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1. Introduction

Ever since the introduction of fuzzy sets by Zadeh [25], the fuzzy concepts has involved
almost all branches of mathematics. One of the most important conclusions of advanced
scientific research into the very basic question related to the quintessence of natural
science and philosophy is that our universe is fundamentally and irreducibly fuzzy. This
notion of fuzziness is central to the work of written and El-Naschie to mention only two
well-known names working on the frontiers of fundamentally and irreducibly fuzzy. This
notion of fuzziness is central to the work of written and El-Naschie to mention only
two well-known names working on the frontiers of fundamental research in quantum
gravity and high energy particle physics. Based on the concept of fuzzy sets, Chang [3]
introduced and developed the concept of fuzzy topological spaces. Since then various
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important notions in the classical topology such as continuous functions [3] have been
extended to fuzzy topological spaces. Fuzzy continuity is one of the main topics in fuzzy
topology. Mukherjee and Debnath [17] has defined fuzzy δ-open set and fuzzy δ-closed
set. In 2006, Ekici [6] introduced fuzzy upper and lower s-limit sets. Seenivasan and
Kamala [20] defined the concepts of fuzzy e-open set and fuzzy e-continuous mappings
in fuzzy topological spaces. The initiations of e-open sets, e∗-open sets, a-open sets, e-
continuity and e-compactness and related studies in topological spaces are due to Ekici
([7–11]).

In this paper, we introduce and study the notions of fuzzy upper e-limit set, fuzzy
lower e-limit set and fuzzy e-continuously convergent functions. Properties and basic
relationships among fuzzy upper e-limit set, fuzzy lower e-limit set and fuzzy e-continuity
are investigated via fuzzy e-open sets.

2. Preliminaries

Most of the concepts, notations and definitions which we have used in this paper are
standard by now. But, for the sake of completeness we recall some definitions and results
used in the sequel. A fuzzy set in X is called a fuzzy point [3] if it takes the value 0 for
all y ∈ X except one, say, x ∈ X. If its value at x is α (0 < α ⩽ 1), we denote this fuzzy
point by xα, where the point x is called its support. A fuzzy point xα for α ∈ I0 is an
element of IX such that

xα(y) =

{
α if y = x,

0 if y ̸= x.

The set of all fuzzy points in X is denoted by Pα(X). A fuzzy point xα is said to be
contained in a fuzzy set µ or to belong to µ, denoted by xα ∈ µ if α ⩽ µ(x). A fuzzy
point xα is said to be quasi-coincident [18] with a fuzzy set µ in X, denoted by xαqµ, if
α+ µ(x) > 1. A fuzzy set µ in a fuzzy topological space X is said to be quasi-coincident
[18] (q-coincident, in short) with a fuzzy set ρ in X, denoted by µqρ, if there exists some
x ∈ X such that µ(x) + ρ(x) > 1. If µ is not q-coincident with ρ, we write µqρ. A fuzzy
set µ in a fuzzy topological space X is called a fuzzy open neighborhood [18] (or a nbd,
for short) of a fuzzy point xα in X if there exists a fuzzy open set v of X such that
xα ∈ v ⩽ µ. The family Nxα

of all nbds of xα is called the system of nbds of xα. A fuzzy
set µ in a fuzzy topological space X is called a fuzzy open Q-neighborhood [18] of a fuzzy
point xα in X if there exists ρ ∈ τ such that xαqρ and ρ ⩽ µ. The family of all fuzzy
open Q-neighborhoods of the fuzzy point xα in X is NQ

xα.

Let λ be a fuzzy subset of a space X. The fuzzy closure of λ and fuzzy interior of λ are
denoted by Cl(λ) and Int(λ), respectively. A fuzzy subset λ of space X is called fuzzy
regular open [1] (resp. fuzzy regular closed) if λ = Int(Cl(λ)) (resp. λ = Cl(Int(λ)).
The fuzzy δ-interior [20] of fuzzy subset λ of X is the union of all fuzzy regular open
sets contained in λ. A fuzzy subset λ is called fuzzy δ-open [13] if λ = δInt(λ). The
complement of fuzzy δ-open set is called fuzzy δ-closed (i.e. λ = δCl(λ)). The fuzzy
δ-closure of λ and the fuzzy δ-interior of λ are denoted by δCl(λ) and δInt(λ). A fuzzy
subset λ of a space X is called fuzzy δ-preopen [2] if λ ⩽ int(δCl(λ)). The complement
of a fuzzy δ-preopen set is called fuzzy δ-pre-closed.

A map f : X → Y is called fuzzy continuous [19] if for each fuzzy point xα in X
and each fuzzy open nbd V of f(xα), there exists fuzzy open nbd U of xα such that
f(U) ⩽ V. A map f : X → Y is called fuzzy continuous [19] if the inverse image of every
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fuzzy open subset of Y is fuzzy open subset of X. FC(X,Y ) denote the family of all
fuzzy continuous functions of an fts X into another fts Y. Let (X, τ) be an fts. A fuzzy
point xα ∈ Cl(µ) [18] if each Q-neighborhood η of xα is quasi-coincident with µ, we have
ηqµ.

Let I be a directed set. Let χ be the collection of all fuzzy points of an ordered set
X. The function S : I → χ is called a fuzzy net [18] in X. For every i ∈ I, S(I) is often
denoted by si and hence, a net S is often denoted by {si : i ∈ I}.

Let S = {si : i ∈ I} be a fuzzy net in X. Then S is said to be quasi-coincident with µ
if for each i ∈ I, si is quasi-coincident with µ. A fuzzy net {gj : j ∈ J} in X, is called a
fuzzy subnet [18] of a fuzzy net {si : i ∈ I} in X if there is a function N : J → I such that
(i) gi = SN(j)

and (ii) for the element i0 ∈ I, there is j0 ∈ J such that if j ⩾ j0, j ∈ J,
then N(j) ⩾ i0. A fuzzy net {S(n) : n ∈ D} in an fts X is said to be fuzzy converges [16]
to xα if for each fuzzy open nbd v of xt there is some n0 ∈ D such that n ⩾ n0 implies
S(n) ∈ v. A fuzzy net {fm : m ∈ M} in FC(X,Y ) is said to be fuzzy continuously
converges [12] to f ∈ FC(X,Y ) if for every xα in X and for every fuzzy open nbd V of
f(xα) in Y there exists an element m0 ∈ M and a fuzzy open nbd U of Xα in X such
that fm(U) ⩽ V, for every m ∈ M, m ⩾ m0. A fuzzy set µ in a fuzzy topological space
X is called a fuzzy e-Q-nbd [22] of a fuzzy point xα in X if there exists a fuzzy e-open
set V in X such that xαqV ⩽ µ. If in addition, µ is fuzzy e-open then µ will be referred
to as a fuzzy e-open Q-nbd of xα. A fuzzy set µ in a fuzzy topological space (X, τ) is
called fuzzy e-neighborhood [22] of a fuzzy point xα if there exists ρ ∈ eO(X) such that
xα ∈ ρ ⩽ µ.

A fuzzy point xα in a fuzzy topological space X is called a fuzzy e-cluster point
[23] of a fuzzy set µ in X if every fuzzy e-q-nbd of xα is q-coincident with µ. The
union of all fuzzy e-cluster points of µ is called the fuzzy e-closure of µ and is denoted
by eCl(µ). A fuzzy set λ in a fuzzy topological space X is called fuzzy e-open [20] if
A ⩽ Int(δCl(A)) ∨ Cl(δInt(A)). The complement of fuzzy e-open set is called fuzzy e-
closed. (i.e. Int(δCl(A))∧Cl(δInt(A)) ⩽ A). Let λ be a fuzzy set of a fuzzy topological
space X. eInt(λ) =

∨
{µ ∈ IX : µ ⩽ λ, µ is a feo set} is called the fuzzy e-interior [20]

of λ. eCl(λ) =
∧
{µ ∈ IX : µ ⩾ λ, µ is a fec set } is called the fuzzy e-closure [20] of λ.

Let f : (X, τ1) → (Y, τ2) be a mapping from a fts (X, τ1) to another (Y, τ2). Then f is
called fuzzy e-continuous [20] iff f−1(λ) is a feo set in X for any fuzzy open set λ in Y.

Theorem 2.1 [23] For a fuzzy topological space X, the following conditions are equiv-
alent:

(i) X is fuzzy e-regular.
(ii) for each fuzzy point xα and each fuzzy e-open set U in X, q-coincident with xα, there

exists a fuzzy open set V in X such that xαqV ⩽ eClV ⩽ U.

3. Fuzzy e-continuously converge

Now, we introduce the following definition.

Definition 3.1 A function f : (X, τ) → (Y, σ) is said to be fuzzy e-continuous if for
every fuzzy point xα in X and for every fuzzy e-q-neighborhood µ of f(xα), there exists
a fuzzy e-q-neighborhood ρ of xα such that f(ρ) ⩽ µ.

The family of all fuzzy e-continuous functions from (X, τ) into (Y, σ) is denoted by
eC(X,Y ).

Definition 3.2 Let (X, τ) be a fuzzy topological space and let {pi : i ∈ I} be a net of
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fuzzy points in X. We say that the fuzzy net {pi : i ∈ I} fuzzy e-converges to a fuzzy
point p of X if for every fuzzy e-q-nbd µ of p in X there exists i0 ∈ I such that piqµ for
every i ∈ I and i ⩾ i0.

Theorem 3.3 Let µ be a fuzzy set of a fuzzy topological space (X, τ). Then, a fuzzy
point xα ∈ eCl(µ) if and only if for every ρ ∈ eO(X) for which xαqρ we have ρqµ.

Proof. The fuzzy point xα ∈ eCl(µ) if and only if xα ∈ ρ for every fuzzy e-closed set
ρ of X for which µ ⩽ ρ. Equivalently, xα ∈ eCl(µ) if and only if α ⩽ 1− ρ(x) for every
fuzzy e-open set ρ for which µ ⩽ 1 − ρ. Thus, xα ∈ eCl(µ) if and only if ρ(x) ⩽ 1 − α,
for every fuzzy e-open set ρ for which ρ ⩽ 1− µ. So, xα ∈ eCl(µ) if and only if for every
fuzzy e-open set ρ of X such that ρ(x) > 1−α we have ρ not less than 1−µ. Therefore,
xα ∈ eCl(µ) if and only if for every fuzzy e-open set ρ of X such that ρ(x) + α > 1 we
have ρqµ. Thus, xα ∈ eCl(µ) if and only if for every fuzzy e-open set ρ of X for which
xαqρ we have ρqµ. ■

Theorem 3.4 Let f : (X, τ) → (Y, σ) be a fuzzy e-continuous function, xα be a fuzzy
point in X and µ, ρ be fuzzy e-q-neighborhoods of xα and f(xα), respectively such that
f(µ) ≰ ρ. Then there exists a fuzzy point xθ in X such that xθqµ and f(xθ)qρ.

Proof. Since f(µ) not less than or equal to ρ, we have µ not less than or equal to
f−1(ρ). Thus, there exists x ∈ Y such that µ(x) > f−1(ρ(x)) or µ(x) − f−1(ρ(x)) > 0
and therefore µ(x)+1−f−1(ρ(x)) > 1 or µ(x)+(f−1(ρ))c(x)) > 1. Let (f−1(ρ))c(x)) = r.
Clearly, for the fuzzy point xα we have xαqµ and xα ∈ (f−1(ρ))c. Hence, for the fuzzy
point xα = xθ, we have xθqµ and f(xθ)qρ. ■

Definition 3.5 A net {fi|i ∈ I} in eC(X,Y ) fuzzy e-continuously converges to f ∈
eC(X,Y ) if and only if for every net {pj |j ∈ J} in X which fuzzy e-converges to a fuzzy
point p in X we have that the fuzzy net {fi(pj)|(i, j) ∈ I × J} fuzzy e-converges to the
fuzzy point f(p) in Y.

Theorem 3.6 A function f : (X, τ) → (Y, σ) is fuzzy e-continuous if and only if for
every fuzzy point xα of X and for every net {pi|i ∈ I} of X which fuzzy e-converges to
xα, the net {f(pi)|i ∈ I} of Y fuzzy e-converges to f(xα).

Proof. Straightforward. ■

Theorem 3.7 A net {fi|i ∈ I} in eC(X,Y ) fuzzy e-continuously converges to f ∈
eC(X,Y ) if and only if for every fuzzy point xα inX and for every fuzzy e-q-neighborhood
ρ of f(xα) in Y there exists an element i0 ∈ I and a fuzzy e-q-neighborhood µ of xα in
X such that fi(µ) ⩽ ρ for every i ∈ I with i ⩾ i0.

Proof. Let xα be a fuzzy point in X and ρ be a e-q-neighborhood of f(xα) in Y such
that for every i ∈ I and for every fuzzy e-q-neighborhood µ of xα in X we can choose a
fuzzy point xµ in X by Theorem 3.4 such that xµqµ and fi(xµ)qρ. Clearly, the fuzzy net
{xµ|µ ∈ N(xα)} fuzzy e-converges to xα, but the fuzzy net {fi(xµ), (µ, i) ∈ N(xα)× I}
does not fuzzy e-converges to f(xα) in Y.

Conversely, let {pj |j ∈ J} be a fuzzy net in eC(X,Y ) which fuzzy e-converges to the
fuzzy point xα in X and let ρ be an arbitrary fuzzy e-q-neighborhood of f(xα) in Y. By
assumption there exists a fuzzy e-q-neighborhood µ of xα in X and an element i0 ∈ I
such that fi(µ) ⩽ ρ for every i ∈ I with i ⩾ i0. Since the fuzzy net {pj |j ∈ J} fuzzy
e-converges to xα in X, there exists j0 ∈ J such that pjqµ, for every j ∈ J with j ⩾ j0,.
Let (i0, j0) ∈ I × J. Then for every (i, j) ∈ I × J, (i, j) ⩾ (i0, j0), we have fi(pj)qfi(µ)
and fi(µ) ⩽ ρ, i.e., fi(pj)qfi(µ) ⩽ ρ. Thus, the fuzzy net {fi(pj)|(i, j) ∈ I × J} fuzzy
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e-converges to f(xα) and the fuzzy net {fi|i ∈ I} fuzzy e-continuously converges to f. ■

Definition 3.8 [21] A fuzzy set µ of a fuzzy topological space X is called fuzzy e-
generalized closed set or fẽ-closed (in short, fegc) if eCl(µ) ⩽ ρ whenever µ ⩽ ρ and ρ
is feo in X.

Definition 3.9 A fuzzy topological space X is called fuzzy e-T1 if every fuzzy point is
fec.

Theorem 3.10 A fuzzy topological space X is fuzzy e-T1 if and only if for each x ∈ X
and each α ∈ [0, 1] there exists a feo set µ such that µ(x) = 1−α and µ(y) = 1 for y ̸= x.

Proof. Assume X is fuzzy e-T1. Let α = 0. and set µ = X. Then µ is feo set such that
µ(x) = 1 − 0 and µ(y) = 1 for y ̸= x. Now, let α ∈ (0, 1], x ∈ X and µ = (xα)

c. Hence
xα is fec and the set µ is feo such that µ(x) = 1− α and µ(y) = 1 for y ̸= x.

Conversely, let xα be an arbitrary fuzzy point of X. We prove that the fuzzy point xα
is fec. By assumption, there exists a feo set µ such that µ(x) = 1 − α and µ(y) = 1 for
y ̸= x. Now, µ(x)+α = 1 implies µ(x)qxα or µ(x)qxcα. Clearly, µ

c = xα. Thus, the fuzzy
point xα is fec and X is fuzzy e-T1. ■

Definition 3.11 A fuzzy topological space X is called fuzzy quasi e-T1 if for any fuzzy
points xα and yβ for which supp(xα) = x ̸= supp(yβ) = y, there exists a feo set µ such
that xα ∈ µ and yβ /∈ µ and another e-open set ρ such that xα /∈ ρ and yβ ∈ ρ.

Definition 3.12 A fuzzy topological spaceX is called a fuzzy e-T2 if for any fuzzy points
xα and yβ for which supp(xα) ̸= supp(yβ), there exists two fuzzy e-q-neighborhoods ρ
and µ of xα and yβ, respectively, such that ρ ∧ µ = 0.

Definition 3.13 [18] A fuzzy point xα is called weak (resp. strong) if α ⩽ 1
2 (resp.

α > 1
2).

Theorem 3.14 If X is a fuzzy quasi e-T1 fuzzy topological space and xα a weak fuzzy
point in X, then (xα)

c is a fuzzy e-neighborhood of each fuzzy point yβ with x ̸= y.

Proof. Let x ̸= y, xα and yβ be fuzzy points of X. Since X is fuzzy quasi e-T1, there
exists a fuzzy e-open set µ of X such that yβ ∈ µ and xα /∈ µ. This implies that
α > µ(x). Since xα is a weak fuzzy point, α ⩽ 1

2 . Thus µ(x) < α ⩽ 1
2 implies µ(x) ⩽ 1

2 .
So, µ(x) = 1 − α. Therefore, µ(y) ⩽ 1 = (xα)

c(y) for every y ∈ X\{x}. Consequently,
µ ⩽ (xα)

c and the fuzzy point (xα)
c is a fuzzy e-neighborhood of yβ. ■

Definition 3.15 A fuzzy topological space X is called a fuzzy e-regular if there exists
µ, η ∈ eO(X) such that xα ∈ µ, ρ ⩽ η and µ∧ η = 0 for any fuzzy point xα and a fuzzy
e-closed set ρ not containing xα.

Theorem 3.16 If X is a fuzzy e-regular space, then there exists a fuzzy e-open set ρ
containing xα such that eCl(ρ) ⩽ µ for any strong fuzzy point xα and any fuzzy e-open
set µ containing xα.

Proof. Suppose that xα be any strong fuzzy point contained in µ ∈ eO(X). Then
xα ∈ µ. Since α is strong fuzzy point, α > 1

2 and xα ∈ ρ. Then 1
2 < α ⩽ ρ(x). Thus, the

complement of µ; that is, the set µc is a fuzzy e-closed set which does not contain the
fuzzy point xα. Since X is a fuzzy e-regular space, there exists ρ, η ∈ eO(X) such that
xα ∈ ρ and µc ⩽ η with ρ ∧ η = 0. Hence, we have ρ ⩽ ηc and eCl(ρ) ⩽ eCl(ηc) = ηc.
Now, µc ⩽ η implies ηc ⩽ µ. This means that eCl(ρ) ⩽ µ which completes the proof. ■
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Theorem 3.17 If X is a fuzzy e-regular space, then the strong fuzzy points in X are
fuzzy eg-closed.

Proof. Let xα be any strong fuzzy point in X and µ be a fuzzy e-open set such that
xα ∈ µ. By Theorem 3.16, there exists ρ ∈ eO(X) such that xα ∈ ρ and eCl(ρ) ⩽ µ. We
have eCl(xα) ⩽ eCl(ρ) ⩽ µ. Thus, eCl(xα) ⩽ µ whenever xα ∈ µ (µ is fuzzy e-open).
Hence, the fuzzy point xα is fuzzy eg-closed. ■

Definition 3.18 A fuzzy topological space X is called a weakly fuzzy e-regular if for
any weak fuzzy point xα and a fuzzy e-closed set ρ not containing xα, there exists
µ, η ∈ eO(X) such that xα ∈ µ, ρ ⩽ η and µ ∧ η = 0.

Definition 3.19 A fuzzy set µ in a fuzzy topological space X is said to be fuzzy e-nearly
crisp if eCl(µ) ∧ (eCl(µ))c = 0.

Theorem 3.20 Let X be a fuzzy topological space. If for any weak fuzzy point xα and
µ ∈ eO(X) containing xα, there exists a fuzzy e-open and e-nearly crisp fuzzy set ρ
containing xα such that eCl(ρ) ⩽ µ, then X is weakly fuzzy e-regular.

Proof. Assume that η is a fuzzy e-closed set not containing the weak fuzzy point xα.
Then ηc is a fuzzy e-open set containing xα. By hypothesis, there exists a fuzzy e-open
and e-nearly crisp fuzzy set ρ such that xα ∈ ρ and eCl(ρ) ⩽ ηc. We set γ = eInt(eCl(ρ))
and µ = 1 − eCl(ρ). Then γ is fuzzy e-open, xα ∈ γ and η ⩽ µ. We are going to prove
that µ∧ γ = 0. Now assume that there exists y ∈ X such that (γ ∧ µ)(y) = α ̸= 0. Then
yα ∈ γ ∧ µ and so, yα ∈ γ and yα ∈ µ. Hence, yα ∈ eCl(ρ) and yα ∈ (eCl(ρ))c. This is
a contradiction, since ρ is fuzzy e-nearly crisp. Therefore, µ ∧ γ = 0. Hence, X is fuzzy
e-regular. ■

Definition 3.21 Let µ be a fuzzy set of a fuzzy topological space X. A fuzzy point xα
is called a e-boundary point of a fuzzy set µ if and only if xα ∈ eCl(µ) ∧ (1 − eCl(µ)).
We denote the fuzzy set eCl(µ) ∧ (1− eCl(µ)) by e-bd(µ).

Theorem 3.22 LetX be a fuzzy topological space. Suppose that xα and yβ be weak and
strong fuzzy points, respectively. If xα is fuzzy e-generalized closed, then yβ ∈ eCl(xα) ⇒
xα ∈ eCl(yβ).

Proof. Suppose that yβ ∈ eCl(xα) and xα /∈ eCl(yβ). Then eCl(yβ) < α. Also α ⩽ 1
2 .

Thus, eCl(yβ)(x) ⩽ 1 − α and α ⩽ 1 − eCl(yβ)(x). So xα ∈ (eCl(yβ))
c. But xα is

fuzzy e-generalized closed and (eCl(yβ))
c is fuzzy e-open. Hence, eCl(xα) ⩽ ((eCl(yβ))

c.
By assumption, we have yβ ∈ eCl(xα). Thus, yβ ∈ (eCl(yβ))

c. We prove that this is a
contradiction. Indeed, we have

β ⩽ 1− eCl(yβ)(y) or eCl(yβ)(y) ⩽ 1− β.

Also, yβ ∈ eCl(yβ). Thus, β ⩽ 1− β. But yβ is a strongly fuzzy point; that is, β > 1
2 . So

the above relation β ⩽ 1− β is a contradiction. Hence, xα ∈ eCl(yβ). ■

Theorem 3.23 Let µ be a fuzzy set of a fuzzy topological space X. Then µ∨ e-bd(µ) ⩽
eCl(µ).

Proof. Let xα ∈ µ ∨ e-bd(µ). Then xα ∈ µ or xα ∈ e-bd(µ). If xα ∈ e-bd(µ), then
xα ∈ eCl(µ). Let us suppose that xα ∈ µ. We have

eCl(µ) =
∧

{ρ : µ ⩽ ρ and ρ is fec}.



A. Vadivel and B. Vijayalakshmi / J. Linear. Topological. Algebra. 07(01) (2018) 39-51. 45

So if xα ∈ µ, then xα ∈ ρ, for any fec set ρ of X for which µ ⩽ ρ and xα ∈ eCl(µ). ■

Definition 3.24 A fuzzy point xα in a fuzzy topological space X is said to be:

(i) well fuzzy e-closed if there exists yβ ∈ eCl(xα) such that supp(xα) ̸= supp(yβ);
(ii) just fuzzy e-closed if the fuzzy set eCl(xα) is again a fuzzy point.

Clearly, in a fuzzy e-T1 space every fuzzy point is just fec.

Theorem 3.25 If X is a fuzzy topological space and xα is a fuzzy e-generalized closed
but well e-closed fuzzy point, then X is not fuzzy quasi e-T1.

Proof. Let X be a fuzzy quasi e-T1 space. By the fact that xα is fuzzy well e-closed,
there exists a fuzzy point yβ with supp(xα) ̸= supp(yβ) such that yβ ∈ eCl(xα). Then
there exists µ ∈ eO(X) such that xα ∈ µ and yβ /∈ µ. Therefore, eCl(xα) ⩽ µ and yβ ∈ µ.
But this is a contradiction and hence X cannot be fuzzy quasi e-T1 space. ■

Theorem 3.26 Let X be a fuzzy topological space. If xα and xβ are two fuzzy points
such that α < β and xβ is fuzzy e-open, then xα is just fuzzy e-closed if it is fuzzy
eg-closed.

Proof. We prove that the fuzzy set eCl(xα) is again a fuzzy point. We have α < β,
i.e xα ∈ xβ and the fuzzy set xβ is fuzzy e-open. Since xα is fuzzy eg-closed, we have
eCl(xα) ⩽ xβ. Thus, eCl(xα)(x) ⩽ β and eCl(xα)(z) ⩽ 0, for every z ∈ X\{x}. So the
fuzzy set eCl(xα) is a fuzzy point. ■

4. Fuzzy upper and lower e-limit sets

Definition 4.1 Let {µi : i ∈ I} be a net of fuzzy sets in a fuzzy topological space X.
Then, by eF limI(µi), we denote fuzzy upper e-limit of the net {µi : i ∈ I} in X; that is,
the fuzzy set which is the union of all fuzzy points xα in X such that for every i0 ∈ I and
for every fuzzy e-q-neighborhood µ of xα in X there exists an element i ∈ I for which
i ⩾ i0 and µiqµ. In other case, we get eF limI(µi) = 0.

Theorem 4.2 Let {µi : i ∈ I} and {ρi : i ∈ I} be two nets of fuzzy sets in X. Then the
following properties hold:

(i) The fuzzy upper e-limit is fuzzy e-closed,
(ii) eF limI(µi) = eF limI(eCl(µi)),
(iii) If µi = µ for every i ∈ I, then eF limI(µi) = eCl(µ),
(iv) The fuzzy upper e-limit is not affected by changing a finite number of the µi,
(v) If µi ⩽ ρi for every i ∈ I, then eF limI(µi) ⩽ eF limI(ρi),
(vi) eF limI(µi) ⩽ eCl(

∨
{µi : i ∈ I}),

(vii) eF limI(µi ∨ ρi) = eF limI(µi) ∨ eF limI(ρi),
(viii) eF limI(µi ∧ ρi) ⩽ eF limI(µi) ∧ eF limI(ρi).

Proof. (i) It is sufficient to prove that eCl(eF limI(µi)) ⩽ eF limI(µi). Let xα ∈
eCl(eF limI(µi)) and µ be an arbitrary fuzzy e-open q-neighborhood of xα. Then, we have,
µqeF limI(µi). Hence, there exists an element x1 ∈ X such that µ(x1)+eF limI(µi)(x

1) >
1. Let eF limI(µi)(x

1) = α. Then, for the fuzzy point x1α in X, we have x1αqµ and
x1α ∈ eF limI(µi). Thus, for every element i0 ∈ I, there exists i ∈ I with i ⩾ i0 such that
µiqµ. This means that xα ∈ eF limI(µi).

(ii) Clearly, it is sufficient to prove that for every e-open set µ the condition µqµi

is equivalent to µqeCl(µi). Let µqµi. Then there exists an element x ∈ X such that
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µ(x) + µi(x) > 1. Since, µi ⩽ eCl(µi), we have µ(x) + eCl(µi)(x) > 1 and therefore
µqeCl(µi). Conversely, let µqeCl(µi). Then there exists an element x ∈ X such that
µ(x) + eCl(µi)(x) > 1. Let eCl(µi(x)) = r. Then xr ∈ eCl(µi) and the fuzzy e-open set
µ is a fuzzy e-q-neighborhood of xr. Hence, µqµi.

(iii) If µi = µ for every i ∈ I, then by (ii) and Theorem 4.1 of [15],

eF limI(µi) = eF limI(eCl(µi)) = eF limI(eCl(µ)) = eCl(µ).

(iv) It follows from Definition 4.1.
(v) It is obvious.
(vi) Let xr ∈ eF limI(µi) and µ be a fuzzy e-q-neighborhood of xr in X. Then for every

i0 ∈ I there exists i ∈ I with i ⩾ i0 such that µiqµ and therefore
∨
{µi : i ∈ I}qµ. Thus,

xr ∈ eCl(
∨
{µi : i ∈ I}).

(vii) Clearly, µi ⩽ µi∨ρi and ρi ⩽ µi∨ρi for every i ∈ I. Hence, by (v), eF limI(µi) ⩽
eF limI(µi ∨ ρi) and eF limI(ρi) ⩽ eF limI(µi ∨ ρi). Thus, eF limI(µi) ∨ eF limI(ρi) ⩽
eF limI(µi ∨ ρi). Conversely, let xr ∈ eF limI(µi ∨ ρi). We prove that xr ∈ eF limI(µi) ∨
eF limI(ρi). Let us suppose that xr /∈ eF limI(µi)∨eF limI(ρi). Then xr /∈ eF limI(µi) and
xr /∈ eF limI(ρi). Hence, there exists a fuzzy e-q-neighborhood µ1 of xr and an element
i1 ∈ I such that µiqµ1, for every i ∈ I, i ⩾ i1. Also, there exists a fuzzy e-q-neighborhood
µ2 of xr and an element i2 ∈ I such that ρiqµ2, for every i ∈ I, i ⩾ i2. Let µ = µ1∨µ2 and
i0 ∈ I such that i0 ⩾ i1 and i0 ⩾ i2. Then the fuzzy set µ is a fuzzy e-q-neighborhood
of xr and (µi ∨ ρi)qµ for every i ∈ I, i ⩾ i0. Since, xr ∈ eF limI(µi ∨ ρi), this is a
contradiction. Thus, xr ∈ eF limI(µi) ∨ eF limI(ρi).

(viii) Straightforward. ■

Theorem 4.3 Let {µi : i ∈ I} be a net of fuzzy sets in X. Then we have eF limI(µi) =∧
{eCl(

∨
{µi : i ⩾ i0}) : i0 ∈ I}.

Proof. Let xr ∈ eF limI(µi) and i0 ∈ I. We prove that xr ∈ {eCl(
∨
{µi : i ⩾ i0}) : i0 ∈

I}. Let µ be an arbitrary fuzzy e-q-neighborhood of xr in X. Then there exists i ∈ I with
i ⩾ i0 such that µqµi. Thus, µq

∨
{µi : i ⩾ i0} and xr ∈ {eCl(

∨
{µi : i ⩾ i0}) : i0 ∈ I}.

Conversely, let xr ∈
∧
{eCl(

∨
{µi : i ⩾ i0}) : i0 ∈ I}. Then we have xr ∈ eCl(

∨
{µi :

i ⩾ i0}), for every i0 ∈ I. We prove that xr ∈ eF limI(µi). Let µ be an arbitrary fuzzy
e-q-neighborhood of xr in X and let i0 ∈ I. Then, µq

∨
{µi : i ⩾ i0}. We prove that there

exists i ∈ I, i ⩾ i0 such that µiqµ. Let us suppose that µqµi, for every i ∈ I, i ⩾ i0.
Then, for every i ∈ I, i ⩾ i0 and for every x ∈ X we have µ(x)+µi(x) ⩽ 1 and therefore

µ(x) + (
∨

{µi : i ⩾ i0}(x)) ⩽ 1,

which is a contradiction. Thus µqµi. Hence, xr ∈ eF limI(µi). ■

Theorem 4.4 Let {µi : i ∈ I} be a net of fuzzy e-closed sets in X such that µi1 ⩽ µi2

if and only if i2 ⩽ i1. Then eF limI(µi) =
∧
{µi : i ∈ I}.

Proof. Let xr ∈
∧
{µi : i ∈ I}. Then xr ∈ µi or r ⩽ µi(x) for every i ∈ I. Let i0 ∈ I and

µ be a fuzzy e-q-neighborhood of xr, that is, r + µ(x) > 1. Then there exists i ∈ I with
i ⩾ i0 such that µi(x)+µ(x) ⩾ r+µ(x) > 1. Hence, µiqµ and therefore xr ∈ eF limI(µi).

Conversely, let xr ∈ eF limI(µi) and let xr /∈ {µi : i ∈ I}. Then there exists i0 ∈ i
such that xr /∈ µi0 , that is, r > µi0(x). Let µ = µc

i0
. This implies xr ∈ µc

i0
. Then µ is a

fuzzy e-q-neighborhood of xr in X and for every i ⩾ i0, µqµi, which is a contradiction.
Therefore, xr ∈

∧
{µi : i ∈ I}. ■
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Theorem 4.5 A net {fi : i ∈ I} in eC(X,Y ) fuzzy e-continuously converges to f ∈
eC(X,Y ) if and only if eF limI(f

−1
i (β)) ⩽ f−1(β) for every fuzzy e-closed subset β of Y.

Proof. Let {fi : i ∈ I} be a net in eC(X,Y ), which fuzzy e-continuously converges
to f and β be an arbitrary fuzzy e-closed subset of Y. Let xr ∈ eF limI(f

−1
i (µ)) and µ

be an arbitrary fuzzy e-q-neighborhood of f(xr) in Y. Since the net {fi : i ∈ I} fuzzy
e-continuously converges to f, there exists a fuzzy e-q-neighborhood ρ of xr in X and
an element i0 ∈ I such that fi(ρ) ⩽ µ for every i ∈ I with i ⩾ i0 by Theorem 3.7. On
the other hand, there exists an element i ⩾ i0 such that ρqf−1

i (β). Hence, fi(ρ)qβ and
therefore µqβ. This means that f(xr) ∈ eCl(β) = β. Thus xr ∈ f−1(β).

Conversely, let {fi : i ∈ I} be a net in eC(X,Y ) and f ∈ eC(X,Y ) such that
eF limI(f

−1
i (β)) ⩽ f−1(β) for every fuzzy e-closed subset β of Y. We prove that the net

{fi : i ∈ I} fuzzy e-continuously converges to f. Let xr be a fuzzy point of X and µ be a
fuzzy e-q-neighborhood of f(xr) in Y. Since xr /∈ f−1(µ) we have xr /∈ eF limI(f

−1
i (β)),

where β = µc. This means that, there exists an element i0 ∈ I and a fuzzy e-q-
neighborhood ρ of xr in X such that f−1

i (β)qρ for every i ∈ I with i ⩾ i0. Then we

have ρ ⩽ (f−1
i (β))c = f−1

i (βc) = f−1
i (µ) and therefore, fi(ρ) ⩽ µ for every i ∈ I with

i ⩾ i0; that is, the net {fi : i ∈ I} fuzzy e-continuously converges to f. ■

Theorem 4.6 The following properties hold:

(i) If {fi|i ∈ I} is a net in eC(X,Y ) such that fi = f for every i ∈ I, then the {fi|i ∈ I}
fuzzy e-continuously converges to f ∈ eC(X,Y ).

(ii) If {fi|i ∈ I} is a net in eC(X,Y ) which fuzzy e-continuously converges to f ∈ eC(X,Y )
and {gi|i ∈ J} be a subnet of {fi|i ∈ I}, then the net {gi|i ∈ J} fuzzy e-continuously
converges to f.

(iii) If {fi|i ∈ I} is a net in eC(X,Y ) which does not fuzzy e-continuously converges to
f ∈ eC(X,Y ), then there exists no subset of {fi|i ∈ I}, which fuzzy continuously
converges to f.

Proof. (i) and (ii) are obvious. Now, we prove (iii).
(iii) Since the fuzzy net {fi : i ∈ I} does not fuzzy e-continuously converges to f by
Theorem 4.5, there exits a fuzzy e-closed set β ∈ Y such that eF limI(f

−1
i (β)) ≰ f−1(β).

Hence, there exists x ∈ X such that

f−1(β)(x) ⩽ eF limI(f
−1
i (β))(x).

Let f−1(β)(x) = r. Then, for the fuzzy point xr, we have xr ∈ f−1(β) and therefore,
xr ∈ eF limI(f

−1
i (β)). Let µ be an arbitrary fuzzy open q-neighborhood of xr in X. Let

N = I ×N(xr) and ϕ be a map of N into I defined as follows: If n = (i, µ) ∈ N, then
by ϕ(n) we denote an element i0 of I such that i0 ⩾ i and f−1

i (β)qµ. Clearly, the net
{gn = fϕ(n) : n ∈ N} is a subnet of {fi : i ∈ I}. Let {ht : t ∈ T} be an arbitrary subnet of
{gn : n ∈ N}. We prove that the net {ht : t ∈ T} does not fuzzy e-continuously converge
to f. Obviously, for this it is sufficient to prove that xr ∈ eF limI(h

−1
t (β)). Since the net

{ht : t ∈ T} is a subnet of {gn : n ∈ N}, there exists a map χ : T → N such that
(i) ht = gχ(t), ∀t ∈ T and
(ii) For every element n1 ∈ N, there exists t ∈ T such that if t ∈ T, t ⩾ t1, then

χ(t) ⩾ n1.
Now, let t0 ∈ T and µ be an arbitrary fuzzy open q-neighborhood of xr in X. We prove

that there exists t ∈ T with t ⩾ t0 such that h−1
t (β)qµ. Indeed, let χ(t0) = n0 = (i0, µ0),

γ = µ ∧ µ0 and n1 = (i0, γ0). Then there exists an element t1 ∈ T, t1 ⩾ t0 such that if
t ∈ T, t ⩾ t1, then χ(t) ⩾ n1 ⩾ n0. Let t ∈ T, t ⩾ t1 and χ(t) = n = (i, ρ). Then
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(iii) h−1
t (β) = g−1

χ(t)(β) = f−1
ϕ(χ(t))(β).

(iv) f−1
ϕ(χ(t))(β) q ρ.

Since χ(t) = n = (i, ρ) ⩾ n1 = (i0, γ0) we have that ρ ⩽ γ0 ⩽ µ. By the above relation
and by relations (iii) and (iv), we have that h−1

t (β)qρ and h−1
t (β)qµ, where t ∈ T with

t ⩾ t0. Thus, xr ∈ eF limI(h
−1
t (β)). ■

Definition 4.7 Let {µi : i ∈ I} be a net of fuzzy sets in a fuzzy topological space X.
Then, by eF limI(µi), we denote the fuzzy lower e-limit of the net {µi : i ∈ I} in X;
that is, the fuzzy set which is the union of all fuzzy points xr in X such that for every
fuzzy e-q-neighborhood µ of xr in X there exists an element i0 ∈ I such that µiqµ for
every i ∈ I and i ⩾ i0. In other case, we get eF limI(µi) = 0.

Theorem 4.8 For the fuzzy upper and lower e-limits, we have eF limI(µi) ⩽ eF limI(µi).

The proof follows from Definitions 4.1 and 4.7.

Theorem 4.9 Let {µi : i ∈ I} be a net of fuzzy sets in X such that µi1 ⩽ µi2 if and
only if i1 ⩽ i2. Then eCl(

∨
{µi : i ∈ I}) = eF limI(µi).

Proof. Let xr ∈ eCl(
∨
{µi : i ∈ I}) and µ be a fuzzy e-q-neighborhood of xr in X.

Then µq
∨
{µi : i ∈ I}. Hence, there exists an element i0 ∈ I such that µqµ0. By

assumption, we have µqµi for every i ∈ I with i ⩾ i0. Thus, xr ∈ eF limI(µi). This
implies eCl(

∨
{µi : i ∈ I}) ⩽ eF limI(µi).

Conversely, let xr ∈ eF limI(µi) and µ be an arbitrary fuzzy e-q-neighborhood of xr in
X. Then there exists an element i0 ∈ I such that µqµi for every i ∈ I with i ⩾ i0. Hence,
µq

∨
{µi : i ∈ I} and therefore xr ∈ eCl(

∨
{µi : i ∈ I}). Thus eF limI(µi) ⩽ eCl(

∨
{µi :

i ∈ I}). Hence eF limI(µi) = eCl(
∨
{µi : i ∈ I}). ■

Theorem 4.10 Let {µi : i ∈ I} and {ρi : i ∈ I} be two nets of fuzzy sets in X. Then
the following properties hold:

(i) The fuzzy lower e-limit is fuzzy e-closed,
(ii) eF limI(µi) = eF limI(eCl(µi)),
(iii) IF µi = µ for every i ∈ I, then eF limI(µi) = eCl(µ),
(iv) The fuzzy lower e-limit is not affected by changing a finite number of the µi,
(v) If µi ⩽ ρi for every i ∈ I, then eF limI(µi) ⩽ eF limI(ρi),
(vi) eF limI(µi) ⩽ eCl(∨{µi : i ∈ I}),
(vii) eF limI(µi ∨ ρi) ⩾ eF limI(µi) ∨ eF limI(ρi),
(viii) eF limI(µi ∧ ρi) ⩽ eF limI(µi) ∧ eF limI(ρi),
(ix) ∧{µi : i ∈ I} ⩽ eF limI(µi),
(x) ∨{∧{µi : i ⩾ i0} : i0 ∈ I} ⩽ eF limI(µi).

Proof. (i) It is sufficient to prove that eCl(eF limI(µi)) ⩽ eF limI(µi). Let xα ∈
eCl(eF limI(µi)) and let µ be an arbitrary fuzzy e-open q-neighborhood of xα. Then
we have µqeF limI(µi). Hence, there exists an element x1 ∈ X such that µ(x1) +
eF limI(µi)(x

1) > 1. Let eF limI(µi)(x
1) = α. Then, for the fuzzy point x1α in X, we

have x1αqµ and x1α ∈ eF limI(µi). Thus, for every element i0 ∈ I, there exists i ⩾ i0, i ∈ I
such that µiqµ. This means that xα ∈ eF limI(µi).

(ii) and (iii) are similar to Theorem 4.2. (iv) follows from the Definition 4.7. (v) is
obvious.

(vi) Let xr ∈ eF limI(µi) and let µ be a fuzzy e-q-neighborhood of xr in X. Then, for
every i0 ∈ I, there exists i ∈ I with i ⩾ i0 such that µiqµ and therefore

∨
{µi : i ∈ I}qµ.

Thus, xr ∈ eCl(
∨
{µi : i ∈ I}).
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(vii) Let xr ∈ eF limI(µi)
∨

eF limI(ρi). Then either xr ∈ eF limI(µi) or xr ∈
eF limI(ρi). Let xr ∈ eF limI(µi). Then, for every fuzzy e-q-neighborhood µ of xr in
X, there exists an element i0 ∈ I such that µiqµ, for every i ∈ I, i ⩾ i0. Also µi ⩽ µi∨ρi.
Thus, (µi ∨ ρi)qµ for every i ∈ I, i ⩾ i0 and therefore, xr ∈ eF limI(µi ∨ ρi).

(viii) Let xr ∈ eF limI(µi
∧

ρi). Then, for every fuzzy e-q-neighborhood µ of xr in X,
there exists an element i0 ∈ I such that µiqµ for every i ∈ I with i ⩾ i0. Also, µi∧ρi ⩽ µi

and µi∧ρi ⩽ ρi. By (v), eF limI(µi
∧

ρi) ⩽ eF limI(µi) and eF limI(µi
∧

ρi) ⩽ eF limI(ρi).
Thus, eF limI(µi ∧ ρi) ⩽ eF limI(µi) ∧ eF limI(ρi).

(ix) Let xr ∈
∧
{µi : i ∈ I}. We prove that xr ∈ eF limI(µi). Let us suppose that

xr /∈ eF limI(µi). Then there exists a fuzzy e-q-neighborhood µ of xr such that for every
i ∈ I there exists i0 ⩾ i for which µiqµ. This means that µi0(x) + µ(x) ⩽ 1 for every
x ∈ X. Now, since xr ∈

∧
{µi : i ∈ I} and µ is a fuzzy e-q-neighborhood of xr we have

r ⩽ µi(x) for every i ∈ I and r + µ(x) > 1. Thus, µi(x) + µ(x) > 1, for every i ∈ I. By
the above, this is a contradiction. Hence, xr ∈ eF limI(µi).

(x) Let xr ∈ {
∧
{µi : i ⩾ i0} : i0 ∈ I}. Then there exists i0 ∈ I such that xr ∈

∧
{µi :

i ⩾ i0}. Hence, xr ∈ µi for every i, i ⩾ i0 and therefore, r ⩽ µi(x) for every i ∈ I with
i ⩾ i0. We prove that xr ∈ eF limI(µi). Let µ be an arbitrary fuzzy e-q-neighborhood of
xr in Y. Then we have xrqµ or equivalently r+µ(x) > 1. Since r ⩽ µi(x), for every i ∈ I
with i ⩾ i0 we have that µi(x) + µ(x) > 1 for every i ∈ I with i ⩾ i0. Thus, µiqµ for
every i ∈ I with i ⩾ i0 and therefore, xr ∈ eF limI(µi). ■

Definition 4.11 A net {µi : i ∈ I} of fuzzy sets in a fuzzy topological space X is said
to be fuzzy e-convergent to the fuzzy set µ if eF limI(µi) = eF limI(µi) = µ. We write
eF -limI(µi) = µ.

Theorem 4.12 Let {µi : i ∈ I} be a e-convergent net of fuzzy sets in X.

(i) If µi1 ⩾ µi2 for i1 ⩽ i2, then eF limI(µi) =
∧
{eCl(µi) : i ∈ I}.

(ii) If µi1 ⩽ µi2 for i1 ⩽ i2, then eF limI(µi) = eCl(
∨
{µi : i ∈ I}).

Proof. (i) By Theorems 4.2, 4.4 and 4.10, we have∧
{eCl(µi) : i ∈ I} ⩽ eF limI(eCl(µi))

= eF limI(µi)

⩽ eF limI(µi)
= eF limI(eCl(µi))
=

∧
{eCl(µi) : i ∈ I}.

Thus, eF limI(µi) =
∧
{eCl(µi) : i ∈ I}.

(ii) By Theorem 4.2 and 4.9, we have

eCl(
∨
{µi : i ∈ I}) = eF limI(µi)

⩽ eF limI(µi)
⩽ eCl(

∨
{µi : i ∈ I}).

Thus, eF limI(µi) = eCl(
∨
{µi : i ∈ I}). ■

Theorem 4.13 Let {µi : i ∈ I} and {ρi : i ∈ I} be two e-convergent net of fuzzy sets
in X. Then the following properties hold:

(i) If µi ⩽ ρi for every i ∈ I, then eF limI(µi) ⩽ eF limI(ρi),
(ii) eF limI(µi ∨ ρi) = eF limI(µi) ∨ eF limI(ρi),
(iii) eCl(eF limI(µi)) = eF limI(µi) = eF limI(eCl(µi)),
(iv) If µi = µ for every i ∈ I, then eF limI(µi) = eCl(µ).
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Proof. (i) follows by Theorems 4.2 and 4.10.
(ii) By Theorem 4.2 and 4.10, we have

eF lim
I
(µi ∨ ρi) = eF lim

I
(µi) ∨ eF lim

I
(ρi)

⩽ eF lim
I
(µi) ∨ eF lim

I
(ρi)

⩽ eF lim
I
(µi ∨ ρi)

⩽ eF lim
I
(µi ∨ ρi)

= eF lim
I
(µi) ∨ eF lim

I
(ρi).

Thus, eF limI(µi ∨ ρi) = eF limI(µi) ∨ eF limI(ρi).
(iii) Take µ = eF limI(µi) = eCl(µ). Then, by Theorem 4.10 (iii), eF limI(µi) =

eCl(µ). This implies eCl(eF limI(µi)) = eF limI(µi). Then, by Theorem 4.10 (ii),
eF limI(µi) = eF limI(eCl(µi)). This implies that eF limI(µi) = eF limI(eCl(µi)).

(iv) follows by Theorems 4.2 and 4.10. ■

Theorem 4.14

(i) Let µ1, µ ∈ IX and µ2, ρ ∈ IY . If (µ1 × µ2)q(µ× ρ), then µ1qµ and µ2qρ.
(ii) Let µ1 and µ2 be fuzzy e-q-neighborhoods of xr and yr in X and Y respectively. Then

the fuzzy set µ1 × µ2 is a fuzzy e-q-neighborhood of (x, y)r in X × Y.

Theorem 4.15 Let {µi : i ∈ I} and {ρi : i ∈ I} be two nets of fuzzy sets in X. Then
the following properties hold:

(i) eF limI(µi × ρi) ⩽ eF limI(µi)× eF limI(ρi).
(ii) eF limI(µi × ρi) ⩽ eF limI(µi)× eF limI(ρi).
(iii) If {µi : i ∈ I} and {ρi : i ∈ I} are e-convergent nets, then eF limI(µi × ρi) ⩽

eF limI(µi)× eF limI(ρi).

Proof. (i) Let (x, y)r ∈ eF limI(µi × ρi). We must prove that (x, y)r ∈ eF limI(µi) ×
eF limI(ρi) or equivalently r ⩽ (eF limI(µi) × eF limI(ρi))(x, y). Let i0 ∈ I, µ1 be an
arbitrary fuzzy e-q-neighborhood of xr in X and µ2 be a constant fuzzy e-q-neighborhood
of yr in Y. Then the fuzzy set µ1 × µ2 is a fuzzy e-q-neighborhood of (x, y)r in X × Y.
Hence, there exists i ∈ I with i ⩾ i0 such that (µ1 × µ2)q(µi × ρi), we have µ1qµi and
µ2qρi. Thus, xr ∈ eF limI(µi). Similarly, we can prove that yr ∈ eF limI(ρi). Hence,
(x, y)r ∈ eF limI(µi)× eF limI(ρi).

(ii) Let (x, y)r ∈ eF limI(µi × ρi). We must prove that (x, y)r ∈ eF limI(µi) ×
eF limI(ρi) or equivalently r ⩽ (eF limI(µi) × eF limI(ρi))(x, y). Let i0 ∈ I, µ1 be an
arbitrary fuzzy e-q-neighborhood of xr in X and µ2 be a constant fuzzy e-q-neighborhood
of yr in Y. Then, the fuzzy set µ1 × µ2 is a fuzzy e-q-neighborhood of (x, y)r in X × Y.
Hence, there exists i ∈ I with i ⩾ i0 such that (µ1 × µ2)q(µi × ρi) and we have µ1qµi

and µ2qρi. Thus, xr ∈ eF limI(µi). Similarly, we can prove that yr ∈ eF limI(ρi). Hence,
(x, y)r ∈ eF limI(µi)× eF limI(ρi).

(iii) Since {µi : i ∈ I} and {ρi : i ∈ I} are e-convergent nets, eF limI(µi) = eF limI(µi)
and eF limI(ρi) = eF limI(ρi). Also, eF limI(µi × ρi) = eF limI(µi × ρi). Thus (iii)
proved. ■
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5. Conclusion

In this paper, fuzzy upper and lower e-limit sets are studied via fuzzy e-open sets. The
initiations of e-open sets and related studies in topological spaces are due to Ekici [7–11].
This present paper contains the studies of fuzzy e-openness. Also, the present paper is
related to [6] for fuzzy limit sets. So, we introduce and study the notions of fuzzy upper
e-limit set, lower e-limit set and fuzzy e-continuously convergent functions. Properties
and basic relationships among fuzzy upper e-limit set, fuzzy lower e-limit set and fuzzy
e-continuity are investigated using fuzzy e-open sets.
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