(yn, )]

n—oo

< lim inf[max{ K [P(zy, ©) + P(yn,y)|, K[P(x,2n) + P(y, yn)]}]-

n—oo

Thus, we have

max{P(z,a) + P(y,b), P(a,x) + P(b,y)} < liminf Kmax{P(x,z,) + P(y, yn)

n—oo

s P(zn, @) + P(yn, y)}-

Therefore, we get that o((x,y),(a,b)) < 1iIgian5((m,y),(mn,yn)), which implies

d((z,y),.) is K-lower semi-continuous function. Also, in a similar way, (., (z,y)) is K-
lower semi-continuous function.

(wtg)-3 Let (x1,22), (y1,2), (21, 22) be points of X? and £ > 0. Since P is wty dis-
tance, there exist §; > 0,02 > 0 such that P(z1,21) < 61 and P(z1,y1) < d1 imply
that D(z1,y1) < §. Also, P(22,22) < d2 and P(z2,y2) < d1 imply that D(x2,y2) < 5.
Let us say dp = min{51752}' Then, 6(('21722)’ ($1a$2)) < 0o and 5((21,Z2), (y17y2)) < 9o
imply that Dy((z1,x2), (y1,¥2)) < €. Moreover, it is clear that ¢ is a symmetric distance.
Therefore, we obtain that § is a symmetric wto-distance on (X?, D,,K). [ |

Now, we recall some well known notions about coupled fixed points.

Definition 3.5 [7] Let F' : X x X — X be a given mapping. We say that (z,y) is a
coupled fixed point of F' if F(z,y) = x and F(y,x) = y.

Lemma 3.6 [26] Let F' : X x X — X be a given mapping. Define the mapping T :
XXX = XxX by T(z,y) = (F(z,y), F(y,x)) for all (z,y) € X x X. Then (z,y) is a
coupled fixed point of F'iff (x,y) is a fixed point of T
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Theorem 3.7 Let (X, D, K) be a complete b-metric space and P be a wty-distance on
X. Let F: X x X — X be a given mapping. Suppose that there exists ) € ¥; and a
function a : X2 x X2 — [0,00) such that

a((x,y), (u, ) [P(F(z,y), F(u,v)) + P(F(y, z), F(v,u))] < 59 (P(z,u) + P(y,v)) (11)

N =

for all (z,y), (u,v) € X x X. Suppose also that
(i) For all (x,y), (u,v) € X x X, we have

a((2,9), (u,0)) 2 1= a((F(z,y), F(y, 2)), (F(u,v), F(v,u))) > 1;
(ii) There exists (zo,y0) € X x X such that

O‘((-Z'anO)? (F(x07yO)aF(y07x0)>) 2 1, a((F(907$0)7F(x0?y0))7 (yo,lto)) 2 1;

(iii) F is continuous.
Then F' has a coupled fixed point.

Proof. From (11), we have
a((,y), (u, V) [P(F(z,y), F(u,v)) + P(F(y, ), F(v,u))] < %w(P(% u) + P(y,v)),
a((v,u), (y, ) [P(F(v,u), F(y,z)) + P(F(u,v), F(z,y))] < %w(P(v,y) + P(u, ).
Since 1 is monotonically increasing, we get that

a((z,y), (u,0)) [P(F(z,y), F(u,v)) + P(F(y,z), F(v,u))] < 5900((z,y), (u,v))), (12)

a((v,u), (y,2))[P(F(v,u), F(y,z)) + P(F(u,0), F(z,y))] < 5¢(5((2,9), (u,v))), (13)

N = DN =

where 9§ is defined by
((2,y), (u,v)) = max{P(z,u) + P(y,v), P(u,z) + P(v,y)}.

From Lemma 3.4, we know that ¢ is a symmetric wto-distance. Adding (12) to (13), we
get that 6((2,1))0((T'(2),T(t))) < ¢¥(d(z,t)) for all z = (z1,22), t = (t1,t2) € Y, where
6:Y xY — [0,00) is a function defined by

0((21, 22), (t1,t2)) = min{a((21, 22), (t1, t2)), a((t2, t1), (22, 21)) }

and T : Y — Y is defined by T(z,y) = (F(z,y), F(y,x)). Thus, T is continuous and
(0,1, 0)-contractive mapping. Moreover, let 0((z1, z2), (t1,t2)) > 1. By using (i), we ob-
tain that 6(T (21, 22), T'(t1,t2)) = 1. Thus, T is f-admissible. From condition (ii), we have
that there exists (zg,y0) € Y such that 6((xo,y0),T(x0,y0)) = 1. Thus all the hypothe-
ses of Theorem 2.3 are satisfied and T has a fixed point. By using Lemma 3.6, F' has a
coupled fixed point. [

In the next theorem, we omit the continuity hypothesis of F.
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Theorem 3.8 Let (X, D, K) be a complete b-metric space and P be a wtp-distance
on X. Let FF: X x X — X be a function. Suppose that there exists ¢ € ¥, and
a: X?%x X? - [0,00) such that

a((z,y), (u, v))[P(F(z,y), F(u,v)) + P(F(y, ) + F(v,u))] < 5¢(P(z,u) + P(y, v))

N =

for all (z,y), (u,v) € X x X. Suppose that
(i) For all (z,y), (u,v) € X x X, we have

a((z,y), (u,0)) 2 1= a((F(z,y), Fy, x)), (F(u,v), F(v,u))) = 1;
(ii) There exists (zo,y0) € X x X such that

Oé((l‘o,yo), (F(xo,yo),F(yo,l‘o))) > 17a((F(y07$0)7F($07y0))7 (y(]ax(])) 2 1

(iii) If {z,,} and {y,} are sequences in X such that a((xn,yn), (Tn+1,Yn+1)) = 1 and
O‘((yn—i-lyxn-i-l)a(ynaxn)) > 1,2, >r € X and y, -y € X asn — oo, then
a((@n, yn), (z,y)) 2 1 and a((y, ), (Yn, Tn)) = 1.

Then F' has a coupled fixed point.

Proof. We will use the similar arguments given in the proof of Theorem 3.7. Let
{(zn,yn)} be asequence in Y such that 0((xn, yn), (Tnt1,Yn+1)) = 1and (Tn, yn) — (z,9)
as n — oo. By the condition (iii), we obtain that 6((xy,yn), (x,y)) = 1. Thus, all the
hypotheses of Theorem 2.4 are satisfied. Therefore, T has a fixed point. Whence, F' has
a coupled fixed point. [ ]

For the uniqueness of the coupled fixed point, we consider the following hypothesis:
(H”) For all (z,y), (u,v) € X x X, there exists (wy,w2) € X x X such that

Theorem 3.9 Adding condition (H”) to the hypothesis of the Theorem 3.7, we obtain
the uniqueness of the coupled fixed point of F'.

Proof. It is clear that 0 satisfy the condition (H). Thus, the proof follows from Theorem
2.7. ]
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