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1. Introduction

A classical best approximation theorem was introduced by Fan[2], which states that: “if
A is a non-empty compact convex subset of a Hausdorff locally convex topological vector
space B and T : A→ B is a continuous mapping, then there exists an element x ∈ A such
that d(x, Tx) = d(Tx,A)”. Afterwards, Prolla [6], Reich [7], and Sehgal and Singh [8]
have derived extensions of Fan Theorem in many directions. The common fixed point
theorem insists to the authors to investigation on common best proximity point theorem
for non-self mappings. The common best proximity point theorem, assures a common
optimal solution at which both the real valued multi-objective functions x → d(x, Sx)
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and x → d(x, Tx) attain the global minimal value d(A,B). A number of authors have
improved, generalized and extended this basic result either by defining a new contractive
mapping in the context of a complete metric space or extend best proximity results from
fixed point theory(see [3, 4, 9, 11]).

In 2015 , Singh et al. [10] introduced a new class of contraction mappings called
generalized weak contractions for self mappings. Let Ψ denote the class of all function
ψ : [0,∞) → [0,∞) which satisfy the following conditions:

(a) ψ is monotone nondecreasing;
(b) ψ is continuous;
(c) ψ(t) = 0 ⇐⇒ t = 0.

Further, let Φ denotes the class of all functions ϕ : [0,∞) → [0,∞) which satisfy the
following conditions:

(a) ϕ is lower semi-continuous function;
(b) ϕ(t) = 0 ⇐⇒ t = 0.

The following fixed point theorem is proved by Singh et al. [10].

Theorem 1.1 Let X be a complete metric space. T : X → X be a self map such that
for every x, y ∈ X,

1

2
d(x, Tx) ⩽ d(x, y) implies ψ(d(Tx, Ty)) ⩽ ψ(Mg(Tx, Ty))− ϕ(Mg(Tx, Ty)), (1)

where ψ ∈ Ψ, ϕ ∈ Φ and Mg(Tx, Ty) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2 }.
Then T has a unique fixed point.

In [10], the authors posted a question that whether Theorem 1.1 can be extended to
a pair of maps and they speculate the condition in which a pair of maps have a unique
fixed point. Inspired by this, the purpose of this paper is to obtain best proximity point
theorems for a pair of maps with certain weak contractions in metric spaces. As an
application, we proved a fixed point theorem for a pair of self-maps suggested by Singh
et al. [10].

2. Preliminaries

Definition 2.1 [5] Let (X, d) be a metric space and A and B be two non-empty subsets
of X and T :A→ B be a mapping. A point x ∈ A is said to be a best proximity point of
T if it satisfies the condition that d(x, Tx) = d(A,B), where d(A,B) = inf{d(x, y):x ∈
A, y ∈ B}.

Let A and B be two non-empty subsets of a metric space (X, d). We define A0 and B0

as defined by Kirk et al. [5]:

A0 = {x ∈ A: d(x, y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B: d(x, y) = d(A,B) for some x ∈ A},

where d(A,B) = inf{d(x, y):x ∈ A, y ∈ B} is the distance between the sets A and B.
In [5], the authors presented sufficient conditions for the sets A0 and B0 are to be

non-empty.
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Remark 1 If A = B, then A0 = A = B = B0.

We denote the set of all best proximity points of T by PT (A); that is,

PT (A) = {x ∈ A : d(x, Tx) = d(A,B)}.

3. Main results

In this section we state and prove the existence and uniqueness theorem of common best
proximity point of certain weak contractive maps. This theorem extends, improves and
generalizes some of the results in the literature on best proximity points.

Definition 3.1 [1] An element x ∈ A is said to be a common best proximity point of
the non-self mappings S:A→ B and T :A→ B if these satisfy the condition that

d(x, Sx) = d(x, Tx) = d(A,B).

It should be noted that a common best proximity point is that value at which both the
real valued functions x→ d(x, Sx) and x→ d(x, Tx) on A attain global minimum, since
d(x, Sx) ≥ d(A,B) and d(x, Tx) ≥ d(A,B) for all x. Further, if the underlying mappings
are self-mappings, the common best proximity point becomes a common fixed point.

We denote the set of all common best proximity points for a pair of maps T and S by
PT,S(A); that is, PT,S(A) = {x ∈ A : d(x, Tx) = d(x, Sx) = d(A,B)}.

Definition 3.2 Let (X, d) be a metric space, A,B be nonempty subsets of X, and
T, S : A → B be non-self mappings. We say that (T, S) is a (ψ, ϕ)-generalized weak
proximal contraction pair if, for all x, y, u, v ∈ A

1
2 min{d(x, u), d(y, v)} ⩽ d(x, y)
d(u, Tx) = d(A,B)
d(v, Sy) = d(A,B)

 =⇒ ψ(d(u, v)) ⩽ ψ(M(x, y, u, v))−ϕ(M(x, y, u, v)),

(2)

where M(x, y, u, v) = max{d(x, y), d(x, u), d(y, v), d(x,v)+d(y,u)2 }, ψ ∈ Ψ and ϕ ∈ Φ.

Now we prove the following theorem.

Theorem 3.3 Let A and B be two nonempty, closed subsets of a complete metric space
(X, d). Let T, S : A → B be a pair of mappings. Suppose that the following conditions
are satisfied:

(i) (T, S) is (ψ, ϕ)-generalized weak proximal contraction pair;
(ii) A0 ̸= ∅, T (A0) ⊆ B0, and S(A0) ⊆ B0;
(iii) either T or S is continuous.

Then T and S have a unique common best proximity point.

Proof. We first show that for T and S satisfying the hypothesis, PT (A) = PS(A); that
is, z is a best proximity point of T if and only if it is a best proximity point of S. Let
z ∈ PT (A). This implies d(z, Tz) = d(A,B). Hence, z ∈ A0. Since z ∈ A0 and S(A0) ⊆ B0

there exist w ∈ A0 with d(w, Sz) = d(A,B). Now, 1
2 min{d(z, z), d(z, w)} ⩽ d(z, z). Thus,

from (2), we have

ψ(d(z, w)) ⩽ ψ(M(z, z, z, w))− ϕ(M(z, z, z, w)),
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where

M(z, z, z, w) = max{d(z, z), d(z, z), d(z, w), d(z, w) + d(z, z)

2
} = d(z, w).

This implies that ψ(d(z, w)) ⩽ ψ(d(z, w)) − ϕ(d(z, w)). Thus, ϕ(d(z, w)) = 0. By the
property of ϕ, we get d(z, w) = 0. Hence, z = w. Therefore, z ∈ PS(A). This shows that
PT (A) ⊆ PS(A). Similarly, we can show that PS(A) ⊆ PT (A). Hence PT (A) = PS(A).

Now, we prove the existence of common best proximity points. Since A0 ̸= ∅, we take
arbitrary x0 ∈ A0. Since T (A0) ⊆ B0 there exist x1 ∈ A such that d(x1, Tx0) = d(A,B).
Then by the definition of A0 we have that x1 ∈ A0. Again since S(A0) ⊆ B0 and x1 ∈ A0

there exist x2 ∈ A such that d(x2, Sx1) = d(A,B). Similarly x2 ∈ A0. On continuing this
process by induction, we construct a sequence {xn} ⊆ A0 such that

d(x2n+1, Tx2n) = d(A,B) and d(x2n+2, Sx2n+1) = d(A,B) (3)

for all n = 0, 1, 2, · · · . Now, for any n ∈ N, we have

1

2
min{d(x2n, x2n+1), d(x2n+1, x2n+2)} ⩽ d(x2n, x2n+1).

By (i), there exist ψ ∈ Ψ and ϕ ∈ Φ such that

ψ(d(x2n+1, x2n+2)) ⩽ ψ(M(x2n, x2n+1, x2n+1, x2n+2))

− ϕ(M(x2n, x2n+1, x2n+1, x2n+2)), (4)

where

M(x2n, x2n+1, x2n+1, x2n+2) = max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

d(x2n, x2n+2) + d(x2n+1, x2n+1)

2
}.

= max{d(x2n, x2n+1), d(x2n+1, x2n+2),
d(x2n, x2n+2)

2
}.

Here by triangular inequality we have that

d(x2n, x2n+2) ⩽ 2max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.

Thus, for n = 0, 1, 2 · · · , we have

M(x2n, x2n+1, x2n+1, x2n+2) = max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.

Case i: Suppose that there exist n0 ∈ N such that

M(x2n0
, x2n0+1, x2n0+1, x2n0+2) = d(x2n0+1, x2n0+2).

From (4), we have

ψ(d(x2n0+1, x2n0+2)) ⩽ ψ(d(x2n0+1, x2n0+2))− ϕ(d(x2n0+1, x2n0+2)).
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Hence, ϕ(d(x2n0+1, x2n0+2)) = 0. From the property of ϕ, we have d(x2n0+1, x2n0+2) = 0.
This implies x2n0+1 = x2n0+2. From (3), d(x2n0+2, Sx2n0+1) = d(x2n0+1, Sx2n0+1) =
d(A,B). Thus x2n0+1 is best proximity points of S. Since every best proximity point of
S is also a best proximity point of T , x2n0+1 is a best proximity point of T . Hence x2n0+1

is a common best proximity point of T and S.
Case ii: Suppose M(x2n, x2n+1, x2n+1, x2n+2) = d(x2n, x2n+1) for n = 0, 1, 2, · · · . From
(4), we have

ψ(d(x2n+1, x2n+2)) ⩽ ψ(d(x2n, x2n+1))− ϕ(d(x2n, x2n+1)) ⩽ ψ(d(x2n, x2n+1)). (5)

Since ψ is non-decreasing, the above inequality yields the following inequality:

d(x2n+1, x2n+2) ⩽ d(x2n, x2n+1). (6)

Now, if we put dn = d(xn, xn+1), then we get d2n+1 ⩽ d2n for all n. Also, we have
d2n+2 ⩽ d2n+1, which implies that the sequence {dn} is decreasing. So there is a r ⩾ 0
such that dn → r as n → ∞. We wish to show that r = 0. Since ϕ is lower semi
continuous, we have that

ϕ(r) ⩽ lim inf
n→∞

d(x2n, x2n+1).

By taking limit superior in (5) we get

lim sup
n→∞

ψ(d(x2n+1, x2n+2)) ⩽ lim sup
n→∞

ψ(d(x2n, x2n+1))− lim inf
n→∞

ϕ(d(x2n, x2n+1)).

Consequently, we have ψ(r) ⩽ ψ(r)− ϕ(r) which implies ϕ(r) = 0. So r = 0, i.e.

lim
n→∞

d(xn, xn+1) = 0. (7)

Now, we show that the sequence {xn} is a Cauchy sequence. Since limn→∞ d(xn, xn+1) =
0, it is enough to prove that the subsequence {x2n} of {xn} is Cauchy sequence in A0.
Contrarily, let there exists an ϵ > 0 for which the subsequences {xm(k)} and {xn(k)} of
{x2n} such that m(k) is the smallest integer satisfying, for all k > 0, m(k) > n(k) > k
imply that

d(x2n(k), x2m(k)) ⩾ ϵ, (8)

d(x2nk
, x2mk−2) < ϵ. (9)

Using triangular inequality, (8) and (9), we get that

ϵ ⩽ d(x2n(k), x2m(k)) ⩽ d(x2nk
, x2mk−2) + d(x2mk−2, x2mk−1) + d(x2mk−1, x2mk

)

< ϵ+ d(x2mk−2, x2mk−1) + d(x2mk−1, x2mk
).

By letting k → ∞ in the above inequality and using (7), we get that

lim
k→∞

d(x2n(k), x2m(k)) = ϵ. (10)



294 K. K. M. Sarma and G. Yohannes / J. Linear. Topological. Algebra. 06(04) (2017) 289-300.

Using triangular inequality again, we have

d(x2mk
, x2nk

)− d(x2nk+1, x2nk
) ⩽ d(x2mk

, x2nk+1) ⩽ d(x2mk
, x2nk

) + d(x2nk
, x2nk+1).

Letting k → ∞ in the above inequality and using (7), limk→∞ d(x2mk
, x2nk+1) = ϵ. Sim-

ilarly, we can prove that limk→∞ d(x2nk+1, x2mk+1) = ϵ and limk→∞ d(x2mk
, x2nk+2) = ϵ.

Now, we have

d(x2mk+1, Tx2mk
) = d(A,B) , d(x2nk+2, Sx2nk+1) = d(A,B). (11)

Suppose for any l ⩾ 1, there exist 2mkl and 2nkl such that 2mkl > 2nkl and
d(x2mkl

, x2nkl
+1) < d(x2mkl

, x2mkl
+1). As l → ∞, from the above inequality we get

ϵ = lim
l→∞

d(x2mkl
, x2nkl

+1) ⩽ lim
l→∞

d(x2mkl
, x2mkl

+1) = 0,

which is not true. Therefore there exist l ∈ N such that for any k ⩾ l

1

2
min{d(x2mk

, x2mk+1), d(x2nk+1, x2nk+2)} ⩽ d(x2mk
, x2nk+1). (12)

From (11) and (12), for any k ⩾ l, we have

ψ(d(x2mk+1, x2nk+2)) ⩽ ψ(M(x2mk
, x2nk+1, x2mk+1, x2nk+2))

− ϕ(M(x2mk
, x2nk+1, x2mk+1, x2nk+2)), (13)

where

M(x2mk
, x2nk+1, x2mk+1, x2nk+2) = max{d(x2mk

, x2nk+1), d(x2mk
, x2mk+1), (14)

d(x2nk+1, x2nk+2),
d(x2mk

, x2nk+2) + d(x2nk+1, x2mk+1)

2
}.

Letting k → ∞ in (14) and using (13), the continuity of ψ, and the lower semi continuity
of ϕ, we get that ψ(ϵ) ⩽ ψ(ϵ)− ϕ(ϵ), which implies that ϕ(ϵ) = 0. From the property ϕ,
ϵ = 0. This contradict the fact that ϵ > 0. So, {x2n} is Cauchy sequence. Consequently
{xn} is Cauchy sequence in A0. Since (X, d) is a complete metric space and A is a closed
subset of X, there exist v ∈ A such that xn → v. With out loss of generality we may
assume that T is continuous. From (3), we have

d(A,B) = lim
n→∞

d(x2n+1, Tx2n) = d(v, Tv).

Therefore, v is a best proximity point of T . Since we have proved that every best proximity
point of T is also a best proximity point of S, v is also a best proximity point of S. Hence
v is a common best proximity of the pair T and S.

Now, we show that this v is unique. Let u ∈ PT,S(A) = PT (A) = PS(A). Then we have

d(u, Tu) = d(A,B), d(v, Tv) = d(A,B).
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Furthermore, we have 1
2 min{d(u, v), d(v, v)} ⩽ d(u, v). Thus, inequality (2) implies that

ψ(d(u, v)) ⩽ ψ(M(u, v, u, v))− ϕ(M(u, v, u, v)),

where M(u, v, u, v) = max{d(u, v), d(u, u), d(v, v), d(u,v)+d(u,v)2 } = d(u, v). Therefore,
ψ(d(u, v)) ⩽ ψ(d(u, v))−ϕ(d(u, v)). Hence, ϕ(d(u, z)) = 0. So d(u, v) = 0. Consequently,
u = v. Hence T and S have a unique common best proximity point. ■

Now, we draw some corollaries to our theorem. If we relax condition (i) in Theorem
3.3, we obtain the following corollary.

Corollary 3.4 Let A and B be two nonempty, closed subsets of a complete metric space
(X, d). Let T, S : A→ B be mappings. Suppose the following conditions are satisfied:

(i) for every x, y, u, v ∈ A

d(u, Tx) = d(A,B)
d(v, Sy) = d(A,B)

}
=⇒ ψ(d(u, v)) ⩽ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)), (15)

where M(x, y, u, v) = max{d(x, y), d(x, u), d(y, v), d(x,v)+d(y,u)2 }, ψ ∈ Ψ and ϕ ∈ Φ;
(ii) A0 ̸= ∅, T (A0) ⊆ B0,and S(A0) ⊆ B0;
(iii) either T or S is continuous.

Then T and S have a unique common best proximity point.

If we take ψ(t) = t and ϕ(t) = (1 − k)t, where 0 ⩽ k < 1 in Theorem 3.3 we get the
following corollary.

Corollary 3.5 Let A and B be two nonempty closed subsets of a complete metric space
(X, d). Let T, S : A → B be mappings. Suppose that for all x, y, u, v ∈ A the following
conditions are satisfied:

(i) for every x, y, u, v ∈ A

1
2 min{d(x, u), d(y, v)} ⩽ d(x, y)
d(u, Tx) = d(A,B)
d(v, Sy) = d(A,B)

 =⇒ d(u, v) ⩽ kM(x, y, u, v), (16)

where M(x, y, u, v) = max{d(x, y), d(x, u), d(y, v), d(x,v)+d(y,u)2 };
(ii) A0 ̸= ∅, T (A0) ⊆ B0,and S(A0) ⊆ B0;
(iii) either T or S is continuous.

Then T and S have a unique common best proximity point.

The following example shows that Theorem 3.3 is a generalization of Corollary 3.4.
Further, it is interesting to note that the maps T and S of Example 3.6 does not satisfy
the hypotheses of the Corollary 3.4.

Example 3.6 Let X = R3 and d : X ×X → R defined by

d((x1, x2, x3), (y1, y2, y3)) = |x1 − y1|+ |x2 − y2|+ |x3 − y3|.
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Also, let

A = {(0, 0, 0), (0, 4, 0), (4, 0, 0), (4, 5, 0), (5, 4, 0)},

B = {(0, 0, 1), (0, 4, 1), (4, 0, 1), (4, 5, 1), (5, 4, 1)}.

We define T, S : A→ B by

T (x1, x2, 0) =

{
(x1, 0, 1), if x1 ⩽ x2;

(0, x2, 1), if x1 > x2.
and S(x1, x2, 0) =

{
(x1, 0, 1), if x1 ⩽ x2;

(0, 0, 1), if x1 > x2.

Clearly d(A,B) = 1, A0 = A, B0 = B, T (A0) ⊆ B0, S(A0) ⊆ B0 and T is continuous.
Now we define functions ψ, ϕ : [0,∞) → [0,∞) by ψ(t) = t2 and ϕ(t) = t

2 .
Now, we show that T and S satisfies (i). For this regard, let x = (x1, x2, 0) , y =

(y1, y2, 0), u = (u1, u2, 0) and v = (v1, v2, 0) ∈ A such that

1
2 min{d(x, u), d(y, v)} ⩽ d(x, y), d(u, Tx) = d(A,B), d(v, Sy) = d(A,B). (17)

Now, from (17) we get that

v = (v1, v2, 0) =

{
(y1, 0, 0), if y1 ⩽ y2,

(0, 0, 0), if y1 > y2.

Case i) Let x = (0, 0, 0) and y = (y1, y2, 0). From d((u1, u2, 0), T (0, 0, 0)) = 1 we get
u1 = 0 and u2 = 0. Thus, u = (0, 0, 0).

Sub-case i) if y1 ⩽ y2 then v = (v1, v2, 0) = (y1, 0, 0). Here for all y = (y1, y2, 0) ∈ A
and y1 ⩽ y2 we get d(u, v) = y1, d(x, y) = y1 + y2, d(x, u) = 0, d(y, v) = y2 and
d(x,v)+d(y,u)

2 = 2y1+y2
2 . In this sub-case M(x, y, u, v) = y1 + y2. Moreover, (y1)

2 ⩽ (y1 +

y2)
2 − y1+y2

2 . Thus, ψ(d(u, v)) ⩽ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)) is true.
Sub-case ii) if y1 > y2 then v = (v1, v2, 0) = (0, 0, 0). Here for all y = (y1, y2, 0) ∈ A

and y1 > y2 we get d(u, v) = 0, d(x, y) = y1 + y2, d(x, u) = 0, d(y, v) = y1 + y2
and d(x,v)+d(y,u)

2 = y1+y2
2 . In this sub-case, M(x, y, u, v) = y1 + y2. Moreover,

0 ⩽ (y1+ y2)
2− y1+y2

2 . Therefore, ψ(d(u, v)) ⩽ ψ(M(x, y, u, v))−ϕ(M(x, y, u, v)) is true.

Case ii) Let x = (0, 4, 0) and y = (y1, y2, 0). From d((u1, u2, 0), T (0, 4, 0)) = 1, we get
u1 = 0 and u2 = 0. Thus, u = (0, 0, 0).

Sub-case i) if y1 ⩽ y2 then v = (y1, 0, 0). Now d(u, v) = y1, d(x, y) = |y2−4|, d(x, u) =
4, d(y, v) = y2 and

d(x,v)+d(y,u)
2 = 2y1+y2+4

2 . Here for all y = (y1, y2, 0) ∈ A and y1 ⩽ y2 we

observe that y21 ⩽ 42− 4
2 . Moreover f(x) = x2− x

2 is an increasing function on the interval

[14 ,∞) and M(x, y, u, v) ⩾ 4 imply that [d(u, v)]2 = y21 ⩽ [M(x, y, u, v)]2 − M(x,y,u,v)
2 .

Therefore, ψ(d(u, v)) ⩽ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)).
Sub-case ii) if y1 > y2 then (v1, v2, 0) = (0, 0, 0). Now d(u, v) = 0, d(x, u) = 4,

d(y, v) = y1 + y2. Since 0 ⩽ 42 − 4
2 by similar reason as in sub-case (i) we get the

inequality, ψ(d(u, v)) ⩽ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v))).
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Case iii) Let x = (4, 0, 0) and y = (y1, y2, 0). From d((u1, u2, 0), T (4, 0, 0)) = 1 we get
u1 = 0 and u2 = 0. Thus, u = (0, 0, 0).

Sub-case i) if y1 ⩽ y2 then v = (y1, 0, 0). Now, d(u, v) = y1 and M(x, y, u, v) =

max{|y1 − 4| + y2, 4, y2,
y1+|y1−4|+y2

2 }. Here for all y = (y1, y2, 0) ∈ A and y1 ⩽ y2
we can easily observe that y21 ⩽ y22 − y2

2 . Since M(x, y, u, v) ⩾ 4 we conclude that
y21 = ψ(d(u, v)) ⩽ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)).

Sub-case ii) if y1 > y2 then v = (v1, v2, 0) = (0, 0, 0). Now, d(u, v) = 0 and
M(x, y, u, v) = max{|y1 − 4| + y2, 4, y1 + y2,

y1+y2+4
2 }. For all y = (y1, y2, 0) ∈ A

and y1 > y2, we observe that 0 ⩽ 42 − 4
2 . Thus, ψ(d(u, v)) = 0 ⩽ 14 ⩽

ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)).

Case iv). Let x = (4, 5, 0) and y = (y1, y2, 0). From d((u1, u2, 0), T (4, 5, 0)) = 1, we
get u1 = 4 and u2 = 0. Thus, u = (4, 0, 0).

Sub-case i) if y1 ⩽ y2 then v = (y1, 0, 0). Now, d(u, v) = |y1 − 4| and M(x, y, u, v) =

max{|y1 − 4| + |y2 − 5|, 5, y2, 2|y1−4|+y2+5
2 }. Here for all y = (y1, y2, 0) ∈ A and y1 ⩽ y2,

we observe that (|y1−4|)2 ⩽ 52− 5
2 and M(x, y, u, v) ⩾ 5. These imply that ψ(d(u, v)) =

(|y1 − 4|)2 ⩽ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)).
Sub-case ii) if y1 > y2 then v = (v1, v2, 0) = (0, 0, 0). Now, d(u, v) = 4 and

M(x, y, u, v) = max{|y1 − 4| + |y2 − 5|, 5, y1 + y2,
9+|y1−4|+y2

2 }. We can easily ob-

serve that 42 ⩽ 52 − 5
2 and M(x, y, u, v) ⩾ 5. Thus, ψ(d(u, v)) = 42 ⩽ 52 − 5

2 ⩽
[M(x, y, u, v)]2 − M(x,y,u,v)

2 = ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)).

Case v). Let x = (5, 4, 0) and y = (y1, y2, 0). From d((u1, u2, 0), T (5, 4, 0)) = 1 we get
u1 = 0 and u2 = 4. Thus, u = (0, 4, 0).

Sub-case i) if y1 ⩽ y2 then v = (y1, 0, 0), d(u, v) = y1 + 4, d(x, u) = 5,

d(x, y) = |y1 − 5| + |y2 − 4|, d(y, v) = y2 and d(x,v)+d(y,u)
2 = |y1−5|+4+y1+|y2−4|

2 .

Now, 1
2 min{d(x, u), d(y, v)} ⩽ d(x, y) implies that 1

2 min{5, y2} ⩽ d(x, y) i.e., y2
2 ⩽

|y1 − 5|+ |y2 − 4|. Here M(x, y, u, v) = max{|y1 − 5|+ |y2 − 4|, 5, y2, |y1−5|+|y2−4|+y1+4
2 }.

For y = (4, 5, 0), former inequality is not satisfied, so we don’t need to verify (2) for
y = (4, 5, 0). Here for all y = (y1, y2, 0) ∈ A, y ̸= (4, 5, 0) and y1 ⩽ y2 we can easily observe
that (y1+4)2 ⩽ 52− 5

2 . Thus, ψ(d(u, v)) = (y1+4)2 ⩽ ψ(M(x, y, u, v))−ϕ(M(x, y, u, v)).
Sub-case ii) if y1 > y2 then (v1, v2, 0) = (0, 0, 0). Now d(u, v) = 4 and

M(x, y, u, v) = max{|y1−5|+ |y2−4|, 5, y1+y2, 9+|y2−4|
2 }. Here for all y = (y1, y2, 0) ∈ A

, y1 > y2 and (y1, y2, 0) ̸= (5, 4, 0), we can easily observe that 42 ⩽ 52 − 5
2 and

M(x, y, u, v) ⩾ 5. Thus, ψ(d(u, v)) = 16 ⩽ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)).

From all the cases, Case (i) to Case (iv), we conclude that (T, S) is (ψ, ϕ)-generalized
weak proximal contraction pair. Hence, all the hypotheses of Theorem 3.3 are satisfied,
thus T and S have a unique common best proximity point. Here we can not apply
Corollary 3.4 to show that T and S have a unique common best proximity point, since
(T, S) does not satisfy the condition of Corollary 3.4 at x = (4, 5, 0) and y = (5, 4, 0).
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4. Consequences

In this section we introduce the following definition and obtain some results of best
proximity points.

Definition 4.1 Let (X, d) be a metric space, A,B be nonempty subsets of X, and T, S :
A → B are non self mappings. We say that (T, S) is (ψ, ϕ)-weak proximal contraction
pair if, for all x, y, u, v ∈ A,

1
2 min{d(x, u), d(y, v)} ⩽ d(x, y)
d(u, Tx) = d(A,B)
d(v, Sy) = d(A,B)

 =⇒ ψ(d(u, v)) ⩽ ψ(d(x, y))− ϕ(d(x, y)), (18)

where ψ ∈ Ψ and ϕ ∈ Φ.

Theorem 4.2 Let A and B be two nonempty, closed subsets of a complete metric space
(X, d). Let T, S : A→ B be mappings. Suppose the following conditions are satisfied:

(i) (T, S) is (ψ, ϕ)-weak proximal contraction;
(ii) A0 ̸= ∅, T (A0) ⊆ B0,and S(A0) ⊆ B0;
(iii) either T or S is continuous.

Then T and S have a unique common best proximity point.

Proof. Let x0 ∈ A0. As in the proof of Theorem 3.3 we construct a sequence {xn} in
A0 such that

d(x2n+1, Tx2n) = d(A,B), d(x2n+2, Sx2n+1) = d(A,B)

for all n = 0, 1, 2, · · · and converging to some x∗ ∈ A0. With out loss of generality, we
assume T is a continuous mapping. Thus, we have

d(x∗, Tx∗) = lim
n→∞

d(x2n+1, Tx2n) = lim
n→∞

d(A,B) = d(A,B).

Hence, T has a best proximity point. Similar to Theorem 3.3, we can show that x∗ is
also a best proximity point of S and we also prove that x∗ is unique. ■

If we take ψ(t) = t = ϕ(t) in Theorem 4.2 we get the following corollary.

Corollary 4.3 Let A and B be two nonempty, closed subsets of a complete metric space
(X, d). Let T, S : A→ B be mappings. Suppose the following conditions are satisfied:

(i) for every x, y, u, v ∈ A,

d(u, Tx) = d(A,B)
d(v, Sy) = d(A,B)

}
=⇒ u = v;

(ii) A0 ̸= ∅, T (A0) ⊆ B0,and S(A0) ⊆ B0;
(iii) either T or S is continuous.

Then T and S have a unique common best proximity point.

If we relax condition (i) in Theorem 4.2 we get the following corollary.
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Corollary 4.4 Let A and B be two nonempty and closed subsets of a complete metric
space (X, d). Let T, S : A → B be mappings. Suppose that for all x, y, u, v ∈ A, the
following conditions are satisfied:

(i)
d(u, Tx) = d(A,B)
d(v, Sy) = d(A,B)

}
=⇒ ψ(d(u, v)) ⩽ ψ(d(x, y))− ϕ(d(x, y));

(ii) A0 ̸= ∅, T (A0) ⊆ B0 and S(A0) ⊆ B0;
(iii) either T or S is continuous.

Then T and S have a unique common best proximity point.

If we take ψ(t) = t and ϕ(t) = (1− k)t, where 0 ⩽ k < 1, in Corollary 4.4 we get the
following corollary.

Corollary 4.5 Let A and B be two nonempty and closed subsets of a complete metric
space (X, d). Let T, S : A → B be mappings. Suppose that for all x, y, u, v ∈ A, the
following conditions are satisfied:

(i)
d(u, Tx) = d(A,B)
d(v, Sy) = d(A,B)

}
=⇒ d(u, v) ⩽ kd(x, y);

(ii) A0 ̸= ∅, T (A0) ⊆ B0 and S(A0) ⊆ B0,
(iii) either T or S is continuous.

Then T and S have a unique common best proximity point.

The following example shows that the main result (Theorem 3.3) of this paper is a
generalization of Theorem 4.2.

Example 4.6 Let X = R3, d : X ×X → R defined by

d((x1, x2, x3), (y1, y2, y3)) = |x1 − y1|+ |x2 − y2|+ |x3 − y3|

and A = {(1, 1, 0), (1, 4, 0), (4, 1, 0)}, B = {(1, 1, 1), (1, 4, 1), (4, 1, 1)}. We define T, S :

A→ B by T (x1, x2, 0) =

{
(1, 1, 1), if x1 ⩽ x2;

(1, 4, 1), if x1 > x2.
and S(x1, x2, 0) = (1, 1, 1).

We can easily see that d(A,B) = 1 and for x = (4, 1, 0) , y = (1, 1, 0), u = (u1, u2, 0)
and v = (v1, v2, 0) from d(u, Tx) = 1 and d(v, Ty) = 1. Hence it follows that u = (1, 4, 0)
and v = (1, 1, 0). Since there is no ψ ∈ Ψ and ϕ ∈ Φ such that 1

2{d(x, u), d(y, v)} =
1
2{d((4, 1, 0), (1, 4, 0)) = 6 and d((1, 1, 0), (1, 1, 0)) = 0} ⩽ d((4, 1, 0), (1, 1, 0)) = 3 implies
ψ(d(u, v)) = ψ(3) ⩽ ψ(3)−ϕ(3) = ψ(d(x, y))−ϕ(d(x, y)). So we can not apply Theorem
4.2 to T and S regarding best proximity point. However, it can be easily verified all the
hypotheses of Theorem 3.3 of this paper are satisfied for the maps T and S and conclude
that T and S have a unique best proximity point.

5. Application in Fixed point theory

As an application of our results, by adding additional condition that either T or S is
continuous in the conjecture Theorem 2.3 of Singh et al. [10], we prove the following
fixed point theorem.

Theorem 5.1 Let X be a complete metric space. Let T, S : X → X be self maps such
that
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(i) either T or S is continuous;
(ii) for every x, y ∈ X, 1

2 min{d(x, Tx), d(y, Sy)} ⩽ d(x, y) implies that ψ(d(Tx, Sy)) ⩽
ψ(m(x, y)) − ϕ(m(x, y)), where ψ ∈ Ψ and ϕ ∈ Φ are defined as in Theorem 3.3 and

m(x, y) = max{d(x, y), d(x, Tx), d(y, Sy), d(x,Ty)+d(y,Sx)2 }.

Then T and S have a unique common fixed point.

Proof. Let A = B = X in Theorem 3.3. Clearly A0 = X = B0. Thus, T (A0) ⊆
B0, S(A0) ⊆ B0. Now, we prove that (T, S) is (ψ, ϕ)-generalized weak proximal contrac-
tion. Let x, y, u, v ∈ X satisfying the following conditions:

1
2 min{d(x, u), d(y, v)} ⩽ d(x, y), d(u, Tx) = d(A,B) and d(v, Sy) = d(A,B).

Since d(A,B) = 0, we have u = Tx and v = Sy. By hypothesis of theorem, we have
ψ(d(u, v)) = ψ(d(Tx, Sy)) ⩽ ψ(m(x, y))− ϕ(m(x, y)), where

m(x, y) = max{d(x, y), d(x, Tx), d(y, Sy), d(x, Ty) + d(y, Sx)

2
}

= max{d(x, y), d(x, u), d(y, v), d(x, v) + d(y, u)

2
}

=M(x, y, u, v).

Therefore, ψ(d(u, v)) ⩽ ψ(M(x, y, u, v))−ϕ(M(x, y, u, v)), which implies that (T, S) is a
(ψ − ϕ)-generalized weak proximal contraction pair. Since A0 = A ̸= ∅, condition (iii) of
Theorem 3.3 is satisfied.

Therefore all the conditions of Theorem 3.3 are satisfied. Consequently there exists
a unique common best proximity point x∗ ∈ X of T and S. That is there is a unique
x∗ ∈ X such that d(x∗, Tx∗) = 0 = d(A,B) and d(x∗, Sx∗) = 0 = d(A,B). This implies
x∗ = Tx∗ and x∗ = Sx∗. i.e., Tx∗ = x∗ = Sx∗. So T and S have a common fixed point x∗

in X. The uniqueness of the common fixed point of T and S follows from the condition
(ii) of the hypothesis. Hence, T and S have a unique common fixed point. ■
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