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cDepartamento de Mathemática Aplicada, Universidade Federal Fluminense, Rua Mário Santos Braga

s/n24020-140, Niterói, RJ Brasil.
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Abstract. In this paper, we show that a pointwise symmetric pre-isotonic preclosure function
is uniquely determined the pairs of sets it separates. We then show that when the preclosure
function of the domain is pre-isotonic and the preclosure function of the codomain is pre-
isotonic and pointwise-pre-symmetric, functions which separate only those pairs of sets which
are already separated are precontinuous.
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1. Introduction

Generalized open sets play a very important role in general topology and they are now
the research topics of many topologist worldwide. Indeed a significant there in general
topology and real analysis concerns the variously modified forms of continuity, separation
axioms, compactness etc by utilizing generalized open sets. One of the most well-known
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notions and also an inspiration source is the notion of preopen sets introduced by Mosh-
hour et al. [7]. Throughout the present paper (X, τ) and (Y, σ) (or simply X and Y )
denote topological spaces. Let A be a subset of X. We denote the interior and the clo-
sure of a set A by Int(A) and Cl(A), respectively. A ⊂ X is called a preopen [6,7] or
nearly open [8] or locally dense [2] set of X if A ⊂ Int(Cl(A)). The complement of a
preopen set is called preclosed. The intersection of all preclosed sets containing a set A
is called the preclosure [3] of A and is denoted by pCl(A). Notions and notations not
described in this paper are standard and usual. This paper is closely related to [1].

Definition 1.1 (1) A generalized preclosure space is a pair (X, pCl) consisting of a set
X and a preclosure function pCl, a function from the power set of X to itself.
(2) The preclosure of a subset A of X, denoted pCl, is the image of A under pCl.
(3) The pre-exterior of A is pExt(A) = X\pCl(A), and the pre-interior of A is pInt(A) =
X\pCl(X\A).
(4) A is preclosed if A = pCl(A), A is preopen if A = pInt(A) andN is a preneighborhood
of a point x ∈ X [4], [5]if x ∈ pInt(N).

Definition 1.2 A preclosure function pCl defined on X is:
(1) pre-grounded if pCl(ϕ) = ϕ.
(2) pre-isotonic if pCl(A) ⊆ pCl(B) whenever A ⊆ B.
(3) pre-enlarging if A ⊆ pCl(A) for each subset A of X.
(4) pre-idempotent if pCl(A) = pCl(pCl(A)) for each subset A of X.
(5) pre-sub-linear if pCl(A ∪B) ⊆ pCl(A) ∪ pCl(B) for all A,B ⊆ X.

Definition 1.3 (1) Subsets A and B of X are said to be preclosure-separated in a
generalized preclosure space (X, pCl) (or simply, pCl− separated) if A∩pCl(B) = ϕ and
B ∩ pCl(A) = ϕ,or equivalently, if A ⊆ pExt(B) and B ⊆ pExt(A).
(2) Pre-Exterior points are said to be preclosure-separated in a generalized preclosure
space (X, pCl) if for each A ⊆ X and for each x ∈ pExt(A), {x} and A are pCl −
separated.

Theorem 1.4 Let (X, pCl) be a generalized preclosure space in which pre-Exterior
points are pCl-separated and let S be the pairs of pCl-separated sets in X. Then, for
each subset A of X, the preclosure of A is pCl(A) = {x ∈ X : {{x}, A} /∈ S}.

Proof. In any generalized preclosure space pCl(A) ⊆ {x ∈ X : {{x}, A} /∈ S}. Suppose
that y /∈ {x ∈ X : {{x}, A} /∈ S}; that is, {{y}, A} ∈ S. Then {y} ∩ pCl(A) = ϕ,
and so y /∈ pCl(A). Now, let y /∈ pCl(A). By hypothesis, {{y}, A} ∈ S. Therefore,
y /∈ {x ∈ X : {{x}, A} /∈ S}. ■

2. Some basic properties

Definition 2.1 A preclosure function pCl defined on a set X is said to be pointwise
pre-symmetric when, for all x, y ∈ X, if x ∈ pCl({y}), then y ∈ pCl({x}).
A generalized preclosure space (X, pCl) is said to be pre-R0 when, for all x, y ∈ X, if x
is in each preneighborhood of y, then y is in each preneighborhood of x.

Corollary 2.2 Let (X, pCl) be a generalized preclosure space in which pExterior points
are pCl-separated. Then pCl is pointwise pre-symmetric and (X, pCl) is pre-R0.

Proof. Let pre-Exterior points be pCl-separated in (X, pCl). If x ∈ pCl({y}), then {x}
and {y} are not pCl-separated. This means that y ∈ pCl({x}). Hence, pCl is pointwise
pre-symmetric. Suppose that x belongs to every preneighborhood of y; that is, x ∈ M
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whenever y ∈ pInt(M). Letting A = X\M and rewriting contrapositively, y ∈ pCl(A)
whenever x ∈ A. Let x ∈ pInt(N) consequently x /∈ pCl(X\N), so x is pCl-separated
from X\N . Hence pCl({x}) ⊆ N, x ∈ {x}, so y ∈ pCl({x}) ⊆ N. Hence, (X, pCl) is
pre-R0. ■

Observe that these three axioms are not equivalent in general, but they are equivalent
when the preclosure function is pre-isotonic.

Theorem 2.3 Let (X, pCl) be a generalized preclosure space with pCl pre-isotonic.
Then the following are equivalent:
(1) pExterior points are pCl-separated.
(2) pCl is pointwise pre-symmetric.
(3) (X, pCl) is pre-R0.

Proof. Suppose that (2) is true. Let A ⊆ X, and let x ∈ pExt(A). Then, as pCl is pre-
isotonic, for each y ∈ A, x /∈ pCl({y}), and thus, y /∈ pCl({x}). Hence A∩ pCl({x}) = ϕ.
Therefore (2) implies (1). Moreover, by the previous corollary, (1) implies (2).

Suppose now that (2) is true and let x, y ∈ X such that x is in every preneighborhood
of y, i.e. x ∈ N whenever y ∈ pInt(N). Then y ∈ pCl(A) whenever x ∈ A, and in
particular, since x ∈ {x}, y ∈ pCl({x}). It follows that x ∈ pCl({y}). Thus if y ∈ B, then
x ∈ pCl({y}) ⊆ pCl(B), as pCl is pre-isotonic. Therefore, if x ∈ pInt(C), then y ∈ C,
that is, y is in every preneighborhood of x. Hence, (2) implies (3).

Now, let (X, pCl) be pre-R0 and x ∈ pCl({y}). Since pCl is pre-isotonic, x ∈ pCl(B)
whenever y ∈ B, or equivalently, y is in every preneighborhood of x. Since (X, pCl) is
pre-R0, x ∈ N whenever y ∈ pInt(N). Therefore, y ∈ pCl({A}) whenever x ∈ A, and in
particular, since x ∈ {x}, y ∈ pCl({x}). It follows that (3) implies (2). ■

Theorem 2.4 Let S be a set of unordered pairs of subsets of a set X such that, for all
A,B,C ⊆ X,
(1) if A ⊆ B and {B,C} ∈ S, then {A,C} ∈ S and
(2) if {{x}, B} ∈ S for each x ∈ A and {{y}, A} ∈ S for each y ∈ B, then {A,B} ∈ S.
Then there exists a unique pointwise pre-symmetric pre-isotonic preclosure function pCl
on X which preclosure-separates the elements of S.

Proof. Define pCl by pCl(A) = {x ∈ X : {{x}, A} /∈ S} for every A ⊆ X. If A ⊆ B ⊆ X
and x ∈ pCl(A), then {{x}, A} /∈ S. Thus {{x}, B} /∈ S, that is, x ∈ pCl(B). Hence
pCl is pre-isotonic. Moreover x ∈ pCl({y}) if and only if {{x}, {y}} /∈ S if and only if
y ∈ pCl({x}). Thus pCl is pointwise pre-symmetric. Suppose that {A,B} ∈ S. Then
A ∩ pCl(B) = A ∩ {x ∈ X : {{x}, B} /∈ S} = {x ∈ A : {{x}, A} /∈ S} = ϕ. Similarly,
pCl(A) ∩B = ϕ. Therefore, if {A,B} ∈ S, then A and B are pCl-separated.

Now suppose that A and B are pCl-separated. Then {x ∈ A : {{x}, B} /∈ S} =
A ∩ pCl(B) = ϕ and {x ∈ B : {{x}, A} /∈ S} = pCl(A) ∩ B = ϕ. Hence, {{x}, B} ∈ S
for each x ∈ A and {{y}, A} ∈ S for each y ∈ B. Therefore, {A,B} ∈ S. ■

In the following we show that many properties of preclosure functions can be expressed
in terms of the sets they separate.

Theorem 2.5 Let S be the pairs of pCl-separated sets of a generalized preclosure space
(X, pCl) in which pre-exterior points are preclosure-separates. Then pCl is
(1) pre-grounded if and only if for all x ∈ X, {{x}, ϕ} ∈ S.
(2) pre-enlarging if and only if for all {A,B} ∈ S,A and B are disjoint.
(3) pre-sub-linear if and only if {A,B ∪ C} ∈ S whenever {A,B} ∈ S and {A,C} ∈ S.
Furthermore, if pCl is pre-enlarging and for all A,B ⊆ X, {{x}, A} /∈ S whenever
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{{x}, B} /∈ S and {{y}, A} /∈ S for each y ∈ B, then pCl is pre-idempotent. Now, if
pCl is pre-isotonic and pre-idempotent, then {{x}, A} /∈ S whenever {{x}, B} /∈ S and
{{y}, A} /∈ S for each y ∈ B.

Proof. (1) By Theorem 1.4, pCl(A) = {x ∈ X : {{x}, A} /∈ S} for every A ⊆ X.
Suppose that for all x ∈ X, {{x}, ϕ} ∈ S. Then pCl(ϕ) = {x ∈ X : {{x}, ϕ} /∈ S} = ϕ.
Hence pCl is pre-grounded. Conversely, if ϕ = pCl(ϕ) = {x ∈ X : {{x}, ϕ} /∈ S}, then
{{x}, ϕ} ∈ S, for all x ∈ X.

(2) Assume that for all {A,B} ∈ S, A and B are disjoint. Since {{a}, A} /∈ S if
a ∈ A,A ⊆ pCl(A) for each A ⊆ X. Therefore, pCl is pre-enlarging. Conversely, let pCl
be pre-enlarging and {A,B} ∈ S. Then A ∩B ⊆ pCl(A) ∩B = ϕ.

(3) Suppose that {A,B ∪ C} ∈ S whenever {A,B} ∈ S and {A,C} ∈ S. Let x ∈ X
and B,C ⊆ X such that {{x}, B ∪ C} /∈ S. Then {{x}, B} /∈ S or {{x}, C} /∈ S.
Hence pCl(B ∪ C) ⊆ pCl(B) ∪ pCl(C). Therefore, pCl is pre-sub-linear. Conversely,
suppose that pCl is pre-sub-linear and let {A,B}, {A,C} ∈ S. Then pCl(B ∪ C) ∩ A ⊆
(pCl(B) ∪ pCl(C)) ∩ A = (pCl(B) ∩ A) ∪ (pCl(C)) ∩ A) = ϕ and (B ∪ C) ∩ pCl(A) =
(B ∩ pCl(A)) ∪ (C ∩ pCl(A)) = ϕ.

Let pCl be pre-enlarging and suppose that {{x}, A} /∈ S whenever {{x}, B} /∈ S and
{{y}, A} /∈ S for each y ∈ B. Then pCl(pCl(A)) ⊆ pCl(A). If x ∈ pCl(pCl(A)), then
{{x}, pCl(A)} /∈ S. {{y}, A} /∈ S, for each y ∈ pCl(A); hence {{x}, A} /∈ S. Since pCl is
pre-enlarging, then pCl(A) ⊆ pCl(pCl(A)). Therefore, pCl(pCl(A)) = pCl(A) for each
A ⊆ X. Suppose that pCl is pre-isotonic and pre-idempotent. Let x ∈ X and A,B ⊆ X
such that {{x}, B} /∈ S and for each y ∈ B, {{y}, A} /∈ S. Then x ∈ pCl(B) and for each
y ∈ B, y ∈ pCl(A), i.e. B ⊆ pCl(A). Therefore, x ∈ pCl(B) ⊆ pCl(pCl(A)) = pCl(A). ■

Definition 2.6 If (X, (pCl)X) and (Y, (pCl)Y ) are generalized preclosure spaces, then
a function f : X → Y is said to be
(1) preclosure preserving if f((pCl)X(A)) ⊆ (pCl)Y f(A)) for each A ⊆ X.
(2) precontinuous if (pCl)X(f−1(B)) ⊆ f−1((pCl)Y (B)) for each B ⊆ Y .

Observe that in general, neither condition implies the other. Now, we have the following
result:

Theorem 2.7 Let (X, (pCl)X) and (Y, (pCl)Y ) be generalized preclosure spaces and let
f : X → Y be a function.
(1) If f is preclosure preserving and (pCl)Y is pre-isotonic, then f is precontinuous.
(2) If f is precontinuous and (pCl)X is pre-isotonic, then f is preclosure preserving.

Proof. Let f be preclosure preserving and (pCl)Y is pre-isotonic. Let B ⊆ Y .
f((pCl)X(f−1(B)) ⊆ (pCl)Y (f(f

−1(B))) ⊆ (pCl)Y (B) and hence, (pCl)X(f−1(B)) ⊆
f−1(f((pCl)X(f−1(B)))) ⊆ f−1((pCl)Y (B)). Suppose that f is precontinuous and
(pCl)X is pre-isotonic. Let A ⊆ X. (pCl)X(A) ⊆ (pCl)X(A)(f−1(f(A))) ⊆
f−1((pCl)Y (f(A))). Therefore, f((pCl)X(A)) ⊆ f(f−1((pCl)Y (f(A)))) ⊆ (pCl)Y (f(A)).
■

Definition 2.8 Let (X, (pCl)X) and (Y, (pCl)Y ) be generalized preclosure spaces and
let f : X → Y be a function. If for all A,B ⊆ X, f(A) and f(B) are not (pCl)Y -separated
whenever A and B are not (pCl)X -separated, then we say that f is non-pre-separating.
Observe that f is non-pre-separating if and only if A and B are not (pCl)X -separated
whenever f(A) and f(B) are (pCl)Y -separated.

Theorem 2.9 Let (X, (pCl)X) and (Y, (pCl)Y ) be generalized preclosure spaces and let
f : X → Y be a function.
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(1) If (pCl)Y is pre-isotonic and f is non-pre-separating. then f−1(C) and f−1(D) are
(pCl)X -separated whenever C and D are (pCl)Y -separated.
(2) If (pCl)X is pre-isotonic and f−1(C) and f−1(D) are (pCl)X -separated whenever C
and D are (pCl)Y -separated, then f is non-pre-separating.

Proof. Suppose that C and D are (pCl)Y -separated subsets, where (pCl)Y is pre-
isotonic. Let A = f−1(C) and B = f−1(D). f(A) ⊆ C and f(B) ⊆ D and since (pCl)Y
is pre-isotonic, f(A) and f(B) are also (pCl)Y -separated. It follows now that A and
B are (pCl)X -separated in X. Suppose that (pCl)X is pre-isotonic and let A,B ⊆ X
such that C = f(A) and D = f(B) are (pCl)X -separated. Then f−1(C) and f−1(D)
are (pCl)X -separated and since (pCl)X is pre-isotonic, A ⊆ f−1(f(A)) = f−1(C) and
B ⊆ f−1(f(B)) = f−1(D) are (pCl)X -separated as well. ■

Theorem 2.10 Let (X, (pCl)X) and (Y, (pCl)Y ) be generalized preclosure spaces and
let f : X → Y be a function. If f is preclosure preserving, then f is non-pre-separating.

Proof. Suppose that f is preclosure preserving and A,B ⊆ X are not (pCl)X -separated.
Suppose that (pCl)X(A)∩B ̸= ϕ. Then ϕ ̸= f((pCl)X(A)∩B) ⊆ f((pCl)X(A))∩f(B) ⊆
(pCl)Y (f(A)) ∩ f(B). Similarly, if A ∩ (pCl)X(B) ̸= ϕ, then f(A) ∩ (pCl)Y (f(B)) ̸= ϕ.
Hence f(A) and f(B) are not (pCl)Y -separated. ■

Corollary 2.11 Let (X, (pCl)X) and (Y, (pCl)Y ) be generalized preclosure spaces with
(pCl)X pre-isotonic and let f : X → Y be a function. If f is precontinuous, then f is
non-pre-separating.

Proof. If f is precontinuous and (pCl)X) pre-isotonic, then by Theorem 2.9 (2) f is
pre-closure-preserving. Now, by Theorem 2.10, f is non-pre-separating. ■

Theorem 2.12 Let (X, (pCl)X) and (Y, (pCl)Y ) be generalized preclosure spaces which
pre-Exterior points (pCl)Y -separated in Y and let f : X → Y be a function. Then f is
preclosure-preserving if and only if Y is non-pre-separating.

Proof. By Theorem 2.10, if f is preclosure-preserving, then f is non-pre-separating.
Suppose that f is non-pre-separating and let A ⊆ X. If (pCl)X = ϕ, then
f((pCl)X(A)) = ϕ ⊆ (pCl)Y (f(A)).
Suppose (pCl)X(A) ̸= ϕ. Let SX and SY denote the pairs of (pCl)X -separated subsets
of X and the pairs of (pCl)Y -separated subsets of Y , respectively. Let y ∈ f((pCl)X(A))
and let x ∈ (pCl)X(A) ∩ f−1({y}). Since x ∈ (pCl)X(A), {{x}, A} /∈ SX and since f
non-pre-separating, {{y}, f(A)} /∈ SY . Since pre-Exterior points are (pCl)Y -separated,
y ∈ (pCl)Y (f(A)). Thus f((pCl)X(A)) ⊆ (pCl)Y (f(A)) for each A ⊆ X. ■

Corollary 2.13 Let (X, (pCl)X) and (Y, (pCl)Y ) be generalized preclosure spaces which
pre-isotonic closure functions and with (pCl)Y -pointwise-pre-symmetric and let f : X →
Y be a function. Then f is precontinuous if and only if f non-pre-separating.

Proof. Since (pCl)Y is pre-isotonic and pointwise-pre-symmetric, pre-Exterior points
are preclosure separated in (Y, (pCl)Y ) (Theorem 2.3 (1)). Since both pre-closure func-
tions are pre-isotonic, f is preclosure-preserving if and only if f is precontinuous. Hence,
we can apply the Theorem 2.12. ■

3. Preconnected generalized preclosure spaces

Definition 3.1 Let (X, pCl) be generalized preclosure space. X is said to be precon-
nected if X is not a union of disjoint nontrivial preclosure-separated pair of sets.
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Theorem 3.2 Let (X, pCl) be generalized preclosure space with pre-grounded pre-
isotonic pre-enlarging pCl. Then, the following are equivalent:
(1) (X, pCl) is preconnected,
(2) X can not be a union of nonempty disjoint preopen sets.

Proof. (1) ⇒ (2): Let X be a union of nonempty disjoint preopen sets A and B. Then,
X = A∪B and this implies that B = X\A and A is a preopen set. Thus, B is preclosed
and hence A ∩ pCl(B) = A ∩ B = ϕ. By using similar way, we obtain B ∩ pCl(A) = ϕ.
Hence, A and B are preclosure-separated and hence X is not preconnected. This is a
contradiction.
(2) ⇒ (1): Suppose that X is not preconnected. Then X = A∪B, where A,B are disjoin
preclosure-separated sets, i.e. A∪pCl(B) = pCl(A)∩B = ϕ. We have pCl(B) ⊆ X \A ⊆
B. Since pCl is pre-enlarging, we obtain pCl(B) = B and hence, B is preclosed. By
using pCl(A) ∩ B = ϕ and similar way, it is obvious that A is preclosed. But this is a
contradiction. ■

Definition 3.3 Let (X, pCl) be a generalized preclosure space with pre-grounded pre-
isotonic pCl. Then, (X, pCl) is called a T1-pre-grounded pre-isotonic space if pCl({x}) ⊂
{x} for all x ∈ X.

Theorem 3.4 Let (X, pCl) be a generalized preclosure space with λ-grounded pre-
isotonic pCl. Then, the following are equivalent:
(1) (X, pCl) is preconnected,
(2) Any precontinuous function f : X → Y is constant for all T1-pre-grounded pre-
isotonic spaces Y = {0, 1}.

Proof. (1) ⇒ (2): Let X be preconnected. Suppose that f : X → Y is pre-continuous
and it is not constant. Then there exists a set U ⊂ X such that U = f−1({0}) and
X \ U = f−1({1}). Since f is precontinuous and Y is T1-λ-grounded pre-isotonic space,
then we have Clλ(U) = pCl(f−1({0})) ⊂ f−1(pCl({0}) ⊂ f−1({0}) = U and hence
pCl(U) ∩ (X \ U) = ϕ. By using similar way we have U ∩ pCL(X \ U) = ϕ. This is a
contradiction. Thus, f is constant.
(2) ⇒ (1): Suppose that X is not preconnected. Then there exist preclosure-separated
sets U and V such that U ∪ V = X. We have pCl(U) ⊂ U and pCl(V ) ⊂ V and
X\U ⊂ V . Since pCl is pre-isotonic and U and V are preclosure-separated, then pCl(X \
U) ⊂ pCl(V ) ⊂ X \ U . If we consider the space (Y, pCl) by Y = {0, 1}, pCl(ϕ) = ϕ,
pCl({0}) = {0}, pCl({1}) = {1} and pCl(Y ) = Y , then the space (Y, pCl) is a T1-pre-
grounded pre-isotonic space. We define the function f : X → Y as f(U) = {0} and
f(X \ U) = {1}. Let A ̸= ϕ and A ⊂ Y . If A = Y , then f−1(A) = X and hence
pCl(X) = pCl(f−1(A)) ⊂ X = f−1(A) = f−1(pCl(A)). If A = {0}, then f−1(A) = U
and hence pCl(U) = pCl(f−1(A)) ⊂ U = f−1(A) = f−1(pCl(A)). If A = {1}, then
f−1(A) = X \ U and so pCl(X \ U) = pCl(f−1(A)) ⊂ X \ U = f−1(A) = f−1(pCl(A)).
Hence, f is precontinuous. Since f is not constant, this is a contradiction. ■

Theorem 3.5 Let f : (X, pCl) → (Y, pCl) and g : (Y, pCl) → (Z, pCl) be precontinuous
functions. Then, g ◦ f : X → Z is precontinuous.

Proof. Suppose that f and g are precontinuous. For all A ⊂ Z we have pCl(g◦f)−1(A) =
pCl(f−1(g−1(A))) ⊂ f−1(pCl(g−1(A))) ⊂ f−1(g−1(pCl(A))) = (g ◦ f)−1(pCl(A)).
Hence, g ◦ f : X → Z is precontinuous. ■

Theorem 3.6 Let (X, pCl) and (Y, pCl) be generalized preclosure spaces with pre-
grounded pre-isotonic pCl and f : (X, pCl) → (Y, pCl) be a precontinuous function onto
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Y . If X is preconnected, then Y is preconnected.

Proof. Suppose that {0, 1} is a generalized preclosure space with pre-grounded pre-
isotonic pCl and g : Y → {0, 1} is a precontinuous function. Since f is precontinuous,
by Theorem 3.5, g ◦ f : X → {0, 1} is precontinuous. Since X is preconnected, g ◦ f is
constant and hence g is constant. By Theorem 3.4, Y is preconnected. ■

Definition 3.7 Let (Y, pCl) be a generalized preclosure space with pre-grounded pre-
isotonic pCl and more than one element. A generalized preclosure space (X, pCl) with
pre-grounded pre-isotonic pCl is called Y -preconnected if any precontinuous function
f : X → Y is constant.

Theorem 3.8 Let (Y, pCl) be a generalized preclosure space with pre-grounded pre-
isotonic pCl and more than one element. Then every Y -preconnected generalized preclo-
sure space with pre-grounded pre-isotonic is preconnected.

Proof. Let (X, pCl) be a Y -preconnected generalized preclosure space with pre-
grounded pre-isotonic pCl. Suppose that f : X → {0, 1} is a precontinuous function,
where {0, 1} is a T1-pre-grounded pre-isotonic space. Since Y is a generalized pre-closure
space with pre-grounded pre-isotonic pre-enlarging pCl and more than one element, then
there exists a precontinuous injection g : {0, 1} → Y . By Theorem 3.5, g ◦ f : X → Y is
precontinuous. Since X is Y -preconnected, then g ◦f is constant and hence, by Theorem
3.4, X is preconnected. ■

Theorem 3.9 Let (X, pCl) and (Y, pCl) be generalized preclosure spaces with pre-
grounded pre-isotonic pCl and f : (X, pCl) → (Y, pCl) be a precontinuous function onto
Y . If X is Z-preconnected, then Y is Z-preconnected.

Proof. Suppose that g : Y → Z is a precontinuous function. Then g ◦ f : X → Z is
precontinuous. Since X is Z-preconnected, then g ◦ f is constant. This implies that g is
constant. Thus, Y is Z-preconnected. ■

Definition 3.10 A generalized preclosure space (X, pCl) is strongly preconnected if
there is no countable collection of pairwise preclosure-separated sets {An} such that
X = ∪An.

Theorem 3.11 Every strongly preconnected generalized preclosure space with pre-
grounded pre-isotonic pCl is preconnected.

Theorem 3.12 Let (X, pCl) and (Y, pCl) be generalized preclosure spaces with pre-
grounded pre-isotonic pCl and f : (X, pCl) → (Y, pCl) be a precontinuous function onto
Y . If X is strongly preconnected, then Y is strongly preconnected.

Proof. Suppose that Y is not strongly preconnected. Then, there exists a count-
able collection of pairwise preclosure-separated sets {An} such that Y = ∪An. Since
f−1(An) ∩ pCl(f−1(Am)) ⊂ f−1(An) ∩ f−1(pCl(Am)) = ϕ for all n ̸= m, then the col-
lection {f−1(An)} is pairwise preclosure separated. This is a contradiction. Hence, Y is
strongly preconnected. ■

Theorem 3.13 Let (X, (pCl)X) and (Y, (pCl)Y ) be generalized preclosure spaces. Then
the following are equivalent for a function f : X → Y .
(1) f is precontinuous,
(2) f−1(pInt(B)) ⊆ pInt(f−1(B)) for each B ⊆ Y .

Theorem 3.14 Let (X, pCl) be a generalized preclosure space with pre-grounded pre-
isotonic pCl. Then (X, pCl) is strongly preconnected if and only if (X, pCl) is Y -
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preconnected for any countable T1-pre-grounded pre-isotonic space (Y, pCl).

Proof. Let (X, pCl) be strongly preconnected. Suppose that (X, pCl) is not Y -
preconnected for some countable T1-pre-grounded pre-isotonic space (Y, pCl). There ex-
ists a precontinuous function f : X → Y which is not constant and hence K = f(X)
is a countable set with more than one element. For each yn ∈ K, there exists Un ⊂ X
such that Un = f−1({yn}) and hence Y = ∪Un. Since f is precontinuous and Y is
pre-grounded, then for each n ̸= m,Un ∩ pCl(Um) = f−1({yn}) ∩ pCl(f−1({ym})) ⊂
f−1({yn}) ∩ f−1(pCl({ym})) ⊂ f−1({yn}) ∩ f−1({ym}) = ϕ. This contradict with the
strong preconnectedness of X. Thus, X is Y -preconnected. Conversely, let X be Y -
preconnected for any countable T1-pre-grounded pre-isotonic space (Y, pCl). Suppose
that X is not strongly preconnected. There exists a countable collection of pairwise
preclosure-separated sets {Un} such that X = ∪Un. We take the space (Z, pCl), where Z
is the set of integers and pCl : P (Z) → P (Z) is defined by pCl(K) = K for each K ⊂ Z.
Clearly (Z, pCl) is countable T1-pre-grounded pre-isotonic space. Put Uk ∈ {Un}. We
define a function f : X → Z by f(Uk) = {x} and f(X \ Uk) = {y} where x, y ∈ Z
and x ̸= y. Since pCl(Uk) ∩ Un = ϕ for all n ̸= k, then pCl(Uk) ∩ ∪n ̸=kUk = ϕ
and hence pCl(Uk) ⊂ Uk. Let ϕ ̸= K ⊂ Z. If x, y ∈ K then f−1(K) = X and
pCl(f−1(K)) = pCl(X) ⊂ X = f−1(K) = f−1(pCl(K)). If x ∈ K and y /∈ K,
then f−1(K) = Uk and pCl(f−1(K)) = pCl(Uk) ⊂ Uk = f−1(K) = f−1(pCl(K)). If
y ∈ K and x /∈ K, then f−1(K) = X \ Uk. Since pCl(K) = K for each K ⊂ Z, then
pInt(K) = K for each K ⊂ Z. Also, X \ UK ⊂ ∪n ̸=kUn ⊂ X \ pCl(Uk) = pInt(X \ Uk).
Therefore, f−1(pInt(K)) = X \ Uk = f−1(K) ⊂ pInt(X \ Uk) = pInt(f−1(K)). Hence
we obtain that f is precontinuous. Since f is not constant, this is a contradiction with
the Z-preconnectedness of X. Hence, X is strongly preconnected. ■

4. Conclusion

Closure spaces in point-set topology will give some new topological properties (for exam-
ple: separation axioms, compactness, connectedness, continuity) which have been found
to be very useful in the study of certain objects of digital topology [9]. Thus we may
stress once more the importance of preclosure operators as a branch of them and the
possible application in computer graphics [5] and quantum physics [4].
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