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On Laplacian energy of non-commuting graphs of finite groups
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Abstract. Let G be a finite non-abelian group with center Z(G). The non-commuting graph
of G is a simple undirected graph whose vertex set is G \ Z(G) and two vertices z and y
are adjacent if and only if xy # yx. In this paper, we compute Laplacian energy of the non-
commuting graphs of some classes of finite non-abelian groups.

© 2018 TAUCTB. All rights reserved.

Keywords: Non-commuting graph, L-spectrum, Laplacian energy, finite group.

2010 AMS Subject Classification: 20D60, 05C50, 15A18, 05C25.

1. Introduction

Let G be a graph. Let A(G) and D(G) denote the adjacency matrix and degree matrix
of G respectively. Then the Laplacian matrix of G is given by L(G) = D(G) — A(G).
Let /1, 82, .., Bm be the eigenvalues of L(G) with multiplicities by, bg, ..., by,. Then the
Laplacian spectrum of G, denoted by L-spec(G), is the set {ﬁl{l, 32, ..., B}, The Lapla-
cian energy of G, denoted by LE(G), is given by

2/¢(G)|
LEG) = Y |p- o &
NGL-Spm(g)‘ 0(G)] '

where v(G) and e(G) are the sets of vertices and edges of G respectively. It is worth
mentioning that the notion of Laplacian energy of a graph was introduced by Gutman
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and Zhou [19]. A graph G is called L-integral if L-spec(G) contains only integers. Various
properties of L-integral graphs and LFE(G) are studied in [2, 21, 23, 31, 32].

Let G be a finite non-abelian group with center Z(G). The non-commuting graph of G,
denoted by Ag, is a simple undirected graph such that v(Ag) = G\ Z(G) and two vertices
x and y are adjacent if and only if xy # yx. Various aspects of non-commuting graphs of
different families of finite non-abelian groups are studied in [1, 3, 9, 17, 30]. Note that the
complement of Ag is the commuting graph of G denoted by Ag. Commuting graphs of
finite groups are studied extensively in [4, 12-14, 20, 24, 27, 28]. In [11], Dutta et al. have
computed the Laplacian spectrum of the non-commuting graphs of several well-known
families of finite non-abelian groups. In this paper we compute the Laplacian energy
of those classes of finite groups. It is worth mentioning that Ghorbani and Gharavi-
Alkhansari [18] have computed the energy of non-commuting graphs of the projective
special linear group PSL(2,2%), where k > 2, the general linear group GL(2,q), where
q=7p" (pis a prime and n > 4) and the quasi-dihedral group @ D3, recently.

2. Groups with known central factors

In this section, we compute Laplacian energy of some families of finite groups whose
central factors are well-known.

Theorem 2.1 Let G be a finite group and Z(G) >~ Sz(2), where Sz(2) is the Suzuki
group presented by (a,b: a® = b* = 1,07 1ab = a?). Then

B(Ag) = (120|Z< ) +3o) 2(G)|

Proof. It is clear that [v(Ag)| = 19|Z(G)|. Since Z(GG)

>~ S52(2), we have

720 - (aZ(G),bZ(G) : a®Z(G) =b*Z(G) = Z(G), b 'abZ(G) = a*Z(Q)).

Note that for any z € Z(G),

Cala) = Cglaz) = Z(G)UaZ(G)Ua?Z(G) Ua*Z(G) Ua*Z(G),
Ca(ab) = C(;(abz) Z(G)UabZ(G)Ua*h’Z(G) U a*b®Z(Q),
Ca(a®b) = ( 2b2) = Z(G) U a?bZ(G) U a®b?*Z(G) U ab3Z(Q),
Ca(a®b?) = Cq(a®h’z) = Z(G) Ua?b*Z(G) U ab®*Z(G) U a*bZ(G),
Ca(b) = Cg(bz) Z(@Q)UbZ(G) U Z(G)UBZ(G)  and
Ca(a’h) = Ca(aPbz) = Z(G) UaPhZ(G) U a2?Z(G) U a*b>Z(G)

are the only centralizers of non-central elements of GG. Since all these distinct centralizers
are abelian, we have

Ac = Kijz(6) U5Ks1z(0))
and hence |e(Ag)| = 150|Z(G)|*. By Theorem 3.1 of [11], we have

L-spec(Ag) = {0, (15 2(G)[)*7 171 (16| 2(G))) 7D (19)2(G)|)°}.
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2le(Ac)|| _ 300
So, W(Ac)] | — ‘Z( )

£12(G)| and ’19|Z( )| - 2eld

(@) - 35| = B1Z@),

E’Z( )|. By (1), we have

(@)

E(4q) = %Z( &)1+ 412(6) - 1) 1512(6)))

+wl2(6))-5) (g1201) +5 (5121 )

Hence, the result follows. [ |

Theorem 2.2 Let G be a finite group such that % = Zyp X Ly, where p is a prime.
Then

E(Ac) = 2p(p — D[Z(G)].

Proof. Tt is clear that [v(Ag)| = (p* — 1)|Z(G)]|. Since % & Zp X Ly, we have % =

(aZ(G),bZ(G) : aP,bP,aba= b~ € Z(@)), where a, b € G with ab # ba. Then for any
z € Z(G),
Cqla) = Cgla'z) = Z(G)UaZ(G)U---UaP ' Z(G) for 1 <i<p—1 and

Ce(a'b) = Ca(albz) = Z(G)Ua?bZ(G)U -+ LUalt’ ' Z(G) for 1 < j < p

are the only centralizers of non-central elements of G. Also note that these centralizers
are abelian subgroups of G. Therefore

_ p
Ac = Kica@nz@) U (U Kica@\z@)-

Since, |Cg(a)| = |Ca(a’b)| = p|Z(G)] for 1 < j < p, we have Ag = (p + 1) K(,_1)z(0)|
and hence |e(Ag)| = W|Z( )|%. By Theorem 3.2 of [11], we have

L-spec(Ag) = {0, (9 — p)| Z(@))" IO (2 —1)12(@))).

Therefore, Q‘Le(%gﬂ‘ - ( —D|Z(@)], |(* = p)|Z(G) =0 and
|0* - DI12(6)] - 249 = 0 - 11Z(@)]. By (1), we have

E(Ag) = p(p — V)IZ(G)| + (0 = DIZ(G)| = p = O+ p((p — 1)|Z(G)]).

Hence the result follows. [ ]

Corollary 2.3 Let G be a non-abelian group of order p?, for any prime p. Then
E(Ag) = 2p*(p - 1).

Proof. Note that |Z(G)| = p and Z(G) = 7y x Zy,. Hence the result follows from Theorem
2.2. |
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Theorem 2.4 Let G be a finite group such that % 2 Doy, for m > 2. Then

(2m® — 3m)(m — | Z(G)|* + m(4m — 3)| Z(G)|

LE(Ag) = S —

Proof. Clearly, |[v(Ag)| = (2m — 1)|Z(G)|. Since % = Dy, we have % =
(xZ(Q),yZ(G) : 2%, y™, zyx~ly € Z(Q)), where x,y € G with 2y # yz. It is easy
to see that for any z € Z(G),

Ca(zy’) = Ca(zy’z) = Z(G)Uzy’ Z(G),1 <j <m and
Ca(y) = Caly'z) = Z(G)UyZ(G)U---Uy™1Z(G),1<i<m—-1
are the only centralizers of non-central elements of G. Also note that these centralizers are
abelian subgroups of G and |Cq(zy’)| = 2|Z(G)| for 1 < j < m and |Cg(y)| = m|Z(G)].
Hence
Ag = Kim-)z(@) U mE 7))

and |e(Ag)| = M By Theorem 3.4 of [11], we have

L-spec(Ag) = {0, (m|Z(G))™ VD (2(m — 1) 2(G)))™ D=, (2m - 1) 2(G)))}.

Therefore,
‘0 - 2eldol| _ mim = WIZ(O),
izl - 3 | =
o 7)) - 2| _ = = 214G
fam - vizie - GG | = O

By (1), we have

LB(Ag) 2= VIZE | (7 - 1) <m<m2;1 12'?“')
m—1)\m— m2 —m
+ (m|Z(G)| — m) <( 1)2(m_i)’Z(G)’> +m<( 2m+_1i|Z(G)|>
and hence, the result follows. -

Using Theorem 2.4, we now compute the Laplacian energy of the non-commuting
graphs of the groups Ma,, Doy and Q4 respectively.



P. Dutta and R. K. Nath / J. Linear. Topological. Algebra. 07(02) (2018) 121-132. 125

Corollary 2.5 Let My, = (a,b: a™ = b*® = 1,bab~! = a!) be a metacyclic group,
where m > 2. Then

m(2m—3)(m—1)n%+m(4m—3)n if m is odd
LE(AM2mn) = {m(m—Q)(m—z?:%E}&-m(Zm—?))n

m—1 ’

if m is even.

¢

Proof. Observe that Z(Moy,,) = (b?) or (b?) Ua’ (b?) according as m is odd or even.

Also, it is easy to see that Zé‘]/\[f[;“”; j = Doy, or D, according as m is odd or even. Hence,

the result follows from Theorem 2.4 [ ]

Corollary 2.6 Let D, = (a,b: a™ = b?> = 1,bab~! = a™!) be the dihedral group of
order 2m, where m > 2. Then

m?2, if m is odd
LE(Ap,,) = {m(m23m+3)

— , if m is even.

Corollary 2.7 Let Qum = (z,y: y*™ = 1,22 = y™, yzy~! =y~ 1), where m > 2, be the
generalized quaternion group of order 4m. Then

2m(4m? — 6m + 3)

LE =
Proof. The result follows from Theorem 2.4 noting that Z(Qumn) = {1,a™} and
2%4) = Dom. .

3. Some well-known groups

In this section, we compute Laplacian energy of the non-commuting graphs of some
well-known families of finite non-abelian groups.

Proposition 3.1 Let G be a non-abelian group of order pq, where p and ¢ are primes

with p | (¢ —1). Then

2q(p* —1)(g — 1)
pg—1 '

LE(Ag) =

Proof. It is clear that |v(Ag)| = pg — 1. Note that |Z(G)| = 1 and the centralizers of
non-central elements of G are precisely the Sylow subgroups of G. The number of Sylow
g-subgroups and Sylow p-subgroups of G are one and ¢ respectively. Therefore, we have

Ag = Ky-1UqEKp
and hence |e(Aq)| = M. By Proposition 4.1 of [11], we have

L-spec(Ag) = {0, (pg — 0)* %, (pq — p)** %%, (pg — 1)}
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2le(Ag) *—p*q—q’+q _ 2le(Ac) a(g—p)(p—1) 2le(Ag)|
50, 10 = Tt -1 0 P10~ Totao) pa-1 oo
=20 and ‘pq —1- gy | = P By (1), we have
2.2 2 2
—pPq— >+ —p)p—1
LE(Ag) = PL P14 q+(q_2)<Q(q p)(p ))
pqg—1 pq—1
q—p)g—1 PPa+¢* —2pg—q+1
+ (pg — 2q) (H()> +q<
pqg—1 pqg—1
and hence, the result follows. |
Proposition 3.2 Let QDQn denotes the quasidihedral group (a,b : ot = =

1,bab~" = a®"*~1), where n > 4. Then

23n—3 o 22n 1+ 3.9n
on-1_1

E(Agp,.) =

Proof. Tt is clear that Z(QDan) = {1,a®" " }; and so [v(Agp,.)
that

= 2(2""! —1). Note

CQDan (a) = Cgpya (a') = (a) for 1 <i < 2" 1 —1,i #2"% and
CQD211 (a/]b) = {1, a2n72, (],jb’ aj+2n72b} for 1 < ] < 2n—2

are the only centralizers of non-central elements of (QDs.. Note that these centralizers
are abelian subgroups of () Ds~. Therefore, we have

n—2

AqDan = Kicgp,, )\ 2(@Dan)| B (Y, KiCan,. @)\ 2(@Dan))-

Since |Cgp,.(a)] = 2" and |Cgp,. (a’b)| = 4 for 1 < j < 2"2, we have Agp,, =
Kon-1_o 2" 2K,. Hence

3.22n=2 _ g on—1
5 )

le(Agp.. )| =

By Proposition 4.2 of [11], we have

L-spec(Agp,.) = (0,2 H)" 72— 47 20 —2)2 7).

2le(Agpyn)l| _ 32771 (2771=2) |op—1  2le(Agpyn)l| _ 22n-2_g9n-1
Therefore, ‘O - ‘U(AQDQW,)‘ = 2on-1_9 2 |U(AQD2n — T 99n-1_9 >
2n . 4 . 2‘6(’AQD2’IL)‘ _ 22n—2_6.2n—1+8 n _ 2| AQDQn | _ 22’r7,—2_2.2n—1+4 B
‘U(AQDzn)‘ 227712 Jv( AQDzn 2.2n—1-2 . y

(1), we have

3.2n (21 — 2 _ 22n—2 4 gn—1
Plan,) =22 BB sy (B4

2.2n—1 — 2.2n=1 -2

N 2n72 22n—2 o 6.271—1 + 8 N 2n72 22n—2 _ 2'271—1 + 4
2.2n—1 9 2.2n—1 9
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and hence, the result follows. [ |

Proposition 3.3 Let G denotes the projective special linear group PSL(2,2*), where
k > 2. Then

3.20k _ 9 9bk _ 7 o4k 4 93k 4 4 92k 4 2’f

BlAe) = 23k — 2k — 1

Proof. We have |[v(Ag)| = 23 —2F —1, since G is a non-abelian group of order 2¥(2%—1)
with trivial center. By Proposition 3.21 of [1], the set of centralizers of non-trivial elements
of G is given by

{zPz™ ' Az~ 2Bz~ : z € G}

where P is an elementary abelian 2-subgroup and A, B are cyclic subgroups of G having
order 2% 2% — 1 and 2* 4 1 respectively. Also the number of conjugates of P, A and B in
G are 2F 4-1,2F-1(2% + 1) and 2¥=1(2F — 1) respectively. Hence Ag is given by

(25 + 1)K ppy-sjo1 U281 (28 + 1) Kjpag1 1 U281 (28 — DK g .
That is, Ag = (2% + 1) Kor_q L1287 1(2F 4+ 1) Kor_y LI 2F71(2F — 1) Ky« Therefore,

6k _ 324k _ 23k 4 222k 4 2k

()| = 5

By Proposition 4.3 of [11], we have

3k—1_92k_ 9k—1 2k _ 9k _
E-spec(Ag) = {0,(2%F — 281 — 1) TTTE g8k gkt )22

(23k B 2k+1 + 1)23k—1_22k_3'2k—1, (23](3 B 2k B 1)22k+2k}
2le(Ag)|| __ 26k_3.24k_23k4 9 92k ok 3k k+1 2le(Ag)|| __ 23k—2.9F_1
Now, )0 o( AGG) PF_2F—1 ‘2 —2¥ -1 5 ‘— PRk
3k k+1 2\ al| _ 3k k+1 2le(Ag)l| _ 231
‘2 — 2 ‘ 23k — 2k 1 ‘2 —28 41— |ve(AGG)| T 28R 2R 1
2 A 4k 3k 2k k
and ’23’“ —2k 11— |Le(s45))|l 2 gsk §k +12 +1. By (1), we have
6k 4k 3k 2k k 3k k
— 3.2% — 2o 4+ 2.2¢F 4+ 2 3h—1 ok 1y [ 277 =227 -1
E(Ag) = g + (@ -9 b ) (S

+(22]€_2k_2) 2k + 23]{71_22]6_32]671 23k_1
a1 )t SR g

(2% 42 <24’f — 23k —22k+2k+1>

23k — 2k _ 1

and hence, the result follows. [ |
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Proposition 3.4 Let G denotes the general linear group GL(2,q), where ¢ = p™ > 2
and p is a prime. Then

¢’ —2¢° —q" +2¢° +2¢° + ¢* —4¢> +2¢* +¢
P11 :

LE(Ag) =

Proof. We have |G| = (¢*> — 1)(¢*> — q) and |Z(G)| = q — 1. Therefore, [v(Ag)| =
q* — ¢ — ¢*> + 1. By Proposition 3.26 of [1], the set of centralizers of non-central elements

of GL(2,q) is given by
{eDz™ 2l 2 PZ(GL(2,¢)z™" : 2 € GL(2,¢)}

where D is the subgroup of GL(2,q) consisting of all diagonal matrices, I is a cyclic
subgroup of GL(2,q) having order ¢> — 1 and P is the Sylow p-subgroup of GL(2,q)
consisting of all upper triangular matrices with 1 in the diagonal. The orders of D and
PZ(GL(2,q)) are (¢ — 1)? and q(q — 1) respectively. Also the number of conjugates of

D,I and PZ(GL(2,q)) in GL(2,q) are M M and ¢ + 1 respectively. Hence the
commuting graph of GL(2,q) is given by

q(qg—1)

qlg+1
( )K|me*1|—q+1 U TK|m]x*1|—q+1 U (g + DK 2pz(GL(2,)e|—q+1-

7 1 —1
Thus, Ag = “CUNKe 5000 U DTN KL U (g + 1)Kpe_ggs1. Hence, |e(Ag)| =
4*—29"—2¢°+5¢°+q*—4q°+q By
5 .

Proposition 4.4 of [11], we have

a*—2¢3+q

3__ 272
L-spec(Ac) = {0,(¢* —¢* —2¢* +2¢9)" 7" " (¢* - -242 +q+1) 2,

a*—24%-24%14 2
(¢~ -2 +3¢-1)  * ("¢ -2+
_ 2[e(Ag)] q8—2q’—2q6+5q5+q4—4q3+q 4B 9g? _ 2le(Ag)l | q3—2q2+q
50, |0 = Tt DA a 2 + 20 - Rt | =
‘q4_q3_2q2+q+1_ le(da \‘_q572q7q+3q;fl G 22431 2Ie(;‘4c|
v(Ag =g —q*+
572 4+ 3__ 2+2 —1 673 5+2 4+2 3__ 2 +1
! t;{‘—qq“—qq“rlq and )q ¢+l U(AG “ == q4—qq3—¢;12+1q ! y (1), w
have
LE(AG):q q 4q 3q2q q q+(q3_q2_2q) 4q 3q 2q
¢ —q¢—q+1 ¢ —¢-—q¢+1

N ¢ —2¢3+q\ (@ —2¢" — P +34 -1
2 = - +1
N =20 -2 +q\ (¢ —2¢"+@P - +2¢—1
2 - - +1

and hence, the result follows. [ |
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Proposition 3.5 Let F' = GF(2"),n > 2 and ¢ be the Frobenius automorphism of F,
i.e., 9(z) = 2% for all x € F. If G denotes the group

0
1

U(a,b) = ra,be F

SN Q=
—_ o O

¥(a)

under matrix multiplication given by U(a,b)U(a’',b') = U(a + a/,b+ V' + a’d(a)), then
LE(AG) — 22n+1 _ 2n+2.

Proof. Note that Z(G) = {U(0,b) : b € F} and so |Z(G)| = 2". Therefore, |v(Ag)| =

2"(2" —1). Let U(a,b) be a non-central element of G. The centralizer of U(a,b) in G

is Z(G) U U(a,0)Z(G). Hence Ag = (2" — 1)Ka. and |e(Ag)| = % By

Proposition 4.5 of [11], we have

L—SpeC(A(;) — {07 (22n _ 2”4‘1)(2”_1)27 (2271 _ 271)2”_2

.

— 22n _99n 2271 o 2n+1 _ 2|e(AG)|

Thus, |0 — F£)

=0 and |22 — 27 — Jelgell|

[v(Ag)l [v(Ag)l lv(Ag)l
2". By (1), we have
LE(Ag) =2 —2.2" + ((2" = 1)H)0 + (2" — 2)2"
and hence, the result follows. |

Proposition 3.6 Let F' = GF(p"™) where p is a prime. If G denotes the group

100
V(a,b,c)= |al0| :a,b,ce F
bel

under matrix multiplication V(a,b,c)V(a',¥/,¢') =V(a+d' b+ + cd’,c + ), then
LE(Ag) = 2(p™ — p™).

Proof. We have Z(G) = {V(0,b,0) : b € F} and so |Z(G)| = p™. Therefore, |v(Ag)| =
p"(p?™ — 1). The centralizers of non-central elements of A(n,p) are given by
(1) If b,c € F and ¢ # 0 then the centralizer of V(0,b,¢) in G is {V(0,V,c) : ¥/, €
F} having order p?".
(2) If a,b € F and a # 0 then the centralizer of V(a,b,0) in G is {V(d/,¥',0) : a’,V/ €
F} having order p?".
(3) If a,b,c € F and a # 0,c¢c # 0 then the centralizer of V(a,b,c) in G is
{V(d',V,ca'a=t) : a',b/ € F} having order p*".
It can be seen that all the centralizers of non-central elements of A(n,p) are abelian.
Hence,

ZG - Kp2n_pn L Kp2n_pn L (pn - 1)Kp2n_pn = (pTl + l)sz'”—p"
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and |e(Ag)| = w. By Proposition 4.6 of [11], we have

n n\p*" —2p" —1 n n\P"
L’SpeC(AA(n,p)) = {07 (pS _p2 )P Y 7(p3 -Pp )p }

2le(Ac)l| _ .3 2 3 2 2le(Ac)|| _ 3 2le(Ag)]
So. |0~ fiet | = 7 —p et - RG] = 0 and [ - 3G
p?" — p™. By (1), we have
LE(Ag) = p*" = p™" + (0°" = 2p" — )0+ p" (p™" — p")
and hence, the result follows. [ |

4. Some consequences

In this section, we derive some consequences of the results obtained in Section 2 and
Section 3. For a finite group G, the set Cg(x) = {y € G : xzy = ya} is called the
centralizer of an element x € G. Let |Cent(G)| = [{Ca(x) : x € G}|, that is the number
of distinct centralizers in G. A group G is called an n-centralizer group if |Cent(G)| = n.
The study of these groups was initiated by Belcastro and Sherman [6] in the year 1994.
The readers may conf. [10] for various results on these groups. We begin with computing
Laplacian energy of non-commuting graphs of finite n-centralizer groups for some positive
integer n. It may be mentioned here that various energies of commuting graphs of finite
n-centralizer groups have been computed in [15].

Proposition 4.1 If G is a finite 4-centralizer group, then LE(Aqg) = 4|Z(G)|.

Proof. Let G be a finite 4-centralizer group. Then, by Theorem 2 of [6], we have % &
Zo X Zs. Therefore, by Theorem 2.2, the result follows. [ ]

Further, we have the following result.

Corollary 4.2 If G is a finite (p + 2)-centralizer p-group for any prime p, then
LE(Ag) = 2p(p — 1)|2(G)].

Proof. Let G be a finite (p+ 2)-centralizer p-group. Then, by Lemma 2.7 of [5], we have
% & Zyp X ZLyp. Therefore, by Theorem 2.2, the result follows. |

Proposition 4.3 If G is a finite 5-centralizer group, then LE(Ag) = 12|Z(G)| or
18|Z(G)|*+271Z(G)|
5

~

Proof. Let G be a finite 5-centralizer group. Then by Theorem 4 of [6], we have % =
Z3xZs3 or Dg. Now, if - = Z3xZs, then by Theorem 2.2, we have LE(Ag) = 12|Z(G)|.

VA(e)
If 72(%) = Dg, then by Theorem 2.4 we have LE(Aqg) = 1812(C)] ;27|Z(G)‘- This completes
the proof. .

Let G be a finite group. The commutativity degree of G is given by the ratio

{(z,y) € G x G :ay = yz}|

Pr(G) = e
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The origin of commutativity degree of a finite group lies in a paper of Erdés and Turan
(see [16]). Readers may conf. [7, 8, 25] for various results on Pr(G). In the following few
results we shall compute Laplacian energy of non-commuting graphs of finite non-abelian
groups G such that Pr(G) = r for some rational number r.

Proposition 4.4 Let G be a finite group and p the smallest prime divisor of |G|. If

Pr(G) = Z42=L then LE(Ag) = 2p(p — 1)|Z(G)).

Proof. If Pr(G) = %, then by Theorem 3 of [22], we have % is isomorphic to

Zy, X Zy,. Hence the result follows from Theorem 2.2. [ |
As a corollary we have the following result.

Corollary 4.5 Let G be a finite group such that Pr(G) = 5. Then LE(Ag) = 4|Z(G)|.

Proposition 4.6 If Pr(G) € {3, %, %, 1}, then LE(Ag) =9, %, 25 or %.

Proof. If Pr(G) € {2, 2, 3L 11 then as shown in [29, pp. 246] and [26, pp. 451], we have

14> 52270 2
% is isomorphic to one of the groups in {Dg, Dg, D19D14}. Hence the result follows
from Corollary 2.6. |

Proposition 4.7 Let G be a group isomorphic to any of the following groups

Then LE(Ag) = 16.

Proof. If G is isomorphic to any of the above listed groups, then |G| = 16 and |Z(G)|
4. Therefore >~ 79 X Zs. Thus the result follows from Theorem 2.2.

_G_
» Z(G)
Recall that genus of a graph is the smallest non-negative integer n such that the graph
can be embedded on the surface obtained by attaching n handles to a sphere. A graph

is said to be planar if the genus of the graph is zero. We conclude this paper with the
following result.

Theorem 4.8 If the non-commuting graph of a finite non-abelian group G is planar,
then

28
LE(Ag) = 3 o 9.

Proof. By Theorem 3.1 of [3], we have G = Dg, Dg or Qg. If G = Dg or Qg then by

Corollary 2.6 and Corollary 2.7 it follows that LE(Ag) = 2. If G = Dg then, by
Corollary 2.6, LE(Ag) = 9. This completes the proof. [ ]
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