Journal of Linear and Topological Algebra Vol. 07, No. 03, 2018, 245-250



## $b - (\varphi, \Gamma)$ -graph contraction on metric space endowed with a graph

Sh. Mirzaee<sup>a</sup>, M. Eshaghi Gordji<sup>b,\*</sup>

<sup>a</sup>Department of Mathematics, Karaj Branch, Islamic Azad University, Alborz, Iran. <sup>b</sup>Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran.

Received 21 May 2018; Revised 11 September 2018; Accepted 12 September 2018. Communicated by Ghasem Soleimani Rad

**Abstract.** In this paper, we introduce the  $b - (\varphi, \Gamma)$ -graphic contraction on metric space endowed with a graph so that  $(M, \delta)$  is a metric space, and  $V(\Gamma)$  is the vertices of  $\Gamma$  coincides with M. We aim to obtain some new fixed-point results for such contractions. We give an example to show that our results generalize some known results.

© 2018 IAUCTB. All rights reserved.

**Keywords:** Metric space, fixed point,  $b - (\varphi, \Gamma)$ -graphic contraction. **2010 AMS Subject Classification**: 47H10, 47H09.

## 1. Introduction

Jachymski [13] offers some generalizations about the Banach contraction principle to map on a metric space with respect to a graph. Some recent articles give sufficient conditions for selfmap  $f: M \to M$  to be a PO if  $(M, \delta)$  is a metric space endowed with a graph. We give some conditions to show that  $b - (\varphi, \Gamma)$ -graphic contraction is PO. In order to study  $b - (\varphi, \Gamma)$ -graphic contraction, we need the following definitions (also, see [1, 2, 4–8, 10–12, 14–16, 18–22, 24]).

Let  $(M, \delta)$  be a metric space, and  $\Delta$  be the diagonal of  $M \times M$ . Let  $\Gamma$  be a directed graph so that the set  $V(\Gamma)$  of its vertices coincides with M, and the set  $S(\Gamma)$  of its edges contains all loops, i.e.  $S(\Gamma) \supseteq \Delta$ . Let  $\Gamma$  have no parallel edges, which is why one can identify  $\Gamma$  with the pair  $(V(\Gamma), S(\Gamma))$ . By  $\Gamma^{-1}$ , we denote the graph obtained from  $\Gamma$  by reversing the direction of edges, and call it the reverse of graph  $\Gamma$ . Thus,

© 2018 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

 $<sup>^{*} {\</sup>rm Corresponding \ author}.$ 

E-mail address: mirzaeeshahram@gmail.com (Sh. Mirzaee); meshaghi@semnan.ac.ir (M. Eshaghi Gordji).

 $S(\Gamma^{-1}) = \{(x, y) \in M \times M | (y, x) \in S(\Gamma)\}.$   $\tilde{\Gamma}$  is the undirected graph obtained from  $\Gamma$  by removing the direction of the edges. Thus, we have  $S(\tilde{\Gamma}) = S(\Gamma) \bigcup S(\Gamma^{-1}).$ 

A path from x to y of length  $N(N \in \mathbf{N})$  is a sequence  $(x_i)_{i=0}^N$  of N+1 vertices so that  $x_0 = x, x_N = y$  and  $(x_{n-1}, x_n) \in S(\Gamma)$  for i = 1, ..., N.  $\Gamma$  has a weak connection if  $\tilde{\Gamma}$  is connected.  $[x]_{\Gamma}$  is the equivalent class of relations  $\Re$  defined on  $V(\Gamma)$  by the rule:  $z\Re y$  if there is a path in  $\Gamma$  from z to y.  $\Gamma_x$  is called the component of  $\Gamma$ , which comprises of all edges and vertices that are contained in some paths beginning at x.

If  $f: M \to M$  is an operator, then  $M^f := \{x \in M : (x, fx)\} \in S(\Gamma)\}$  and the set of all fixed points of f is denoted by  $F_f := \{x \in M : f(x) = x\}.$ 

**Definition 1.1** [3, 9] Let M be a set and  $s \ge 1$  be a given real number. A function  $\delta: M \times M \to \mathbf{R}^+$  is said to be a *b*-metric on M and the pair  $(M, \delta)$  is called a *b*-metric space if, for all  $x, y, z \in M$ ,

 $(\delta_1) \ \delta(x, y) = 0$  if and only if x = y,

$$(\delta_2) \ \delta(x,y) = \delta(y,x),$$

 $(\delta_3) \ \delta(x,z) \leqslant s[\delta(x,y) + \delta(y,z)].$ 

**Remark 1** Set s = 1 in the Definition 1.1, then we obtain  $\delta$  is a metric space on M.

**Example 1.2** [24] Let 
$$M = l_p(\mathbf{R})$$
, where  $l_p(\mathbf{R}) = \{x = \{x_n\} \subset \mathbf{R} : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$   
and  $0 . Then  $\delta(x, y) = (\sum_{n=1}^{\infty} |x_n - y_n|^p)^{\frac{1}{p}}$  is a *b*-metric on  $M$  with  $s = 2^{\frac{1}{p}}$ .$ 

**Definition 1.3** [8] A mapping  $f: M \to M$  is called  $\Gamma$ -graphic contraction if

- 1. for all  $x, y \in M$ , if  $(x, y) \in S(\Gamma)$  then  $(f(x), f(y)) \in S(\Gamma)$ ;
- 2. there exists  $a \in [0,1)$  so that  $\delta(f(x), f^2(x)) \leq ad(x, f(x))$  for all  $x \in M^f$ .

Matkowski [17] defined class of  $\varphi$ -contractions in metric fixed-point theory.

**Definition 1.4** [17] Let  $\phi : \mathbf{R}^+ \to \mathbf{R}^+$ . Consider the following properties:

 $\begin{aligned} (i)_{\varphi} \ t_1 \leqslant t_2 \Rightarrow \varphi(t_1) \leqslant \varphi(t_2) \text{ for all } t_1, t_2 \in \mathbf{R}^+, \\ (ii)_{\varphi} \ \varphi(t) < t \text{ for } t > 0, \\ (iii)_{\varphi} \ \varphi(0) = 0, \\ (iv)_{\varphi} \ \lim_{n \to \infty} \varphi^n(t) = 0 \text{ for all } t > 0, \\ (v)_{\varphi} \ \sum_{n=0}^{\infty} \varphi^n(t) \text{ converges for all } t > 0. \end{aligned}$ 

We state that a function  $\varphi$  satisfying  $(i)_{\varphi}$  and  $(iv)_{\varphi}$  is said to be a comparison function. Moreover, if a function  $\varphi$  satisfying  $(i)_{\varphi}$  and  $(v)_{\varphi}$  is said to be a (c)-comparison function

In Definition 1.4,  $(i)_{\varphi}$  and  $(iv)_{\varphi}$  imply  $(ii)_{\varphi}$  and  $(i)_{\varphi}$  and  $(ii)_{\varphi}$  imply  $(iii)_{\varphi}$ .

**Remark 2** Any (c)-comparison function is a comparison function.

**Definition 1.5** [24] Let  $s \ge 1$  be a fixed real number. A function  $\varphi : \mathbf{R}^+ \to \mathbf{R}^+$  is known as (b)-comparison function if it satisfies  $(i)_{\varphi}$  and the following holds:

$$(vi)_{\varphi} \sum_{n=0}^{\infty} s^n \varphi^n(t)$$
 converges for all  $t \in \mathbf{R}^+$ .

**Remark** 3 By setting s = 1 in Definition 1.5, we obtain that the function  $\varphi$  is a comparison function.

**Example 1.6** [24] Let  $(M, \delta)$  be a *b*-metric space with coefficient  $s \ge 1$ . Then  $\varphi(t) = at$ 

for all  $t \in \mathbf{R}^+$  with  $0 < a < (\frac{1}{s})$  is a (b)-comparison function.

**Definition 1.7** [24] A mapping  $f: M \to M$  is called  $b - (\varphi, \Gamma)$ -contraction if

- (i) for all  $x, y \in M$ , if  $(x, y) \in S(\Gamma)$  then  $(f(x), f(y)) \in S(\Gamma)$ ;
- (ii)  $\delta(f(x), f(y)) \leq \varphi(\delta(x, y))$  whenever  $(x, y) \in S(\Gamma)$ ,

where  $\phi : \mathbf{R}^+ \to \mathbf{R}^+$  is a comparison function.

**Definition 1.8** [13] Let  $(M, \delta)$  be a *b*-metric space and  $f: M \to M$  a mapping. Two sequences  $\{f^n x\}$  and  $\{f^n y\}$  in M are said to be equivalent if  $\lim \delta(f^n x, f^n y) = 0$ . Moreover, if each of them is a Cauchy sequence, they are called Cauchy equivalents.

In the next section, we state two fixed-point theorems for  $b - (\varphi, \Gamma)$ -graphic contraction.

## 2. Main results

In this section, we assume that  $(M, \delta)$  is a *b*-metric space with coefficient  $s \ge 1$  and  $\Gamma$  is a directed graph so that  $V(\Gamma) = M$ ,  $\Delta \subseteq S(\Gamma)$  and  $\Gamma$  has no parallel edges.

**Definition 2.1** A mapping  $f: M \to M$  is called  $b - (\varphi, \Gamma)$ -graphic contraction if

- (i) for all  $x, y \in M$ , if  $(x, y) \in S(\Gamma)$  then  $(f(x), f(y)) \in S(\Gamma)$ ;
- (ii)  $\delta(f(x), f^2(x)) \leq \varphi(\delta(x, f(x)))$  for all  $x \in M^f$ ,

where  $\phi : \mathbf{R}^+ \to \mathbf{R}^+$  is a comparison function.

**Remark 4** Any  $\Gamma$ -graphic contraction is a  $b - (\varphi, \Gamma)$ -graphic contraction.

**Lemma 2.2** Let  $(M, \delta)$  be a *b*-metric space and  $f: M \to M$  be a  $b - (\varphi, \Gamma)$ -graphic contraction, where  $\phi: \mathbf{R}^+ \to \mathbf{R}^+$  is a *b*-comparison function. Then, for given  $x \in M^f$ there exists  $r(x) \ge 0$  so that  $\delta(f^n x, f^{n+1} x) \le \varphi^n(r(x))$  for all  $n \in \mathbb{N}$ .

**Proof.** Assume that  $x \in M^f$ , then by induction, we have  $(f^n x, f^{n+1} x) \in S(\Gamma)$  for each  $n \in \mathbf{N}$ . So

$$\delta(f^n x, f^{n+1} x) \leqslant \varphi(\delta(f^{n-1} x, f^n x)) \leqslant \dots \leqslant \varphi^n(\delta(x, fx).$$

Set  $r(x) = \delta(x, fx)$ .

**Lemma 2.3** Let  $(M, \delta)$  be a *b*-metric space and  $f: M \to M$  be a  $b - (\varphi, \Gamma)$ -graphic contraction, where  $\phi: \mathbf{R}^+ \to \mathbf{R}^+$  is a *b*-comparison function. Furthermore, for each  $x \in M^f$ , there exists  $x^*(x) \in M$  so that the sequence  $(f^n x)_{n \in \mathbb{N}}$  converges to  $x^*(x)$  as  $n \to \infty$ .

**Proof.** Let 
$$x \in M^f$$
. By Lemma 2.2,  $\delta(f^n x, f^{n+1}x) \leq \varphi^n(r(x))$  for all  $n \in \mathbb{N}$ . Hence,  

$$\sum_{n=0}^{\infty} \delta(f^n x, f^{n+1}x) \leq \sum_{n=0}^{\infty} \varphi^n(r(x)) < \infty$$
. Thus,  $\delta(f^n x, f^{n+1}x) \to 0$  as  $n \to \infty$ .

Therefore the sequence  $(f^n x)_{n \in \mathbb{N}}$  is a Cauchy sequence. Since the space M is complete, there exists  $x^*(x) \in X$  so that the sequence  $(f^n x)_{n \in \mathbb{N}}$  converges to  $x^*(x)$  as  $n \to \infty$ .

**Definition 2.4** [23] Let  $f: M \to M$ , and let  $y \in M$ , and the sequence  $\{f^n y\}$  in M so that  $f^n y \to x^*$  with  $(f^n y, f^{n+1} y) \in S(\Gamma)$  for all  $n \in \mathbf{N}$ . We say that a graph  $\Gamma$  is  $(C_f)$ -graph if there is a subsequence  $\{f^{n_k}y\}$  and a natural number p so that  $(f^{n_k}y, x^*) \in$  $S(\Gamma)$  for all  $k \ge p$ .

**Definition 2.5** [13] A mapping  $f: M \to M$  is called orbitally  $\Gamma$ - continuous if for all  $x, y \in M$  and any sequence  $(k_n)_{n \in \mathbb{N}}$  of positive integers,  $f^{k_n} x \to y$  and  $(f^{k_n} x, f^{k_{n+1}} x) \in$  $S(\Gamma)$  imply  $f(f^{k_n}x) \to fy$  as  $n \to \infty$ .

**Theorem 2.6** Let  $(M, \delta)$  be a complete b-metric space endowed with a graph  $\Gamma$  and  $\Gamma$ be  $(C_f)$ -graph. Let  $f: M \to M$  be a  $b - (\varphi, \Gamma)$ -graphic contraction and f be orbitally  $\Gamma$ -continuous, where  $\phi : \mathbf{R}^+ \to \mathbf{R}^+$  is a *b*-comparison function. Thus, the following statements hold.

- (i)  $F_f \neq \emptyset$  if and only if  $M^f \neq \emptyset$ .
- (ii) If  $M^f \neq \emptyset$  and  $\Gamma$  are weakly connected, then f is a weakly Picard operator.
- (iii) For any  $M^f \neq \emptyset$ ,  $f \mid_{[x]_{\tilde{r}}}$  is a weak Picard operator.

**Proof.** First, we prove (*iii*). Let  $x \in M^f$ . By Lemma 2.3, there exists  $x^* \in M$  so that  $\lim_{n\to\infty} f^n x = x^*$ . Since  $x \in M^f$ , then  $f^n x \in M^f$  for every  $n \in \mathbf{N}$ . Now, we assume that  $(x, fx) \in S(\Gamma)$ . Since  $\Gamma$  is  $(C_f)$ -graph, there exists a subsequence  $(f^{k_n}x)_{n \in \mathbb{N}}$  of  $(f^n x)_{n \in \mathbb{N}}$  and  $p \in \mathbb{N}$  so that  $(f^{k_n} x, x^*) \in S(\Gamma)$  for each  $k \ge p$ . Now, we have a path in  $\Gamma$  by using the points  $x, fx, \dots, f^{k_l}x, x^*$  and hence,  $x^* \in [x]_{\tilde{\Gamma}}$ . On the other hand, since f is orbitally  $\Gamma$ -continuous, we have  $x^*$  as a fixed point for  $f|_{[x]_{\tilde{r}}}$ .

(i) is obtained using (iii) because  $F_f \neq \emptyset$  if  $M^f \neq \emptyset$ . Now suppose that  $F_f \neq \emptyset$ . Using the assumption that  $\Delta \subseteq S(\Gamma)$ , we obtain  $M^f \neq \varnothing$ .

To prove (ii), let  $x \in M^f$ . Because  $\Gamma$  is weakly connected, we have  $M = [x]_{\tilde{\Gamma}}$  and (iii) complete the proof.

In the next we study the case that  $f: M \to M$  as a  $b - (\varphi, \Gamma)$ -graphic contraction can be a Picard operator. Thus, we need the following definition.

**Definition 2.7** Let  $(M, \delta)$  be a metric space endowed with a graph  $\Gamma$  and  $f: M \to M$ be a mapping. We state that the graph  $\Gamma$  has a  $f-{\rm path}$  property, if for any path in  $\Gamma,$  $(x_i)_{i=0}^N$  from x to y so that  $x_0 = x, x_N = y$  we have  $fx_{i-1} = x_i$  for all  $i = 1, \dots, N$ .

**Proposition 2.8** Let  $(M, \delta)$  be a *b*-metric space endowed with a graph  $\Gamma$ . Let  $f: M \to \mathcal{I}$ M be a  $b - (\varphi, \Gamma)$ -graphic contraction, where  $\phi : \mathbf{R}^+ \to \mathbf{R}^+$  is a b-comparison function. Thus, the following statements hold:

- (i) f is a b − (φ, Γ)−graphic contraction and a b − (φ, Γ<sup>-1</sup>)−graphic contraction;
  (ii) [x<sub>0</sub>]<sub>Γ̃</sub> is f−invariant, and f |<sub>[x<sub>0</sub>]<sub>Γ̃</sub></sub> is a b − (φ, Γ̃<sub>x<sub>0</sub></sub>)−graphic contraction, and this means if x<sub>0</sub> ∈ M, then fx<sub>0</sub> ∈ [x<sub>0</sub>]<sub>Γ̃</sub>.

**Proof.** (i) is obtained using the symmetry of  $\delta$ .

(ii) Let  $x \in [x_0]_{\tilde{\Gamma}}$ . Then there exists a path  $(x_i)_{i=0}^l$  in  $\tilde{\Gamma}$  from x to  $x_0$  so that  $x_0 =$  $x, x_l = x_0$ . Since f is a  $b - (\varphi, \tilde{\Gamma})$ -graphic contraction, then  $(fx_{i-1}, fx_i) \in S(\Gamma)$  for each  $i = 1, \dots, l$ . So  $fx \in [fx_0]_{\tilde{\Gamma}} = [x_0]_{\tilde{\Gamma}}$ . Now let  $(x, y) \in S(\tilde{\Gamma}_{x_0})$ . Thus, there exists a path from x to y passing through x, i.e.,  $(x_0, x_1, \dots, x_{k-1} = x, x_k = y)$  in such a way that  $(x_{i-1}, x_i) \in S(\Gamma)$  for  $i = 1, \dots, k$ . Since f is a  $b - (\varphi, \Gamma)$ -graphic,  $(fx_{i-1}, fx_i) \in S(\Gamma)$  for  $i = 1, \dots, k$ . Let  $(z_0, z_1, \dots, z_{l-1}, z_l)$  be a path from  $x_0$  to  $fx_0$ . So

$$(z_0 = x_0, z_1, \dots, z_{l-1}, z_l = fx_0, fx_1, \dots, fx_{k-1} = fx, fx_k = fy)$$

is a path in  $\tilde{\Gamma}$  from  $x_0$  to fy so that  $(fx, fy) \in S(\tilde{\Gamma}_{x_0})$ . Since f is a  $\tilde{\Gamma}$ -graphic contraction, and  $S(\tilde{\Gamma}_{x_0}) \subset S(\tilde{\Gamma})$ , then f is a  $\tilde{\Gamma}_{x_0}$ -graphic contraction.

**Lemma 2.9** Let  $(M, \delta)$  be a *b*-metric space endowed with a graph  $\Gamma$ . Let  $f: M \to M$ be a  $b - (\varphi, \Gamma)$ -graphic contraction so that the graph  $\Gamma$  has the f-path property and  $\phi : \mathbf{R}^+ \to \mathbf{R}^+$  is a *b*-comparison function. Then for any  $x \in M$  and  $y \in [x]_{\tilde{\Gamma}}$  two sequences  $(f^n x)_{n \in \mathbf{N}}$  and  $(f^n y)_{n \in \mathbf{N}}$  are equivalent.

**Proof.** Let  $x \in M$  and  $y \in [M]_{\tilde{\Gamma}}$ . Then there exists a path  $(x_i)_{i=0}^l$  in  $\tilde{\Gamma}$  from x to y so that  $x_0 = x, x_l = y$  with  $(x_{i-1}, x_i) \in S(\Gamma)$  and  $fx_{i-1} = x_i$  for all  $i = 1, \dots, l$ . From Proposition 2.8, f is a  $b - (\varphi, \tilde{\Gamma})$ -graphic contraction. Thus,  $(f^{n+1}x_{i-1}, f^{n+1}x_i) \in S(\tilde{\Gamma})$  for all  $n \in N$ . So

$$\delta(f^{n+1}x_{i-1}, f^{n+1}x_i) = \delta(f^n x_i, f^{n+1}x_i) \leqslant \varphi(\delta(f^{n-1}x_i, f^n x_i)).$$

Hence,

$$\delta(f^n x_{i-1}, f^n x_i) \leqslant \varphi^{n-1} \delta(x_i, f x_i) = \varphi^{n-1} \delta(x_i, x_{i+1}).$$
(1)

We know that  $(f^n x_i)_{i=0}^l$  is a path in  $\Gamma$  from  $f^n x$  to  $f^n y$ . Using Definition 1.1(d<sub>3</sub>) and (1), we have

$$\delta(f^n x, f^n y) \leqslant \sum_{i=1}^l s^i \delta(f^n x_{i-1}, f^n x_i) \leqslant a^n \sum_{i=1}^l s^i \varphi^{n-1}(\delta(x_i, x_{i+1})).$$

Assuming  $n \to \infty$ , we get  $\delta(f^n x, f^n y) \to 0$ .

**Theorem 2.10** Let  $(M, \delta)$  be a complete b-metric space endowed with a graph  $\Gamma$ , so that  $\Gamma$  is  $(C_f)$ -graph, and has a f-path property. Let  $f: M \to M$  be a  $b-(\varphi, \Gamma)$ -graphic contraction, and f be orbitally  $\Gamma$ -continuous, where  $\phi: \mathbf{R}^+ \to \mathbf{R}^+$  is a b-comparison function. Let  $z \in M$  so that  $z \in M^f$ , and thus the following statements hold:

(1)  $f|_{[z]_{\tilde{\Gamma}}}$  is a Picard operator;

(2) if  $\Gamma$  is weakly connected, then f is a Picard operator.

**Proof.** (1) Using (*iii*) Theorem 2.6, there exists  $x^*(z) \in [z]_{\tilde{\Gamma}}$  so that  $\lim_{n \to \infty} f^n(z) = x^*(z)$ , and  $x^*(z)$  is a fixed point of f. Now, let  $y \in [z]_{\tilde{\Gamma}}$  and  $\lim_{n\to\infty} f^n(y) = x^*(y)$ . Then, by Lemma 2.9, two sequences  $(f^n z)_{n\in\mathbb{N}}$  and  $(f^n y)_{n\in\mathbb{N}}$  are equivalent. Since both are convergent sequences, they are Cauchy sequences. Hence, they are Cauchy equivalent. This means  $x^*(y) = x^*(z)$ .

(2) Since  $z \in M^f$  and  $\Gamma$  is weakly connected, we have  $M = [z]_{\tilde{\Gamma}}$ . Then we only need to apply (1).

The following example shows that  $b - (\varphi, \Gamma)$ -graphic contraction is a generalization of  $b - (\varphi, \Gamma)$ - contraction.

*Example* 2.11 Let M = [0, 1] and  $\delta(x, y) = |x - y|^2$ . Define the graph  $\Gamma$  by  $S(\Gamma) = \{(0, 0)\} \bigcup \{(0, x), x \ge \frac{1}{2}\} \bigcup \{(x, y) : x, y \in (0, 1]\}$ . and  $f : M \to M$  by

$$fx = \begin{cases} \frac{x}{2}, & x \in (0,1); \\ \frac{3}{4}, & x = 0; \\ 1, & x = 1. \end{cases}$$

So if  $\varphi(t) = \frac{t}{3}$ , then  $\delta$  is a *b*-metric on *M* with s = 2, and *f* is a  $b - (\varphi, \Gamma)$ -graphic contraction. But *f* is not  $b - (\varphi, \Gamma)$ - contraction, because

$$\delta(f(0), f(\frac{1}{2}) \nleq \frac{\delta(0, \frac{1}{2})}{3}.$$

249

**Definition 2.12** A mapping  $f: M \to M$  is called  $b - (\varphi, \Gamma)$ -almost contraction if:

- (i) for all  $x, y \in M$ , if  $(x, y) \in S(\Gamma)$  then  $(f(x), f(y)) \in S(\Gamma)$ ;
- (ii) there exists  $L \ge 0$  so that  $\delta(f(x), f(y)) \le \varphi(\delta(x, y)) + L\delta(y, f(x))$  whenever  $(x, y) \in S(\Gamma)$ ,

where  $\phi : \mathbf{R}^+ \to \mathbf{R}^+$  is a comparison function.

**Remark 5** Note that if  $f: M \to M$  is a  $b - (\varphi, \Gamma)$ -almost contraction, then f is a  $b - (\varphi, \Gamma)$ -graphic contraction with L = 0 and y = f(x).

## References

- D. Alimohammadi, Nonexpansive mappings on complex C\*-algebras and their fixed points, Int. J. Nonlinear Anal. Appl. 7 (2016), 21-29.
- [2] N. A. Assad, W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pac. J. Math. 43 (1972), 533-562.
- [3] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, J. Func. Anal. 30 (1989), 26-37.
  [4] B. Bao, Sh. Xu, L. Shi, V. C. Rajic, Fixed point theorems on generalized *c*-distance in ordered cone *b*-metric
- spaces, Int. J. Nonlinear Anal. Appl. 6 (2016), 9-22.
  [5] I. Beg, A. Rashid Butt, Fixed point of set-valued graph contractive mappings, J. Inequal. Appl. (2013), 2013:252.
- [6] I. Beg, A. Rashid Butt, S. Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60 (2010), 1214-1219.
- [7] S. Beloul, Some fixed point theorem for nonexpansive type single valued mappings, Int. J. Nonlinear Anal. Appl. 7 (2016), 53-62.
- [8] C. Chifo, G. Petrusel, Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl. (2012), 2012:161.
- [9] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico dell'Universita di Modena. 46 (1998), 263-276.
- [10] M. Eshaghi Gordji, S. Abbaszadeh, A fixed point method for proving the stability of ring  $(\alpha, \beta, \gamma)$ -derivations in 2-Banach algebras, J. Linear. Topological. Algebras. 6 (4) (2017), 269-276.
- [11] M. Eshaghi Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear. Topological. Algebra. 6 (3) (2017), 251-260
- [12] M. Hadian Dehkordi, M. Ghods, Common fixed point of multivalued graph contraction in metric spaces, Int. J. Nonlinear Anal. Appl. 7 (2016), 225-230.
- [13] J. Jachymski, The contraction principle for mappings on a metric space endowed with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373.
- [14] P. K. Jhade, A. S. Saluja, Common fixed point theorem for nonexpansive type single valued mappings, Int. J. Nonlinear Anal. Appl. 7 (2016), 45-51.
- [15] Z. Kadelburg, S. Radenovic, Remarkes on some recent M. Borcat's results in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl. 6 (2016), 96-104.
- [16] S. Manro, A common fixed point theorem for weakly compatible maps satisfying common property (E.A.) and implicit relation in intuitionistic fuzzy metric spaces, Int. J. Nonlinear Anal. Appl. 6 (2016), 1-8.
- [17] J, Matkowski, Integrable solutions of functional equations, Dissertationes Mathematicae, Seri. 127, 1975.
- [18] S. K. Mohant, R. Maitra, Coupled coincidence point theorems for maps under a new invariant set ordered cone metric spaces, Int. J. Nonlinear Anal. Appl. 6 (2016), 140-152.
- [19] M. Moosaei, On fixed points of fundamentally nonexpansive mappings in Banach spaces, Int. J. Nonlinear Anal. Appl. 7 (2016), 219-224.
- [20] S. Moradi, M. Mohammadi Anjedani, E.Analoei, On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation, Int. J. Nonlinear Anal. Appl. 6 (2016), 62-68.
- [21] A. Naeimi Sadigh, S. Ghods, Coupled coincidence point in ordered cone metric spaces with examples in game theory, Int. J. Nonlinear Anal. Appl. 7 (2016), 183-194.
- [22] R. A. Rashwan, S. M. Saleh, Some common fixed point theorems for four  $(\psi, \phi)$ -weakly contractive mappings satisfying rational expressions in ordered partial metric spaces. Int. J. Nonlinear Anal. Appl. 7 (2016), 111-130.
- [23] M. Samreen, T. Kamran, Fixed point theorems for integral G-contractions, Fixed Point Theory Appl. (2013), 2013:149.
- [24] M. Samreen, T. Kamran, N. Shahzad, Some fixed Point theorems in b-metric space endowed with graph, Abs. Appl. Anal. (2013), 2013:967132.