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1. Introduction

Throughout this paper, R, R+, N and NFRDE will denote real numbers, positive real
numbers, natural numbers and nonlinear fractional random differential equation respec-
tively.

The contraction mapping principle is fundamental importance in the metrical fixed
point theory, which states as:

Theorem 1.1 [4] Let (X, d) be a complete metric space and T be a mapping of X into
itself satisfying:

d(Tx, Ty) ⩽ kd(x, y) ∀x, y ∈ X, (1)
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where k is a constant in [0,1). Then T has a unique fixed point x ∈ X.

There are various generalizations of the contraction principle, roughly obtained in two
ways:

1) by weakening the contractive properties of the mapping and possibly, by simultane-
ously giving the space a sufficiently rich structure, in order to compensate the relaxation
of the contractiveness,

2) by extending the structure of the ambient space.
Also, several fixed point theorems are obtained by combining the two ways previously
described or by adding supplementary conditions (see [3, 8, 11, 16, 18, 22, 27]).

One of the most extension of it was introduced by Wardowski [9]. Abbas et al. [10]
generalized the notion of F -contraction and proved certain fixed point results. Batra
et al. [11, 12] extended the concept of F -contraction on graphs and altered distances.
Recently, Cosentino and Vetro [13] followed the approach of F -contraction and obtained
some fixed point theorems for Hardy-Rogers type self mappings in complete metric and
ordered metric spaces. There are also many different types of fixed point theorems not
mentioned above extending the Banach’s result.

Definition 1.2 [29] Let 𝟋 be the family of all functions F : R+ → R such that
(F1) F is strictly increasing, i.e., for all a, b ∈ R+ such that a < b, F (a) < F (b);
(F2) for every sequence {an}n∈N of positive numbers limn→∞ an = 0 iff

limn→∞ F (an) = −∞;
(F3) there exist λ ∈ (0, 1) such that lima→0+ aλF (a) = 0.

Definition 1.3 [29] Let (X, d) be a metric space. A mapping T : X → X is said to be
an F -contraction on (X, d) if there exists F ∈ 𝟋 and τ > 0 such that

∀x, y ∈ X, d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ⩽ F (d(x, y)). (2)

From (F1) and (2) it is easy to conclude that every F -contraction T is a contractive
mapping and hence necessarily continuous.

Example 1.4 The following functions F : R+ → R are the elements of 𝟋

(i)F (t) = ln(t) (ii) F (t) = ln(t) + t
(iii) F (t) = −1√

t
(iv) F (t) = ln(t2 + t), t > 0.

Remark 1 Consider F (t) = −1

t
1
p
, p > 1, t > 0, then F ∈ 𝟋.

Proof. Since F
′
(t) = 1

p.t
1+ 1

p
> 0, F satisfies (F1) and it is clear that the condition (F2)

holds. Since p > 1, 1
p < 1, if we take 1

p < λ < 1, then limt→0+ tλF (t) = limt→0+(−tλ−
1

p ) =

0. So F satisfies (F3). This gives F ∈ 𝟋. ■

The Banach contraction (1) is a particular case of F -contraction. Meanwhile there
exist F -contractions, which are not Banach contractions (Wardowski [29]).

Theorem 1.5 [29] Let T be a self mapping on a complete metric space (X, d) satisfying
the F -contraction condition (2), then T has a unique fixed point x∗. Moreover, for any
x◦ ∈ X, the sequence {Tnx◦}n∈N is convergent to x∗.

Probabilistic functional analysis is an important mathematical area of research due
to its applications to probabilistic models in applied problems that appear in approxi-
mation theory, game and potential theory, theory of integral and differential equations
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and others. Random operator theory is needed for the study of various classes of ran-
dom equations. These equations are much more difficult to handle mathematical than
deterministic equations. Important contributions to the study of random equations have
been presented in [7, 25] among others. The study of random fixed point problems was
initiated by the Prague school of probability research. The first results were studied
in 1955-1956 by Špaček and Hanš in the context of Fredholm integral equations with
random kernel. In a separable metric space, random fixed point theorems for random
contraction mappings were proved by Hanš [12] and Špaček [26].

Bharucha-Reid [7] attracted the attention of several mathematicians and gave wings
to this theory. Itoh [14] extended the results of Špaček and Hanš in multi-valued contrac-
tive mappings and obtained random fixed point theorems with an application to random
differential equations in Banach spaces. Now, it has became a full fledged research area
and a vast amount of mathematical activities have been carried out in this direction (see
[23, 24]).
Recently, some authors ([19–21]) applied a random fixed point theorem to prove the exis-
tence of a solution in a sparable Banach space of a random nonlinear integral equations.

The aim of this paper is to establish a random version of fixed point theorem for a
pair of self stochastic mappings satisfying F -contraction in a separable Banach space.
Finally, we apply our result to obtain the existence unique solution of NFRDE.

2. Some basic concepts on a measurable space

Let (X,βX) be a separable complete metric space, where βX is a σ−algebra of Borel
subsets of X and let (Ω, β, µ) denote a complete probability measure space with a non-
empty set Ω, a measurable µ and a σ−algebra β of subsets of Ω.

Definition 2.1 [15] A measurable mapping x : Ω → X is called:
(i) X−valued random variable if the inverse image under the mapping x of every Borel

set B of X belongs to β, that is, x−1(B) ∈ β for all B ∈ β.
(ii) finitely valued random variable if it is constant on each of a finite number of disjoint

sets Ai ∈ β and is equal to 0 on Ω−
(

n∪
i=1

Ai

)
.

(iii) simple random variable if it is finitely valued and µ{ω : ∥x(ω)∥ > 0} < ∞.
(iv) strong random variable if there exists a sequence {xn(ω)} of simple random vari-

ables which converges to x(ω) almost surely, i.e., there exists a set A0 ∈ β with µ(A0) = 0
such that lim

n→∞
xn(ω) = x(ω), ω ∈ Ω−A0.

(v) weak random variable if the function x∗(x(ω)) is a real valued random variable for
each x∗ ∈ X∗, the space X∗ denoting the dual space of X.

Definition 2.2 [15] Let Y be a Banach space.
(i) A measurable mapping f : Ω×X → Y is said to be a random mapping if f(ω, x) =

Y (ω) is a Y−valued random variable for every x ∈ X.
(ii) A measurable mapping f : Ω×X → Y is said to be a continuous random mapping

if the set of all ω ∈ Ω for which f(ω, x) is a continuous function of x has measure one.
(iii) An equation of the type f(ω, x(ω)) = x(ω), where f : Ω × X → X is a random

mapping is called a random fixed point equation.
(iv) Any measurable mapping x : Ω → X which satisfies the random fixed point

equation f(ω, x(ω)) = x(ω) almost surely is said to be a wide sense solution of the fixed
point equation.
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(v) Any X−valued random variable x(ω) which satisfies µ{ω : f(ω, x(ω)) = x(ω)} = 1
is said to be a random solution of the fixed point equation or a random fixed point of f.

(vi) A measurable mapping x : Ω → X is called:
(a) a random fixed point of a random operator f : Ω ×X → X if f(ω, x(ω)) = x(ω)

for every ω ∈ Ω.
(b) a random coincidence of random operators T, f : Ω × X → X if T (ω, x(ω)) =

f(ω, x(ω)) for every ω ∈ Ω.
(c) a common random fixed point of random mappings T, f : Ω × X → X if

T (ω, x(ω)) = f(ω, x(ω)) = x(ω) for every ω ∈ Ω.

Example 2.3 [15] Let X = R and C be a non-measurable subset of X. Consider a
random mapping f : Ω × X → Y defined as f(ω, x(ω)) = x2(ω) + x(ω) − 1 for all
ω ∈ Ω. It’s clearly that, the real-valued function x(ω) = 1 is a random fixed point of

f. However, the real-valued function y(ω) =

{
−1, ω /∈ C
1, ω ∈ C

is a wide sense solution of

the fixed point equation f(ω, x(ω)) = x(ω) without being a random fixed point of f.
Therefore, a random solution is a wide sense solution of the fixed point equation but the
converse is not necessarily true.

3. New random fixed point for F-contractions

We begin with the following definition:

Definition 3.1 Let X be a separable Banach space and (Ω, β) be a measurable space.
The random mappings T, S : Ω × X → X are called F -contractions if for all x, y ∈ X
and ω ∈ Ω, we have

τ + F (∥T (ω, x)− S(ω, y)∥) ⩽ F (N(x(ω), y(ω))), (3)

where F ∈ 𝟋, τ > 0 and N(x(ω), y(ω)) is one of the following inequalities:

(i)

N(x(ω), y(ω)) = a ∥x(ω)− y(ω)∥+ b[∥x(ω)− T (ω, x)∥+ ∥y(ω)− S(ω, y)∥]

+c[∥x(ω)− S(ω, y)∥+ ∥y(ω)− T (ω, x)∥],

where 1− b− c > 0, a > 0, b ⩾ 0 and c ⩾ 0,
(ii)

N(x(ω), y(ω)) = qmax

{
∥x(ω)− y(ω)∥ , ∥x(ω)− T (ω, x)∥+ ∥y(ω)− S(ω, y)∥ ,

∥x(ω)− S(ω, y)∥+ ∥y(ω)− T (ω, x)∥

}
,

where 0 < q < 1.
(iii)

N(x(ω), y(ω)) = αmax

{
∥x(ω)− y(ω)∥ , ∥x(ω)− T (ω, x)∥ , ∥y(ω)− S(ω, y)∥ ,

∥x(ω)− S(ω, y)∥ , ∥y(ω)− T (ω, x)∥

}
,

where 0 < α < 1.
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Theorem 3.2 LetX be a separable Banach space and (Ω, β, µ) be a probability measure
space. Suppose that T, S : Ω×X → X are random mappings satisfying the contractive
condition (3). If the axioms (i)-(ii) are hold, then there exists a common random fixed
point p(ω) of S and T. Moreover, if (iii) holds, then this common fixed point is unique.

Proof. Consider a measure mapping ξ◦(ω) : Ω → X. We can define a sequence of
measurable mappings {ξn(ω)} from Ω to X as follows:

ξ2n+1(ω) = T (ω, ξ2n(ω)) and ξ2n+2(ω) = S(ω, ξ2n+1(ω)), ω ∈ Ω, n = 0, 1, 2, ..

Applying the contractive condition (3), we get

F (∥ξ2n+1(ω)− ξ2n+2(ω)∥) = F (∥T (ω, ξ2n(ω))− S(ω, ξ2n+1(ω))∥)

⩽ F (N(ξ2n(ω), ξ2n+1(ω)))− τ . (4)

If T, S satisfy (i) and (ii), then by (4), we have respectively

F (∥ξ2n+1(ω)− ξ2n+2(ω)∥) ⩽ F
(
a+b+c
1−b−c ∥ξ2n(ω)− ξ2n+1(ω)∥

)
− τ,

F (∥ξ2n+1(ω)− ξ2n+2(ω)∥) ⩽ F (q ∥ξ2n(ω)− ξ2n+1(ω)∥)− τ.
(5)

From (5), we get

F (∥ξ2n+1(ω)− ξ2n+2(ω)∥) ⩽ F (γ ∥ξ2n(ω)− ξ2n+1(ω)∥)− τ,

where γ = max{r, q} < 1 and r = a+b+c
1−b−c < 1. Hence,

F (∥ξn+1(ω)− ξn+2(ω)∥) ⩽ F (γ ∥ξn(ω)− ξn+1(ω)∥)− τ, (6)

and by (6), we obtain

F (∥ξn(ω)− ξn+1(ω)∥) ⩽ F (γ2 ∥ξn−2(ω)− ξn−1(ω)∥)− 2τ.

Repeating these steps, we can get

F (∥ξn(ω)− ξn+1(ω)∥) ⩽ F (γn ∥ξ◦(ω)− ξ1(ω)∥)− nτ. (7)

Taking the limit in (7), we obtain limn→∞ F (∥ξn(ω)− ξn+1(ω)∥) = −∞. Since F ∈ 𝟋,

lim
n→∞

∥ξn(ω)− ξn+1(ω)∥ = 0. (8)

From the axiom (F3) of F -contraction, there exists λ ∈ (0, 1) such that

lim
n→∞

(∥ξn(ω)− ξn+1(ω)∥)λF (∥ξn(ω)− ξn+1(ω)∥) = 0. (9)

Multiplying (∥ξn(ω)− ξn+1(ω)∥)λ to (7), we get

(∥ξn(ω)− ξn+1(ω)∥)λ.[F (∥ξn(ω)− ξn+1(ω)∥)− F (γn ∥ξ◦(ω)− ξ1(ω)∥)]

⩽ −(∥ξn(ω)− ξn+1(ω)∥)λ.nτ ⩽ 0. (10)
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Considering (8) and taking the limit as n → ∞ in (10), one can write

lim
n→∞

(n(∥ξn(ω)− ξn+1(ω)∥)λ) = 0. (11)

By (11), there exist n1 ∈ N such that n(∥ξn(ω)− ξn+1(ω)∥)λ ⩽ 1 for all n ⩾ n1 or

∥ξn(ω)− ξn+1(ω)∥ ⩽ 1

n
1

λ

for all n ⩾ n1. (12)

Using (12), for m > n ⩾ n1, we have

∥ξn(ω)− ξm(ω)∥ ⩽ ∥ξn(ω)− ξn+1(ω)∥+ ∥ξn+1(ω)− ξn+2(ω)∥+ ...+ ∥ξm−1(ω)− ξm(ω)∥

=

m−1∑
i=1

∥ξi(ω), ξi+1(ω)∥ ⩽
∞∑
i=1

∥ξi(ω), ξi+1(ω)∥ ⩽
∞∑
i=1

1

i
1

λ

.

Since the series
∞∑
i=1

1

i
1
λ

is convergent, taking limit as n → ∞, we get

limn→∞ ∥ξn(ω)− ξm(ω)∥ = 0. This shows that {ξn(ω)} is a Cauchy sequence. Since X is
complete, there exists a measurable function p(ω) : Ω → X such that limn→∞ ξn(ω) =
p(ω) and moreover,

lim
n→∞

ξ2n+1(ω) = lim
n→∞

ξ2n+2(ω) = p(ω).

The continuity of S yields

p(ω) = lim
n→∞

ξ2n+2(ω) = lim
n→∞

S(ω, ξ2n+1(ω)) = S(ω, lim
n→∞

ξ2n+1(ω)) = S(ω, p(ω)).

Similarly, p(ω) = T (ω, p(ω)). Thus we get p(ω) = T (ω, p(ω)) = S(ω, p(ω)). Hence the
pair (S, T ) has a common random fixed point.

For uniqueness, let v(ω) ∈ Ω×X be another common random fixed point of S and T
such that p(ω) ̸= v(ω). Then using (iii) and the contractive condition (3), we obtain that

τ + F (∥T (ω, p)− S(ω, v)∥) ⩽ F (N(p(ω), v(ω))), (13)

where

N(p(ω), v(ω)) = αmax

{
∥p(ω)− v(ω)∥ , ∥p(ω)− T (ω, p)∥ , ∥v(ω)− S(ω, v)∥ ,

∥p(ω)− S(ω, v)∥ , ∥v(ω)− T (ω, p)∥

}
= αmax {∥p(ω)− v(ω)∥ , 0, 0, ∥p(ω)− v(ω)∥ , ∥p(ω)− v(ω)∥}

= α ∥p(ω)− v(ω)∥ .

Applying this to (13), we get

τ + F (∥p(ω)− v(ω)∥) ⩽ F (α ∥p(ω)− v(ω)∥),

which implies that ∥p(ω)− v(ω)∥ < α ∥p(ω)− v(ω)∥ , which is a contradiction (since
0 < α < 1). Hence p(ω) = v(ω). This complete the proof. ■
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The following numerical example justifies our theorem:

Example 3.3 Let (Ω, β) be a measurable space and Ω = C = [0, 1] ⊂ R with the
usual normed d(x(ω), y(ω)) = ∥x(ω)− y(ω)∥ . Consider a σ−algebra β of Lebesgue’s
measurable subsets of Ω. Define random mappings T, S : Ω× C → C for all ω ∈ Ω by

T (ω, x) =


2
3x(ω) if x(ω) ∈ Ω− {0}

0 otherwise
and S(ω, x) =


1
3x(ω) if x(ω) ∈ Ω− {0}

0 otherwise
.

Define the function F : R+ → R by F (t) = ln(t) for all t > 0. Then the contractive
condition (3) is satisfied. Indeed for all x, y ∈ X and ω ∈ Ω, the following inequality

τ + ln(∥T (ω, x)− S(ω, y)∥) ⩽ ln(N(x(ω), y(ω))), (14)

holds for all τ > 0. Particularly, for x(ω) ∈ Ω − {0} and y(ω) = 0, we obtain the two
cases:

1. If the axiom (i) is given, then we get

N(x(ω), 0) = (a+
1

3
b+

5

3
c)x(ω)

and

∥T (ω, x)− S(ω, 0)∥ =

∥∥∥∥23x(ω)− 0

∥∥∥∥ =
2

3
x(ω).

Thus

τ + ln(∥T (ω, x)− S(ω, 0)∥) = τ + ln(
2

3
x(ω)) ⩽ ln(N(x(ω), 0)) = ln((a+

1

3
b+

5

3
c)x(ω)).

Since a+ 1
3b+

5
3c ⩾

2
3 permanently, the inequality (14) is verified.

2. If the axiom (ii) holds, then we have

N(x(ω), 0) =
5q

3
x(ω),

and so

τ + ln(∥T (ω, x)− S(ω, 0)∥) = τ + ln(
2

3
x(ω)) ⩽ ln(N(x(ω), 0)) = ln(

5q

3
x(ω)).

Since 5q
3 ⩾ 2

3 at q = 2
5 < 1, this gives (14).

Therefore, S and T are F -contractions. Hence all the axioms of Theorem 3.2 are
satisfied and x(ω) = 0 is a unique common random fixed point of T and S.

The proof of the following corollary is obtained by setting S = T in Theorem 3.2.

Corollary 3.4 LetX be a separable Banach space and (Ω, β, µ) be a probability measure
space. Suppose that T : Ω×X → X be a random mapping satisfying

τ + F (∥T (ω, x)− T (ω, y)∥) ⩽ F (N(x(ω), y(ω))), (15)
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where F ∈ 𝟋, τ > 0 and N(x(ω), y(ω)) is one of the following inequalities:

(i)

N(x(ω), y(ω)) = a ∥x(ω)− y(ω)∥+ b[∥x(ω)− T (ω, x)∥+ ∥y(ω)− T (ω, y)∥]

+c[∥x(ω)− T (ω, y)∥+ ∥y(ω)− T (ω, x)∥],

where 1− b− c > 0, a > 0, b ⩾ 0 and c ⩾ 0,
(ii)

N(x(ω), y(ω)) = qmax

{
∥x(ω)− y(ω)∥ , ∥x(ω)− T (ω, x)∥+ ∥y(ω)− T (ω, y)∥ ,

∥x(ω)− T (ω, y)∥+ ∥y(ω)− T (ω, x)∥

}
,

where 0 < q < 1.
(iii)

N(x(ω), y(ω)) = αmax

{
∥x(ω)− y(ω)∥ , ∥x(ω)− T (ω, x)∥ , ∥y(ω)− T (ω, y)∥ ,

∥x(ω)− T (ω, y)∥ , ∥y(ω)− T (ω, x)∥

}
,

where 0 < α < 1.

Then T has a unique random fixed point p(ω).

4. Application

In this section, we present an application of Corollary 3.4 to discuss the existence of a
random solution for NFRDE as the form:

cDr(x(ω, t)) = f(ω, t, x(ω, t)), t ∈ [0, 1], 0 < r ⩽ 1, (16)

with the integral boundary conditions x(ω, 0) = 0, x(ω, 1) =
ϵ∫
0

x(ω, s)ds, 0 < ϵ < 1. Here

ω ∈ Ω is a supporting set of the measure space (Ω, β), x(t, ω) is unknown vector-valued
random variables for each t ∈ [0, 1] and cDr denotes the Caputo fractional derivative of
order r, for more extensively details (see [1, 10, 13, 17, 28]). Also, f : Ω× [0, 1]×R → R
is a measurable continuous function. Here (X, ∥.∥∞), where X = C([0, 1], R) is the
Banach space of continuous functions from [0, 1] into R endowed with the supremum
norm ∥x(ω)∥∞ = supt∈[0,1] |x(ω, t)|. It is well known that x(t, ω) ∈ X is a solution of
system (16) if and only if it is a solution of the following random integral equation for
t ∈ [0, 1]

x(ω, t) =
1

Γ(r)

t∫
0

(t− s)r−1f(ω, s, x(ω, s))ds− 2t

(2− ϵ2)Γ(r)

1∫
0

(1− s)r−1f(ω, s, x(ω, s))ds

+
2t

(2− ϵ2)Γ(r)

ϵ∫
0

 s∫
0

(s−m)r−1f(ω,m, x(ω,m))dm

 ds.
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Next, we consider a system (16) under the following axioms. Suppose that
(H1) there exist a measurable continuous function f : Ω × [0, 1] × R → R and τ > 0

such that

|f(ω, t, a)− f(ω, t, b)| ⩽ Γ(r + 1)

5
e−τ |a− b| ,

for all t ∈ [0, 1] and a, b ∈ R,
(H2)

Γ(r + 1)

5
sup

t∈(0,1)

( 1

Γ(r)

1∫
0

|t− s|r−1 ds+
2t

(2− ϵ2)Γ(r)

1∫
0

(1− s)r−1ds

+
2t

(2− ϵ2)Γ(r)

ϵ∫
0

s∫
0

|s−m|r−1 dmds
)
⩽ 1.

Now, we prove the following existence theorem.

Theorem 4.1 Let (Ω, β) be a measure space and R a Banach space. Then the system
(16) under assumptions (H1) and (H2) has at least one random solution.

Proof. For x(ω), y(ω) ∈ C([0, 1], R), ω ∈ Ω and t ∈ [0, 1], we define a random operator
T : Ω× [0, 1] → R by

T (x)(ω, t) =
1

Γ(r)

t∫
0

(t− s)r−1f(ω, s, x(ω, s))ds

− 2t

(2− ϵ2)Γ(r)

1∫
0

(1− s)r−1f(ω, s, x(ω, s))ds

+
2t

(2− ϵ2)Γ(r)

ϵ∫
0

 s∫
0

(s−m)r−1f(ω,m, x(ω,m))dm

 ds.

Then, problem (16) is equivalent to find p(ω) ∈ Ω×X which is a random fixed point of
T . Now, let x(ω), y(ω) ∈ C([0, 1], R), ω ∈ Ω for all t ∈ [0, 1]. By the axioms (H1) and
(H2), we have

|T (x)(ω, t)− T (y)(ω, t)|

=

∣∣∣∣∣∣ 1

Γ(r)

t∫
0

(t− s)r−1f(ω, s, x(ω, s))ds− 2t

(2− ϵ2)Γ(r)

1∫
0

(1− s)r−1f(ω, s, x(ω, s))ds

+
2t

(2− ϵ2)Γ(r)

ϵ∫
0

 s∫
0

(s−m)r−1f(ω,m, x(ω,m))dm

 ds
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− 1

Γ(r)

t∫
0

(t− s)r−1f(ω, s, y(ω, s))ds+
2t

(2− ϵ2)Γ(r)

1∫
0

(1− s)r−1f(ω, s, y(ω, s))ds

− 2t

(2− ϵ2)Γ(r)

ϵ∫
0

 s∫
0

(s−m)r−1(f(ω,m, y(ω,m))dm

 ds

∣∣∣∣∣∣
⩽ 1

Γ(r)

t∫
0

|t− s|r−1 |f(ω, s, x(ω, s))− f(ω, s, y(ω, s))| ds

+
2t

(2− ϵ2)Γ(r)

1∫
0

(1− s)r−1 |f(ω, s, x(ω, s))− f(ω, s, y(ω, s))| ds

+
2t

(2− ϵ2)Γ(r)

ϵ∫
0

∣∣∣∣∣∣
s∫

0

(s−m)r−1(f(ω,m, y(ω,m))− f(ω,m, x(ω,m)))dm

∣∣∣∣∣∣ ds
⩽ 1

Γ(r)

t∫
0

|t− s|r−1 Γ(r + 1)

5
e−τ |x(ω, s)− y(ω, s)| ds

+
2t

(2− ϵ2)Γ(r)

1∫
0

(1− s)r−1Γ(r + 1)

5
e−τ |x(ω, s)− y(ω, s)| ds

+
2t

(2− ϵ2)Γ(r)

ϵ∫
0

 s∫
0

|s−m|r−1 Γ(r + 1)

5
e−τ |x(ω,m)− y(ω,m)| dm

 ds

⩽ e−τ ∥x(ω, s)− y(ω, s)∥∞ .
Γ(r + 1)

5
sup

t∈(0,1)

 1

Γ(r)

1∫
0

|t− s|r−1 ds

+
2t

(2− ϵ2)Γ(r)

1∫
0

(1− s)r−1ds+
2t

(2− ϵ2)Γ(r)

ϵ∫
0

s∫
0

|s−m|r−1 dmds


⩽ e−τ ∥x(ω, s)− y(ω, s)∥∞ .

This gives

∥T (x)(ω, t)− T (y)(ω, t)∥∞ ⩽ e−τ ∥x(ω, s)− y(ω, s)∥∞ ,

or, equivalently

τ + ln(∥T (x)(ω, t)− T (y)(ω, t)∥) ⩽ ln(N(x(ω), y(ω))).

Hence, the F -contraction (15) is satisfied by taking F (t) = ln(t) and N(x(ω), y(ω)) =
∥x(ω, s)− y(ω, s)∥∞ for every τ > 0 and t ∈ [0, 1]. So all the conditions of Corollary 3.4
are satisfied. Therefore, the system NFRDE (16) has a unique random solution p(ω). ■
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