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1. Introduction

Ever since the introduction of fuzzy sets by Zadeh [25], the fuzzy concepts has involved
almost all branches of mathematics. One of the most important conclusions of advanced
scientific research into the very basic question related to the quintessence of natural
science and philosophy is that our universe is fundamentally and irreducibly fuzzy. This
notion of fuzziness is central to the work of written and El-Naschie to mention only two
well-known names working on the frontiers of fundamentally and irreducibly fuzzy. This
notion of fuzziness is central to the work of written and El-Naschie to mention only
two well-known names working on the frontiers of fundamental research in quantum
gravity and high energy particle physics. Based on the concept of fuzzy sets, Chang [3]
introduced and developed the concept of fuzzy topological spaces. Since then various
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important notions in the classical topology such as continuous functions [3] have been
extended to fuzzy topological spaces. Fuzzy continuity is one of the main topics in fuzzy
topology. Mukherjee and Debnath [17] has defined fuzzy d-open set and fuzzy J-closed
set. In 2006, Ekici [6] introduced fuzzy upper and lower s-limit sets. Seenivasan and
Kamala [20] defined the concepts of fuzzy e-open set and fuzzy e-continuous mappings
in fuzzy topological spaces. The initiations of e-open sets, e*-open sets, a-open sets, e-
continuity and e-compactness and related studies in topological spaces are due to Ekici
([7-11)).

In this paper, we introduce and study the notions of fuzzy upper e-limit set, fuzzy
lower e-limit set and fuzzy e-continuously convergent functions. Properties and basic
relationships among fuzzy upper e-limit set, fuzzy lower e-limit set and fuzzy e-continuity
are investigated via fuzzy e-open sets.

2. Preliminaries

Most of the concepts, notations and definitions which we have used in this paper are
standard by now. But, for the sake of completeness we recall some definitions and results
used in the sequel. A fuzzy set in X is called a fuzzy point [3] if it takes the value 0 for
all y € X except one, say, x € X. If its value at x is a (0 < o < 1), we denote this fuzzy
point by ., where the point x is called its support. A fuzzy point z, for a € Iy is an
element of I such that

Toly) = a ify=ux,
W)= 0 ify#ux.

The set of all fuzzy points in X is denoted by P,(X). A fuzzy point z, is said to be
contained in a fuzzy set u or to belong to u, denoted by z, € p if o < p(x). A fuzzy
point z, is said to be quasi-coincident [18] with a fuzzy set p in X, denoted by z,qu, if
a+ u(z) > 1. A fuzzy set p in a fuzzy topological space X is said to be quasi-coincident
[18] (g-coincident, in short) with a fuzzy set p in X, denoted by pgp, if there exists some
x € X such that u(z) + p(x) > 1. If p is not g-coincident with p, we write ugp. A fuzzy
set p in a fuzzy topological space X is called a fuzzy open neighborhood [18] (or a nbd,
for short) of a fuzzy point x, in X if there exists a fuzzy open set v of X such that
ZTo € v < . The family N, of all nbds of z,, is called the system of nbds of z,. A fuzzy
set u in a fuzzy topological space X is called a fuzzy open Q-neighborhood [18] of a fuzzy
point z, in X if there exists p € 7 such that xz,qp and p < p. The family of all fuzzy
open Q-neighborhoods of the fuzzy point x, in X is Ng,

Let X be a fuzzy subset of a space X. The fuzzy closure of A and fuzzy interior of A are
denoted by CI(A) and Int()\), respectively. A fuzzy subset A of space X is called fuzzy
regular open [1] (resp. fuzzy regular closed) if A\ = Int(Cl(\)) (resp. A = Cl(Int(X)).
The fuzzy J-interior [20] of fuzzy subset A of X is the union of all fuzzy regular open
sets contained in A. A fuzzy subset A is called fuzzy d-open [13] if A = 6Int(\). The
complement of fuzzy J-open set is called fuzzy d-closed (i.e. A = 6CI(N)). The fuzzy
d-closure of A\ and the fuzzy d-interior of A are denoted by dCI1(\) and dInt(A). A fuzzy
subset A of a space X is called fuzzy 0-preopen [2] if A < int(6CI1(\)). The complement
of a fuzzy J-preopen set is called fuzzy d-pre-closed.

A map f: X — Y is called fuzzy continuous [19] if for each fuzzy point z, in X
and each fuzzy open nbd V of f(z,), there exists fuzzy open nbd U of z, such that
fU)<V.Amap f: X — Y is called fuzzy continuous [19] if the inverse image of every



A. Vadivel and B. Vijayalakshmi / J. Linear. Topological. Algebra. 07(01) (2018) 39-51. 41

fuzzy open subset of Y is fuzzy open subset of X. FC(X,Y) denote the family of all
fuzzy continuous functions of an fts X into another fts Y. Let (X, 7) be an fts. A fuzzy
point z, € Cl(p) [18] if each Q-neighborhood 7 of z, is quasi-coincident with u, we have
nqp-

Let I be a directed set. Let x be the collection of all fuzzy points of an ordered set
X. The function S : I — x is called a fuzzy net [18] in X. For every i € I, S(I) is often
denoted by s; and hence, a net S is often denoted by {s; : ¢ € I'}.

Let S = {s; :i € I} be a fuzzy net in X. Then S is said to be quasi-coincident with
if for each i € I, s; is quasi-coincident with p. A fuzzy net {g; : j € J} in X, is called a
fuzzy subnet [18] of a fuzzy net {s; : i € I} in X if there is a function N : J — I such that
(i) gi = Sn,,, and (ii) for the element ig € I, there is jo € J such that if j > jo, j € J,
then N(j) > ip. A fuzzy net {S(n) : n € D} in an fts X is said to be fuzzy converges [16]
to x, if for each fuzzy open nbd v of x; there is some ng € D such that n > ng implies
S(n) € v. A fuzzy net {f, : m € M} in FC(X,Y) is said to be fuzzy continuously
converges [12] to f € FC(X,Y) if for every z, in X and for every fuzzy open nbd V' of
f(zq) in Y there exists an element my € M and a fuzzy open nbd U of X, in X such
that f,,(U) <V, for every m € M, m > mg. A fuzzy set u in a fuzzy topological space
X is called a fuzzy e-@Q-nbd [22] of a fuzzy point x, in X if there exists a fuzzy e-open
set V in X such that z,qV < p. If in addition, p is fuzzy e-open then p will be referred
to as a fuzzy e-open @Q-nbd of x,. A fuzzy set u in a fuzzy topological space (X, 7) is
called fuzzy e-neighborhood [22] of a fuzzy point z,, if there exists p € eO(X) such that
To € p <

A fuzzy point z, in a fuzzy topological space X is called a fuzzy e-cluster point
[23] of a fuzzy set p in X if every fuzzy e-¢g-nbd of z, is g-coincident with u. The
union of all fuzzy e-cluster points of y is called the fuzzy e-closure of u and is denoted
by eCl(p). A fuzzy set X in a fuzzy topological space X is called fuzzy e-open [20] if
A < Int(6CI1(A)) V Cl(dInt(A)). The complement of fuzzy e-open set is called fuzzy e-
closed. (i.e. Int(6CI(A)) NCI(6Int(A)) < A). Let X be a fuzzy set of a fuzzy topological
space X. eInt(\) = \/{p € I* : p < A\, puis a feo set} is called the fuzzy e-interior [20]
of X. eCI(\) = N{p € I’ : = A\, puis a fec set } is called the fuzzy e-closure [20] of .
Let f: (X,7m1) — (Y,72) be a mapping from a fts (X, 71) to another (Y, 72). Then f is
called fuzzy e-continuous [20] iff f~1()) is a feo set in X for any fuzzy open set A in Y.

Theorem 2.1 [23] For a fuzzy topological space X, the following conditions are equiv-
alent:

(1) X is fuzzy e-regular.
(7i) for each fuzzy point x, and each fuzzy e-open set U in X, g-coincident with x,, there
exists a fuzzy open set V in X such that x,qV < eClV < U.

3. Fuzzy e-continuously converge

Now, we introduce the following definition.

Definition 3.1 A function f : (X,7) — (Y,0) is said to be fuzzy e-continuous if for
every fuzzy point z, in X and for every fuzzy e-g-neighborhood p of f(x,), there exists
a fuzzy e-g-neighborhood p of x,, such that f(p) < p.

The family of all fuzzy e-continuous functions from (X, 7) into (Y, o) is denoted by
eC(X,Y).

Definition 3.2 Let (X, 7) be a fuzzy topological space and let {p; : i € I} be a net of
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fuzzy points in X. We say that the fuzzy net {p; : i € I'} fuzzy e-converges to a fuzzy
point p of X if for every fuzzy e-g-nbd u of p in X there exists ig € I such that p;qu for
every ¢ € I and i > 1.

Theorem 3.3 Let p be a fuzzy set of a fuzzy topological space (X, 7). Then, a fuzzy
point x, € eCl(u) if and only if for every p € eO(X) for which x,qp we have pqpu.

Proof. The fuzzy point z, € eCl(p) if and only if z, € p for every fuzzy e-closed set
p of X for which p < p. Equivalently, z, € eCl(p) if and only if o < 1 — p(x) for every
fuzzy e-open set p for which u < 1 — p. Thus, z, € eCl(u) if and only if p(z) < 1 — «,
for every fuzzy e-open set p for which p < 1— p. So, x, € eCl(p) if and only if for every
fuzzy e-open set p of X such that p(x) > 1 — « we have p not less than 1 — p. Therefore,
Zo € eCl(p) if and only if for every fuzzy e-open set p of X such that p(z) + o > 1 we
have pgu. Thus, z, € eCl(u) if and only if for every fuzzy e-open set p of X for which
Taqp we have pqp. [ |

Theorem 3.4 Let f: (X,7) — (Y,0) be a fuzzy e-continuous function, z,, be a fuzzy
point in X and p, p be fuzzy e-g-neighborhoods of z, and f(z,), respectively such that
f(p) £ p. Then there exists a fuzzy point zp in X such that zgqu and f(xe)gp.

Proof. Since f(u) not less than or equal to p, we have pu not less than or equal to
f~(p). Thus, there exists * € Y such that u(x) > f~(p(z)) or u(z) — f~L(p(z)) >0
and therefore p(x)+1—f"1(p(z)) > 1 or p(x)+(f~(p))¢(z)) > 1. Let (f~1(p))%(x)) = 7.
Clearly, for the fuzzy point z, we have x,qu and z, € (f~1(p))¢. Hence, for the fuzzy
point x, = xg, we have zgqu and f(zg)qp. [ |

Definition 3.5 A net {f;|i € I} in eC(X,Y) fuzzy e-continuously converges to f €
eC(X,Y) if and only if for every net {p;|j € J} in X which fuzzy e-converges to a fuzzy
point p in X we have that the fuzzy net {f;(p;)|(,5) € I x J} fuzzy e-converges to the
fuzzy point f(p) in Y.

Theorem 3.6 A function f : (X,7) — (Y,0) is fuzzy e-continuous if and only if for
every fuzzy point z, of X and for every net {p;|i € I} of X which fuzzy e-converges to
Zq, the net {f(p;)|i € I} of Y fuzzy e-converges to f(zq).

Proof. Straightforward. [ ]

Theorem 3.7 A net {f;|i € I} in eC(X,Y) fuzzy e-continuously converges to f €
eC(X,Y) if and only if for every fuzzy point z,, in X and for every fuzzy e-g-neighborhood
p of f(xz,) in Y there exists an element ig € I and a fuzzy e-g-neighborhood p of x,, in
X such that f;(u) < p for every i € I with i > 1.

Proof. Let z, be a fuzzy point in X and p be a e-g-neighborhood of f(z,) in Y such
that for every ¢ € I and for every fuzzy e-g-neighborhood u of z, in X we can choose a
fuzzy point x,, in X by Theorem 3.4 such that z,qu and f;(x,)gp. Clearly, the fuzzy net
{zu|lp € N(z4)} fuzzy e-converges to z,, but the fuzzy net {fi(z,), (1,7) € N(za) x I}
does not fuzzy e-converges to f(zs) in Y.

Conversely, let {p;|j € J} be a fuzzy net in eC(X,Y’) which fuzzy e-converges to the
fuzzy point z, in X and let p be an arbitrary fuzzy e-g-neighborhood of f(z,) in Y. By
assumption there exists a fuzzy e-g-neighborhood p of x, in X and an element ig € [
such that f;(u) < p for every i € I with ¢ > 4g. Since the fuzzy net {p;|j € J} fuzzy
e-converges to z, in X, there exists jo € J such that p;qu, for every j € J with j > jo..
Let (i0,jo) € I x J. Then for every (i,j) € I x J, (i,7) = (io,Jo), we have f;(p;)qfi(p)
and fi(pn) < p, ie., fi(pj)afi(n) < p. Thus, the fuzzy net {f;(p;)|(i,4) € I x J} fuzzy
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e-converges to f(x,) and the fuzzy net {f;|i € I'} fuzzy e-continuously converges to f. B

Definition 3.8 [21] A fuzzy set p of a fuzzy topological space X is called fuzzy e-
generalized closed set or fé-closed (in short, fege) if eCl(u) < p whenever p < p and p
is feoin X.

Definition 3.9 A fuzzy topological space X is called fuzzy e-T} if every fuzzy point is
fec.

Theorem 3.10 A fuzzy topological space X is fuzzy e-T7 if and only if for each x € X
and each a € [0, 1] there exists a feo set p such that pu(z) =1—a and u(y) =1 for y # x.

Proof. Assume X is fuzzy e-T7. Let a = 0. and set 4 = X. Then p is feo set such that
u(x) =1—0and p(y) =1 for y # . Now, let a € (0,1], x € X and p = (x,)¢. Hence
Zq is fec and the set p is feo such that p(z) =1 — « and u(y) = 1 for y # x.
Conversely, let z,, be an arbitrary fuzzy point of X. We prove that the fuzzy point x,
is fec. By assumption, there exists a feo set p such that pu(z) =1 — a and p(y) = 1 for
y # x. Now, u(x) +a = 1 implies pu(x)gzq or p(x)qxs,. Clearly, u¢ = x,. Thus, the fuzzy
point z, is fec and X is fuzzy e-T7. [ ]

Definition 3.11 A fuzzy topological space X is called fuzzy quasi e-T} if for any fuzzy
points z, and yg for which supp(z,) = = # supp(yg) = y, there exists a feo set p such
that z, € p and yg ¢ v and another e-open set p such that z, ¢ p and ys € p.

Definition 3.12 A fuzzy topological space X is called a fuzzy e-T5 if for any fuzzy points
xo and yg for which supp(zs) # supp(yg), there exists two fuzzy e-g-neighborhoods p
and p of z, and yg, respectively, such that p A = 0.

Definition 3.13 [18] A fuzzy point z, is called weak (resp. strong) if o < 1 (resp.
1
o > 5)

Theorem 3.14 If X is a fuzzy quasi e-T} fuzzy topological space and z, a weak fuzzy
point in X, then (z,)¢ is a fuzzy e-neighborhood of each fuzzy point yg with x # y.

Proof. Let  # y, o and yg be fuzzy points of X. Since X is fuzzy quasi e-T1, there
exists a fuzzy e-open set p of X such that yg € p and z, ¢ p. This implies that
a > p(x). Since z, is a weak fuzzy point, a < 4. Thus pu(z) < a < & implies pu(z) < 3.
So, p(z) = 1 — a. Therefore, u(y) < 1 = (24)°(y) for every y € X\{z}. Consequently,
i < (24)¢ and the fuzzy point (x4)¢ is a fuzzy e-neighborhood of yg. [ ]

Definition 3.15 A fuzzy topological space X is called a fuzzy e-regular if there exists
wu, n € eO(X) such that z, € p, p < nand pAn =0 for any fuzzy point z, and a fuzzy
e-closed set p not containing z,,.

Theorem 3.16 If X is a fuzzy e-regular space, then there exists a fuzzy e-open set p
containing x, such that eCl(p) < p for any strong fuzzy point z, and any fuzzy e-open
set p containing x.

Proof. Suppose that z, be any strong fuzzy point contained in p € eO(X). Then
Zq € p. Since « is strong fuzzy point, o > % and z, € p. Then % < a < p(x). Thus, the
complement of u; that is, the set u® is a fuzzy e-closed set which does not contain the
fuzzy point z,. Since X is a fuzzy e-regular space, there exists p,n € eO(X) such that
Zo € p and p¢ < n with p A = 0. Hence, we have p < n¢ and eCl(p) < eCl(n¢) = n°.
Now, ¢ < n implies n° < p. This means that eCl(p) < p which completes the proof. B
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Theorem 3.17 If X is a fuzzy e-regular space, then the strong fuzzy points in X are
fuzzy eg-closed.

Proof. Let z, be any strong fuzzy point in X and g be a fuzzy e-open set such that
Zq € p. By Theorem 3.16, there exists p € eO(X) such that x, € p and eCl(p) < u. We
have eCl(z,) < eCl(p) < p. Thus, eCl(x,) < p whenever x, € p (p is fuzzy e-open).
Hence, the fuzzy point z, is fuzzy eg-closed. [ |

Definition 3.18 A fuzzy topological space X is called a weakly fuzzy e-regular if for
any weak fuzzy point x, and a fuzzy e-closed set p not containing ., there exists
w, n € eO(X) such that zo € p, p<mand pAn=0.

Definition 3.19 A fuzzy set u in a fuzzy topological space X is said to be fuzzy e-nearly
crisp if eCl(p) A (eCl(p))¢ = 0.

Theorem 3.20 Let X be a fuzzy topological space. If for any weak fuzzy point x, and
@ € eO(X) containing xz,, there exists a fuzzy e-open and e-nearly crisp fuzzy set p
containing x,, such that eCl(p) < p, then X is weakly fuzzy e-regular.

Proof. Assume that 7 is a fuzzy e-closed set not containing the weak fuzzy point z,.
Then 7° is a fuzzy e-open set containing z,. By hypothesis, there exists a fuzzy e-open
and e-nearly crisp fuzzy set p such that z, € p and eCl(p) < n°. We set v = elnt(eCl(p))
and u =1 — eCl(p). Then ~ is fuzzy e-open, x, € v and n < p. We are going to prove
that u Ay = 0. Now assume that there exists y € X such that (v A p)(y) = @ # 0. Then
Yo € YA p and so, y, € v and y, € u. Hence, y, € eCl(p) and y, € (eCl(p))¢. This is
a contradiction, since p is fuzzy e-nearly crisp. Therefore, u A v = 0. Hence, X is fuzzy
e-regular. [ ]

Definition 3.21 Let u be a fuzzy set of a fuzzy topological space X. A fuzzy point z,
is called a e-boundary point of a fuzzy set p if and only if z, € eCl(u) A (1 — eCl(p)).
We denote the fuzzy set eCl(u) A (1 —eCl(p)) by e-bd().

Theorem 3.22 Let X be a fuzzy topological space. Suppose that z, and yz be weak and
strong fuzzy points, respectively. If x,, is fuzzy e-generalized closed, then yz € eCl(z,) =
zq € eCl(yp).

Proof. Suppose that yg € eCl(z,) and z4 ¢ eCl(ys). Then eCl(ys) < a. Also a < 3.
Thus, eCl(yg)(z) < 1 —a and a < 1 — eCl(ys)(z). So zo € (eCl(yp))¢. But z4 is
fuzzy e-generalized closed and (eCl(yg)) is fuzzy e-open. Hence, eCl(z,) < ((eCl(yp))°.
By assumption, we have yz € eCl(z,). Thus, yg € (eCl(yg))¢. We prove that this is a

contradiction. Indeed, we have

B<1—eCl(ys)(y) or eCl(ys)(y) <1-—p.

Also, yg € eCl(yg). Thus, § < 1 — (. But yg is a strongly fuzzy point; that is, 5 > % So
the above relation § < 1 — 8 is a contradiction. Hence, z, € eCl(yg). [ |

Theorem 3.23 Let u be a fuzzy set of a fuzzy topological space X. Then pV e-bd(p) <
eCl(p).

Proof. Let o € pV e-bd(p). Then x4 € p or x4 € e-bd(p). If x4 € e-bd(n), then
zq € eCl(p). Let us suppose that z, € p. We have

eCl(p) = /\{p cu < pand pis fech.
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So if x4 € p, then z, € p, for any fec set p of X for which p < p and z, € eCl(p). N
Definition 3.24 A fuzzy point x, in a fuzzy topological space X is said to be:

(i) well fuzzy e-closed if there exists yg € eCl(x) such that supp(za) # supp(ys);
(7i) just fuzzy e-closed if the fuzzy set eCl(x,) is again a fuzzy point.

Clearly, in a fuzzy e-T) space every fuzzy point is just fec.

Theorem 3.25 If X is a fuzzy topological space and z,, is a fuzzy e-generalized closed
but well e-closed fuzzy point, then X is not fuzzy quasi e-77.

Proof. Let X be a fuzzy quasi e-17 space. By the fact that x, is fuzzy well e-closed,
there exists a fuzzy point yg with supp(za) # supp(yg) such that yz € eCl(z,). Then
there exists p1 € eO(X) such that z, € pand yg ¢ p. Therefore, eCl(z,) < pand yg € p.
But this is a contradiction and hence X cannot be fuzzy quasi e-1; space. [ |

Theorem 3.26 Let X be a fuzzy topological space. If x, and zg are two fuzzy points
such that @ < 8 and xg is fuzzy e-open, then z, is just fuzzy e-closed if it is fuzzy
eg-closed.

Proof. We prove that the fuzzy set eCl(z,) is again a fuzzy point. We have a < 3,
i.e zo € zg and the fuzzy set xg is fuzzy e-open. Since z, is fuzzy eg-closed, we have
eCl(zo) < 3. Thus, eCl(z,)(x) < B and eCl(zy)(2) < 0, for every z € X\{z}. So the
fuzzy set eCl(x,,) is a fuzzy point. [ |

4. Fuzzy upper and lower e-limit sets

Definition 4.1 Let {y; : i € I} be a net of fuzzy sets in a fuzzy topological space X.
Then, by eFlim;(u;), we denote fuzzy upper e-limit of the net {y; : i € I} in X; that is,
the fuzzy set which is the union of all fuzzy points z,, in X such that for every ig € I and
for every fuzzy e-g-neighborhood p of x, in X there exists an element ¢ € I for which
i > g and p;qu. In other case, we get eF limy(p;) = 0.

Theorem 4.2 Let {p; :i € I} and {p; : ¢ € I} be two nets of fuzzy sets in X. Then the
following properties hold:

(i) The fuzzy upper e-limit is fuzzy e-closed,

(Z’l) el mI(/Li) = eFlimI(eCl(ui)),

(iii) If p; = p for every i € I, then eF limy(;) = eCl(p),

(iv) The fuzzy upper e-limit is not affected by changing a finite number of the u;,

v) If u; < p; for every i € I, then eF limy(u;) < eFlimy(p;),
(vi) eF limr(p;) < eCl(\/{pi:iel}),
(vii) eF limp(u; V pi) = eFlimp(p;) V eFlimg(p;),
)

eF Timy(p; A pi) < eFlimy(u;) A eFlimg(p;).

Proof. (i) It is sufficient to prove that eCl(eFlim;(y;)) < eFlims(u;). Let zo €
eCl(eFlim(p;)) and p be an arbitrary fuzzy e-open g-neighborhood of x,,. Then, we have,
pqeFlimy(p;). Hence, there exists an element z' € X such that pu(z!) +eFlLimy(u;)(z!) >
1. Let eF lim;(u;)(x') = a. Then, for the fuzzy point z} in X, we have zlqu and
x} € eFlim(p;). Thus, for every element g € I, there exists 4 € I with i > 4o such that
piqu. This means that z, € eFlimy(ju;).

(ii) Clearly, it is sufficient to prove that for every e-open set p the condition uqu;
is equivalent to pugeCl(p;). Let pqu;. Then there exists an element x € X such that
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p(x) + pi(z) > 1. Since, p; < eCl(u;), we have p(z) + eCl(p;)(xz) > 1 and therefore
uqeCl(p;). Conversely, let pugeCl(p;). Then there exists an element x € X such that
p(z) + eCl(p;)(xz) > 1. Let eCl(pi(x)) = r. Then z, € eCl(u;) and the fuzzy e-open set
1 is a fuzzy e-g-neighborhood of z,.. Hence, uqu;.

(iii) If u; = p for every ¢ € I, then by (ii) and Theorem 4.1 of [15],

eF lim;(u;) = eFlimy(eCl(u;)) = eFlim;(eCl(p)) = eCl(p).

(iv) It follows from Definition 4.1.

(v) It is obvious.

(vi) Let o, € eFlim(u;) and u be a fuzzy e-g-neighborhood of x, in X. Then for every
ig € I there exists i € I with i > i such that p;qu and therefore \/{y; : ¢ € I}qu. Thus,
x, € eCl(\/{pi : 1 € T}).

(vii) Clearly, p; < iV p; and p; < i V p; for every i € I. Hence, by (v), eF limy(u;) <
eFlimy(u; V p;) and eF limy(p;) < eFlimy(u; V p;). Thus, eF lim;(p;) V eFlimy(p;) <
eFlimy(u; V p;). Conversely, let x, € eFlim(u; V p;). We prove that z, € eFlimy(p;) V
eFlim;(p;). Let us suppose that z, ¢ eFlim;(yu;)VeFlim;(p;). Then x, ¢ eFlim;(u;) and
x, ¢ eFlims(p;). Hence, there exists a fuzzy e-g-neighborhood p; of z, and an element
11 € I such that u;qu, for every i € I, ¢ > iy. Also, there exists a fuzzy e-g-neighborhood
o of x, and an element io € I such that p;que, for every i € I, i > io. Let p = pu1 Vo and
19 € I such that ig > 41 and ig > 2. Then the fuzzy set p is a fuzzy e-g-neighborhood
of . and (u; V p;)gu for every i € I, i > ig. Since, z,, € eFlimy(u; V p;), this is a
contradiction. Thus, z, € eFlimy(u;) V eFlimy(p;).

(viii) Straightforward. [ |

Theorem 4.3 Let {y; : i € I} be a net of fuzzy sets in X. Then we have eF limy(u;) =
NeCl\{pi:i>1i0}) 1i0 € I}.

Proof. Let z, € eFlim;(y;) and ig € I. We prove that z,, € {eCI(\/{p; : i > i0}) : ip €
I}. Let p be an arbitrary fuzzy e-g-neighborhood of z, in X. Then there exists ¢ € I with
i > i such that pgu;. Thus, pg\/{p: i > io} and z, € {eClU(\/{pi 17 >io}) :ip € I}.
Conversely, let x,, € A{eCl(\/{wi : i > ig}) : ig € I'}. Then we have x, € eCl(\/{p; :
i > ig}), for every ig € I. We prove that z, € eFlims(u;). Let u be an arbitrary fuzzy
e-g-neighborhood of x, in X and let ig € I. Then, uq\/{p; : i = ip}. We prove that there
exists ¢ € I, i > ig such that p;qu. Let us suppose that pqgu;, for every i € I, i > 1.
Then, for every i € I, i > iy and for every € X we have u(x)+ p;(x) < 1 and therefore

(@) + (\/Hwi i > i0} () < 1,

which is a contradiction. Thus uqu;. Hence, x, € eFlimy(u;). [ |

Theorem 4.4 Let {y; : i € I} be a net of fuzzy e-closed sets in X such that pu;, < p,
if and only if i9 < 41. Then eF limy(p;) = AN{wi: i € I}.

Proof. Let z, € A{pi: i € I}. Then x, € p; or r < p;(x) for every i € I. Let ip € I and
u be a fuzzy e-g-neighborhood of z,, that is, r + pu(z) > 1. Then there exists i € I with
i > ig such that p;(x) + pu(x) = r+pu(x) > 1. Hence, p;qu and therefore z,, € eFlimy(u;).

Conversely, let z, € eFlimy(y;) and let 2, ¢ {u; : i € I}. Then there exists igp € i
such that z, & p;,, that is, r > p;,(x). Let p = pf . This implies . € pg . Then p is a
fuzzy e-g-neighborhood of x, in X and for every ¢ > ig, ugu;, which is a contradiction.
Therefore, z, € N{pi: 1 € I}. [ |
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Theorem 4.5 A net {f; : i € I} in eC(X,Y) fuzzy e-continuously converges to f €
eC(X,Y) if and only if eFlim7(f; ' (8)) < f~1(8) for every fuzzy e-closed subset 8 of Y.
Proof. Let {f; : i € I} be a net in eC'(X,Y’), which fuzzy e-continuously converges
to f and 3 be an arbitrary fuzzy e-closed subset of Y. Let x, € eFlim( fi_l(,u)) and p
be an arbitrary fuzzy e-g-neighborhood of f(z,) in Y. Since the net {f; : ¢ € I} fuzzy
e-continuously converges to f, there exists a fuzzy e-g-neighborhood p of x, in X and
an element ig € I such that f;(p) < u for every i € I with i > iy by Theorem 3.7. On
the other hand, there exists an element i > ig such that pq fi_l(B). Hence, f;(p)gB and
therefore p1g3. This means that f(x,) € eCl(B8) = 8. Thus z, € f~1(B).

Conversely, let {f; : i € I} be a net in eC(X,Y) and f € eC(X,Y) such that
eFlim;(f;71(B)) < f~1(B) for every fuzzy e-closed subset 3 of Y. We prove that the net
{fi : i € I} fuzzy e-continuously converges to f. Let x, be a fuzzy point of X and u be a
fuzzy e-g-neighborhood of f(z,) in Y. Since z, ¢ f~'(1) we have x, ¢ eFlim;(f; *(8)),
where § = p€ This means that, there exists an element i € [ and a fuzzy e-g-
neighborhood p of z, in X such that f;l(ﬂ)@) for every ¢ € I with ¢ > 43. Then we
have p < (f;1(8))° = f,1(8°) = f '(n) and therefore, fi(p) < u for every i € I with
i > ip; that is, the net {f; : ¢ € I'} fuzzy e-continuously converges to f. [ ]

Theorem 4.6 The following properties hold:

(7) If {fili € I} is a net in eC(X,Y) such that f; = f for every ¢ € I, then the {f;|i € I}
fuzzy e-continuously converges to f € eC(X,Y).

(79) If {fili € I} isanetin eC(X,Y’) which fuzzy e-continuously converges to f € eC(X,Y)
and {g;|i € J} be a subnet of {f;|i € I}, then the net {g;|i € J} fuzzy e-continuously
converges to f.

(231) If {fi|li € I} is a net in eC(X,Y) which does not fuzzy e-continuously converges to

f € eC(X,Y), then there exists no subset of {f;|i € I}, which fuzzy continuously

converges to f.

Proof. (i) and (ii) are obvious. Now, we prove (iii).

(iii) Since the fuzzy net {f; : i € I} does not fuzzy e-continuously converges to f by
Theorem 4.5, there exits a fuzzy e-closed set 8 € Y such that eFlim/(f; *(8)) £ f~1(8).
Hence, there exists x € X such that

F7HB) (@) < eFlimp(f7(8)) ().

Let f~1(B)(x) = r. Then, for the fuzzy point x,, we have z, € f~1(3) and therefore,
Ty € eFm[(fi_l(ﬁ)). Let u be an arbitrary fuzzy open ¢-neighborhood of z, in X. Let
N =1 x N(z,) and ¢ be a map of N into I defined as follows: If n = (i, u) € N, then
by ¢(n) we denote an element i of I such that igp > i and fi_l(ﬂ)q,u. Clearly, the net
{9n = fgm) :n € N} is asubnet of {f; :i € I'}. Let {h; : t € T’} be an arbitrary subnet of
{gn : n € N}. We prove that the net {h; : t € T'} does not fuzzy e-continuously converge
to f. Obviously, for this it is sufficient to prove that x,. € eFlim(h; *(8)). Since the net
{h¢:t € T} is a subnet of {g, : n € N}, there exists a map x : T'— N such that

(i) hy = 9x(t)s VvVt € T and

(ii) For every element n; € N, there exists t € T such that if t € T, t > t1, then
x(t) = ny.

Now, let tg € T and p be an arbitrary fuzzy open g-neighborhood of z, in X. We prove
that there exists t € T with t > tq such that h; *(8)qu. Indeed, let x(to) = ng = (ig, o),
v = A po and ny = (ig, o). Then there exists an element t; € T, t; > ty such that if
teT,t>1y, then x(t) > ny >ng. Let t € T, t > t; and x(t) =n = (i, p). Then
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(i) hy 1 (8) = 97 ) (B) = Loy (B)-
(iv) fq;&(t))(ﬁ) q p.
Since x(t) = n = (i, p) = n1 = (io, o) we have that p < 79 < p. By the above relation
and by relations (iii) and (iv), we have that h; Y (B)gp and h;'(B)qu, where t € T with
t > to. Thus, z,. € eFlimz(h; ' (B)). [ ]

Definition 4.7 Let {y; : i € I} be a net of fuzzy sets in a fuzzy topological space X.
Then, by eF' lim;(p;), we denote the fuzzy lower e-limit of the net {y; : i € I} in X;
that is, the fuzzy set which is the union of all fuzzy points z, in X such that for every
fuzzy e-g-neighborhood p of z, in X there exists an element ig € I such that u;qu for
every ¢ € I and i > ig. In other case, we get eF’ lim;(u;) = 0.

Theorem 4.8 For the fuzzy upper and lower e-limits, we have e F' lim(y1;) < eFlimy(u;).
The proof follows from Definitions 4.1 and 4.7.

Theorem 4.9 Let {y; : i € I} be a net of fuzzy sets in X such that u;, < p;, if and
only if 43 <ia. Then eCl(\/{pi : i € I}) = eFlim;(p;).

Proof. Let x, € eCl(\/{p; : i € I}) and p be a fuzzy e-g-neighborhood of z, in X.
Then pug\/{u; : ¢ € I}. Hence, there exists an element iy € I such that pquo. By
assumption, we have uqu; for every i € I with ¢ > ig. Thus, x, € eFlim;(u;). This
implies eCl(\/{p; : i € I}) < eFlim;(u;).

Conversely, let x, € eFlim;(u;) and p be an arbitrary fuzzy e-g-neighborhood of z, in
X. Then there exists an element ig € I such that pqu; for every i € I with ¢ > ig. Hence,
wg \{pi = i € I} and therefore x, € eCl(\/{p; : i € I}). Thus eFlim;(u;) < eCl(\/{i :
i € I}). Hence eFlim;(u;) = eCl(\/{pi : i € I}). [ |

Theorem 4.10 Let {u; : i € I} and {p; : i € I} be two nets of fuzzy sets in X. Then
the following properties hold:

The fuzzy lower e-limit is fuzzy e-closed,
eF lim;(p;) = eFlimr(eCl(p;)),
IF p; = p for every i € I, then eF limy(u;) = eCl(p),

1

(iv) The fuzzy lower e-limit is not affected by changing a finite number of the p;,
(v
(vi) eF limr(p;) < eCl(V{p; : 1 € I}),

(vii) eF lim;(p; V pi) 2 eFlim;(u;) V eFlim;(p;),

(vidd) eF lim;(ps A pi) < eFlim(u;) A eFlimg(p;),

(i
(

N ri eI} <eFlimp(u),

)

)

)

)

) If p; < p; for every @ € I, then eF limy(p;) < eFlimg(p;),
)

)

)

)

) VAN {pi 11 >0} 1 io € T} < eFlimy(p;).

x
x
Proof. (i) It is sufficient to prove that eCl(eFlims(y;)) < eFlim;(y;). Let z, €
eCl(eFlim;(p;)) and let p be an arbitrary fuzzy e-open g-neighborhood of z,. Then
we have pgeFlim;(u;). Hence, there exists an element ' € X such that p(x!) +
eFlim;(u;)(x') > 1. Let eF lim;(u;)(2') = . Then, for the fuzzy point z} in X, we
have zlqu and z} € eFlim;(j;). Thus, for every element ig € I, there exists i > i, i € [
such that p;qu. This means that z, € eFlim;(p;).
(ii) and (iii) are similar to Theorem 4.2. (iv) follows from the Definition 4.7. (v) is
obvious.
(vi) Let z, € eFlim;(u;) and let u be a fuzzy e-g-neighborhood of x, in X. Then, for

every ig € I, there exists ¢ € I with i > ig such that u;qu and therefore \/{y; : i € I}qpu.
Thus, =, € eCl(\/{p; :i € I}).
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(vii) Let x, € eFlim;(u;)\ eFlim;(p;). Then either z, € eFlim;(u;) or z, €
eFlim;(p;). Let x, € eFlim;(u;). Then, for every fuzzy e-g-neighborhood p of z, in
X, there exists an element ig € I such that p;qu, for every i € I, i > ig. Also p; < iV p;.
Thus, (u; V pi)qu for every i € I, i > ig and therefore, x, € eFlim;(u; V p;).

(viii) Let z, € eFlim;(u; A\ pi). Then, for every fuzzy e-g-neighborhood p of z, in X,
there exists an element iy € I such that u;qu for every i € I with i > ig. Also, u; Ap; < g
and piAp; < pi. By (v), eFlimp(u; A pi) < eFlim(p;) and eFlim; (p; A\ pi) < eFlim;(p;).
Thus, eF" im(u; A pi) < eFlim(p;) A eFlim; (p;).

(ix) Let @, € A{pi : i € I'}. We prove that x, € eFlim;(u;). Let us suppose that
x, ¢ eFlim;(u;). Then there exists a fuzzy e-g-neighborhood p of x, such that for every
i € I there exists ig > i for which p;gu. This means that pu;,(z) + p(z) < 1 for every
x € X. Now, since z, € A{u; : i € I} and p is a fuzzy e-g-neighborhood of =, we have
r < pi(z) for every i € I and r + u(x) > 1. Thus, u;(z) + p(z) > 1, for every i € I. By
the above, this is a contradiction. Hence, x, € eFlim;(p;).

(x) Let x, € {A\{pi : 7 > io} : ip € I}. Then there exists ig € I such that x, € A{w; :
i > io}. Hence, x, € p; for every i, i > iy and therefore, r < p;(z) for every i € I with
i > ip9. We prove that x, € eFlim(u;). Let p be an arbitrary fuzzy e-g-neighborhood of
x, in Y. Then we have x,qu or equivalently r 4+ pu(x) > 1. Since r < p;(x), for every i € I
with i > ig we have that u;(x) + p(xz) > 1 for every i € I with ¢ > i9. Thus, p;qu for
every i € I with i > i and therefore, x, € eFlimp(u;). [ |

Definition 4.11 A net {u; : i € I} of fuzzy sets in a fuzzy topological space X is said
to be fuzzy e-convergent to the fuzzy set p if eF lim(p;) = eFlimy(p;) = p. We write
eF-limr(p;) = p

Theorem 4.12 Let {u; : i € I} be a e-convergent net of fuzzy sets in X.

(2) If i, > pi, for iy <ig, then eF limy(p;) = N{eCl(wi) : i € I}.
(13) If pyy, < g, for ip <o, then eF limy(u;) = eCl(\{ui 17 € I}).

Proof. (i) By Theorems 4.2, 4.4 and 4.10, we have

NeCl(uy) i € I} < eFlimp(eCl(u;))

<
= eFlimy(p;)
<

Thus, eF lim;(u;) = N{eCl(u;) :
(ii) By Theorem 4.2 and 4.9, we have

eCl(\{pi :i € I}) = eFlimy ()
< eFlimI(ui)
< eCl(\{pi:iel}).
Thus, eF' limy(u;) = eCl(\/{p; : i € I}). |

Theorem 4.13 Let {u; : i € I} and {p; : i € I} be two e-convergent net of fuzzy sets
in X. Then the following properties hold:

(1) If p; < p; for every i € I, then eF limy(u;) < eF limy(p;),
(13) eF limr(p; V pi) = eF limyr(p;) V eF limy(p;),

(131) eCl(eF limy(u;)) = eF limy(p;) = eF limy(eCl(u;)),

(tv) If p; = p for every i € I, then eF limy(u;) = eCl(p).
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Proof. (i) follows by Theorems 4.2 and 4.10.
(ii) By Theorem 4.2 and 4.10, we have
el Tim(p; V pi) = eFlim(u;) V eFlim(p;)
< eFli}n(,ui) v eFli}n(pi)
< eFlim(p; V pi)
< eFlim(u; V pi)

=eF li}n(,ui) VeF li}n(pi).

Thus, eF limy(p; V p;) = eF limy(p;) V eF limy(p;).

(iii) Take p = eFlims(u;) = eCl(p). Then, by Theorem 4.10 (iii), eFlims(u;) =
eCl(p). This implies eCl(eFlims(p;)) = eFlims(u;). Then, by Theorem 4.10 (ii),
eFlimy(p;) = eFlim;(eCl(p;)). This implies that eFlimy(p;) = eF limy(eCl(u;)).

(iv) follows by Theorems 4.2 and 4.10.

Theorem 4.14

(i) Let p1, p € IX and pg, p € IV If (u1 X p2)q(p X p), then pigu and pagp.
(7i) Let pq and pg be fuzzy e-g-neighborhoods of z, and y, in X and Y respectively. Then
the fuzzy set puy X pgo is a fuzzy e-g-neighborhood of (z, y), in X x Y.

Theorem 4.15 Let {u; : ¢ € I} and {p; : i € I} be two nets of fuzzy sets in X. Then
the following properties hold:

(i) eF limy(p; x p;) < eF limy(u;) x eF limy(p;).

(1) eF limp(p; x p;) < eF limp(p;) x eF limg(p;).

(230) If {p; : © € I} and {p; : @ € I} are e-convergent nets, then eF lim;(p; x p;) <
eF limy(p;) x eF limy(p;).

Proof. (i) Let (z,y), € eF lim;(u; x p;). We must prove that (z,y), € eF limy(u;) x
eF limy(p;) or equivalently r < (eFlimy(u;) x eFlimy(p;))(x,y). Let ig € I, pp be an
arbitrary fuzzy e-g-neighborhood of x,. in X and pg be a constant fuzzy e-g-neighborhood
of y, in Y. Then the fuzzy set pu; x p2 is a fuzzy e-g-neighborhood of (z,y), in X x Y.
Hence, there exists i € I with ¢ > ig such that (u1 X p2)q(u; x pi), we have puiqu; and
poqp;. Thus, x, € eFlimy(p;). Similarly, we can prove that y, € eF lims(p;). Hence,
(x,y)r € eFlimy(p;) x eF limy(p;).

(ii) Let (z,y), € eF lims(u; X p;). We must prove that (x,y), € eF limy(u;) X
el lim;(p;) or equivalently r < (eFlimy(u;) x eFlimy(p;))(z,y). Let ig € I, p1 be an
arbitrary fuzzy e-g-neighborhood of x, in X and uo be a constant fuzzy e-g-neighborhood
of y, in Y. Then, the fuzzy set pu; x pg is a fuzzy e-g-neighborhood of (z,y), in X x Y.
Hence, there exists ¢ € I with ¢ > iy such that (u1 X p2)q(u; x p;) and we have piqu;
and p12gp;. Thus, x, € eFlimy(p;). Similarly, we can prove that y, € eF lim;(p;). Hence,
(@, y)r € eFlimy(p;) x eF' limy(p;).

(iii) Since {j; : i € I'} and {p; : i € I} are e-convergent nets, eF lim;(j1;) = eF limy(u;)
and eF lim;(p;) = eF limj(p;). Also, eF lim;(pu; % p;) = eF limy(u; x p;). Thus (iii)
proved. |
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5. Conclusion

In this paper, fuzzy upper and lower e-limit sets are studied via fuzzy e-open sets. The
initiations of e-open sets and related studies in topological spaces are due to Ekici [7-11].
This present paper contains the studies of fuzzy e-openness. Also, the present paper is
related to [6] for fuzzy limit sets. So, we introduce and study the notions of fuzzy upper
e-limit set, lower e-limit set and fuzzy e-continuously convergent functions. Properties
and basic relationships among fuzzy upper e-limit set, fuzzy lower e-limit set and fuzzy
e-continuity are investigated using fuzzy e-open sets.
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