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Abstract. In this work the notion of a bornological linearly topologized module over a dis-
crete valuation ring is introduced and it is shown that certain semimetrizable linearly topolo-
gized modules are bornological. The main result is a characterization of bornological linearly
topologized modules, from which the completeness and the quasi-completeness of certain
linearly topologized modules of continuous linear mappings are derived.
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1. Introduction

Bornological locally convex spaces were introduced by Mackey [5] and redefined by
Bourbaki [1], a bornological space being characterized by the property according to
which every linear mapping on it which transforms bounded sets into bounded sets is
continuous.

In this paper the notion of a bornological linearly topologized module over an arbi-
trary discrete valuation ring is defined. It is shown that certain semimetrizable linearly
topologized modules are bornological and an example of a metrizable linearly topologized
module which is not bornological is given. The main result established here is a char-
acterization of bornological linearly topologized modules, motivated by a classical result
of the theory of locally convex spaces, from which we derive the completeness and the
quasi-completeness of certain linearly topologized modules of continuous linear mappings
(with respect to the topology of bounded convergence). It should also be mentioned that
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a major difference between the classical case and the one discussed in the present work
is that in the former invertible scalars (that is, non-zero scalars) may be taken “topolog-
ically close to zero”, which is not possible in the context under consideration. Linearly
topologized rings and linearly topologized modules have been considered, for example,
in [2, 4, 7–9].

In this paper R will denote an arbitrary discrete valuation ring [7, Chapter I], M its
valuation ring, π a generator of M and R0 the R-module K/R (where K is the field of
fractions of R); and “R-module” will always mean “unitary R-module”. Since

{πnR; n = 1, 2, . . . }

constitutes a fundamental system of neighborhoods of 0 in R formed by ideals of R such
that

∩
n≥1

πnR = {0}, it follows that R is a metrizable linearly topologized ring.

Throughout this work we shall say that E is a linearly topologized R-module if E
is a topological R-module whose origin admits a fundamental system of neighborhoods
consisting of submodules of E. It is easily seen that a subset B of a linearly topologized
R-module E is bounded if and only if for each neighborhood U of 0 in E which is a
submodule of E there is an integer k ≥ 1 so that πkB ⊂ U . For each Hausdorff linearly
topologized R-module E, E∗ denotes the R-module of all continuous R-linear mappings
from E into R0 (R0 endowed with the discrete topology, under which it is a linearly
topologized R-module) [3, 6].

2. Bornological linearly topologized R-modules: basic properties

Definition 2.1 Let E be a linearly topologized R-module. A subset U of E is said to
be a bornivorous in E if U is a submodule of E and for each bounded subset B of E
there is an integer k ≥ 1 such that πkB ⊂ U (that is, (πkR)B ⊂ U).

Remark 1 It is easily seen that the notion of a bornivorous set does not depend on the
choice of the generator π of M .

Every neighborhood of 0 in a linearly topologized R-module E which is a submodule
of E is a bornivorous in E. The next example shows that the converse of this assertion
is not always true.

Example 2.2 Let E be the product R-module RN endowed with the product topology,
which makes E into a metrizable linearly topologized R-module. We claim that the
submodule U = πE of E, which is not a neighborhood of 0 in E, is a bornivorous in
E. In fact, let B be an arbitrary bounded subset of E and consider the neighborhood
W = (πR)×R×R×· · ·×R× . . . of 0 in E. By the boundedness of B there is an integer
ℓ ≥ 1 so that πℓB ⊂ W , which implies πℓ+1B ⊂ U . Hence U is a bornivorous in E. We
may also observe that

πW = (π2R)× (πR)× (πR)× · · · × (πR)× . . .

is not a neighborhood of 0 in E.

Definition 2.3 A linearly topologized R-module E is said to be bornological if every
bornivorous in E is a neighborhood of 0 in E.
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We have just seen that the metrizable linearly topologized R-module E, considered in
Example 2.2, is not bornological.

Proposition 2.4 Let E be a semimetrizable linearly topologized R-module such that,
for each integer n ≥ 1 and for each neighborhood U of 0 in E, πnU is a neighborhood of
0 in E. Then E is bornological.

Proof. Let U be a bornivorous in E and let (Un)n≥1 be a decreasing fundamental system
of neighborhoods of 0 in E. If U is not a neighborhood of 0 in E, then U does not contain
πnUn for every integer n ≥ 1, because πnUn is a neighborhood of 0 in E for n = 1, 2, . . . .
Hence there exists a sequence (xn)n≥1 in E such that xn ∈ Un and πnxn /∈ U for
n = 1, 2, . . . . But, since (xn)n≥1 is a null sequence in E, the set {xn;n = 1, 2, . . . }
is bounded in E. Thus the assumption that U is a bornivorous in E guarantees the
existence of an integer m ≥ 1 for which πmxm ∈ U , which does not occur. Therefore U
is a neighborhood of 0 in E, and E is bornological. ■

Example 2.2 shows that the condition “πnU is a neighborhood of 0 in E for each
integer n ≥ 1 and for each neighborhood U of 0 in E ” is essential for the validity of
Proposition 2.4.

Example 2.5 By Proposition 2.4, every discrete linearly topologized R-module is
bornological. In particular, R0 is bornological.

Corollary 2.6 If E is a locally bounded linearly topologized R-module such that πnU
is a neighborhood of 0 in E for each integer n ≥ 1 and for each neighborhood U of 0 in
E, then E is bornological.

Proof. Since E is locally bounded, there exists a bounded neighborhood W of 0 in E.
By hypothesis πnW is a neighborhood of 0 in E for n = 1, 2, . . . , and it is easily seen
that (πnW )n≥1 is a fundamental system of neighborhoods of 0 in E. Therefore E is
semimetrizable, and the result follows from Proposition 2.4. ■

Proposition 2.7 Let (Eα)α∈A be a family of bornological linearly topologized R-
modules, E an R-module and, for each α ∈ A, let uα : Eα → E be an R-linear mapping.

Assume that E =

[ ∪
α∈A

Im(uα)

]
and that E is endowed with the final linear topology for

the family (Eα, uα)α∈A [6]. Then the linearly topologized R-module E is bornological.

Proof. Let U be a bornivorous in E and α ∈ A be arbitrary. We claim that the submod-
ule u−1

α (U) of Eα is a bornivorous in Eα. In fact, if Bα is a bounded subset of Eα, uα(Bα)
is a bounded subset of E (since uα is continuous), and hence there is an integer k ≥ 1 so
that πkuα(Bα) = uα(π

kBα) ⊂ U . Consequently πkBα ⊂ u−1
α (U), proving that u−1

α (U)
is a bornivorous in Eα, hence a neighborhood of 0 in Eα (since Eα is bornological).
Therefore U is a neighborhood of 0 in E, and E is bornological. ■

An immediate consequence of Proposition 2.7 reads:

Corollary 2.8 (a) A quotient of a bornological linearly topologized R-module, endowed
with the quotient topology, is a bornological linearly topologized R-module.
(b) A topological direct sum of a family of bornological linearly topologized R-modules
is a bornological linearly topologized R-module.

Example 2.9 For each integer n ⩾ 1, the product R-module Rn endowed with the
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product topology is a metrizable linearly topologized R-module. Moreover, since

πm((πm1R)× · · · × (πmnR)) = (πm+m1R)× · · · × (πm+mnR)

for arbitrary integers m,m1, . . . ,mn ⩾ 1, Proposition 2.4 ensures that Rn is bornological.
Consequently, in view of Corollary 2.8(b), the topological direct sum R(N) is bornological.

3. A characterization of bornological linearly topologized R-modules
and some consequences

Theorem 3.1 For a linearly topologized R-module E, the following conditions are equiv-
alent:

(a) E is bornological;
(b) for each linearly topologized R-module F , we have that each set of R-linear mappings

from E and F which transforms bounded subsets of E into bounded subsets of F is
equicontinuous;

(c) for each linearly topologized R-module F , we have that each R-linear mapping from E
into F which transforms null sequences in E into bounded subsets of F is continuous;

(d) for each linearly topologized R-module F , we have that each R-linear mapping from E
into F which transforms bounded subsets of E into bounded subsets of F is continuous.

Proof. (a) ⇒ (b): Let F be an arbitrary linearly topologized R-module and X a set of
R-linear mappings from E into F such that X(B) is bounded in F for every bounded
subset B of E. We claim that X is equicontinuous. Indeed, let V be a neighborhood of 0
in F which is a submodule of F and let us show that the submodule

U =
∩
u∈X

u−1(V )

of E is a bornivorous in E. For this purpose, let B be a bounded subset of E. Since, by
hypothesis, X(B) is bounded, there is an integer ℓ ≥ 1 so that πℓX(B) ⊂ V . Consequently

πℓB ⊂ U,

showing that U is a bornivorous in E. Therefore, by (a), U is a neighborhood of 0 in E,
and X is equicontinuous.

(b) ⇒ (c): Let F be a linearly topologized R-module and let u be an R-linear mapping
from E into F which transforms null sequences in E into bounded subsets of F . Let B be
an arbitrary bounded subset of E. If u(B) is not bounded, there exists a neighborhood
V of 0 in F which is a submodule of F such that

π2nu(B) ̸⊂ V

for n = 1, 2, . . . . Then for each n = 1, 2, . . . there is an xn ∈ B so that

π2nu(xn) = πnu(πnxn) /∈ V.

Put yn = πnxn for n = 1, 2, . . . ; (yn)n≥1 is a null sequence in E, because (πn)n≥1 is a null
sequence in R and (xn)n≥1 is a bounded sequence in E. But the sequence

(
u(yn)

)
n≥1
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is not bounded in F . For, if it were, there would exist an integer ℓ ≥ 1 for which
πℓu(yℓ) = πℓu(πℓxℓ) ∈ V , which does not occur. Therefore u(B) is bounded, and (b)
ensures the continuity of u.

(d) ⇒ (a): Let V be the filter base on E formed by all bornivorous in E, which clearly
satisfies conditions (ATG 1), (ATG 2), (TMN 1) and (TMN 3) of Theorem 12.3 of [9]. Let
x ∈ E and V ∈ V be given. By the boundedness of the set {x}, there is an integer m ≥ 1
so that (πmR)x ⊂ V , and condition (TMN 2) of the above-mentioned theorem is also
fulfilled. Consequently one may guarantee the existence of a unique R-module topology
on E for which V is a fundamental system of neighborhoods of 0 (by construction, this
topology is linear). Let us represent by F the R-module E endowed with this topology.
Then the identity mapping u : E → F transforms bounded subsets of E into bounded
subsets of F , and condition (d) implies its continuity. Therefore every element of V is a
neighborhood of 0 in E, proving that E is bornological.

This completes the proof of the theorem. ■

Remark 2 We shall use Theorem 3.1 to give another explanation for the fact that the
linearly topologized R-module E, considered in Example 2.2, is not bornological. In fact,
let F be the product R-module RN endowed with the linear R-module topology for which the
submodules πnRN (n = 1, 2, . . . ) of RN constitute a fundamental system of neighborhoods
of 0. Since F is bounded, the identity mapping u : E → F transforms bounded subsets of
E into bounded subset of F . But u is not continuous, because πRN is a neighborhood of 0
in F which is not a neighborhood of 0 in E. Thus, by Theorem 3.1, E is not bornological.

An immediate consequence of Theorem 3.1 reads:

Corollary 3.2 Let E be a bornological linearly topologized R-module and F an arbi-
trary linearly topologized R-module. If τb is the linear R-module topology of bounded
convergence on the R-module L(E;F ) of all continuous R-linear mappings from E into F ,
then every τb-bounded subset of L(E;F ) is equicontinuous. In particular, if E is a Haus-
dorff space, every bounded subset of E∗ with respect to the strong topology β(E∗, E) is
equicontinuous.

Corollary 3.3 Let E be a bornological linearly topological R-module and F a complete
Hausdorff linearly topologized R-module. Then (L(E;F ), τb) is complete. In particular,
if E is a Hausdorff space, (E∗, β(E∗, E)) is complete.

Proof. Let (ui)i∈I be a τb-Cauchy net in L(E;F ). It is easily seen that, for each x ∈ E,
(ui(x))i∈I is a Cauchy net in F ; thus (ui(x))i∈I converges to an element u(x) ∈ F ,
because F is complete. The mapping u : E → F so defined is R-linear. We claim that
u ∈ L(E;F ) and that (ui)i∈I converges to u with respect to τb. Indeed, let B a bounded
subset of E and V a neighborhood of 0 in F which is a submodule of F . Then there
exists an i0 ∈ I such that ui(x)− ui0(x) ∈ V for x ∈ B and i ∈ I, i ≥ i0, which implies
u(x) − ui0(x) ∈ V for x ∈ B (recall that V is closed in F ). On the other hand, there
exists an integer s ≥ 1 so that πs ui0(B) ⊂ V , and hence

πs u(B) = πs(u(B)− ui0(B)) + πs ui0(B) ⊂ πsV + V ⊂ V + V = V.

Therefore u(B) is bounded in F , and Theorem 3.1 furnishes the continuity of u. Finally
it is clear that (ui)i∈I converges to u for τb, thereby concluding the proof. ■

Corollary 3.4 Let E be a bornological linearly topologized R-module and F a quasi-
complete Hausdorff linearly topologized R-module. Then (L(E;F ), τb) is quasi-complete.
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Proof. Let X be a τb-bounded and τb-closed subset of L(E;F ). By Corollary 3.2, X
is equicontinuous and, by Proposition 3.6 of [6], X is τb-complete. Thus, by definition,
(L(E;F ), τb) is quasi-complete. ■

Example 3.5 Let E be an arbitrary R-module endowed with the unique linear R-
module topology for which {πnE; n = 1, 2, . . .} constitutes a fundamental system of
neighborhoods of 0. Then E is semimetrizable and πnU is a neighborhood of 0 in E for
each integer n ⩾ 1 and for each neighborhood U of 0 in E. Therefore, by Proposition 2.4,
E is bornological, and hence the first assertions of Corollaries 3.2 and 3.3, as well as
Corollary 3.4, are valid for E.
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