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Abstract. In this paper we prove an analogue of Banach and Kannan fixed point theorems
by generalizing the Lipschitz constat k, in generalized Lipschitz mapping on cone metric
space over Banach algebra, which are answers for the open problems proposed by Sastry et
al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces
with Banach algebra cones, Int. J. of Math. Sci. and Engg. Appl. (6) (2012), 129-136].
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1. Introduction

In 1922, Banach [1] proved the fixed point theorem for contraction mapping in a metric
space, which becomes very famous due to its wide applications. Several authors gener-
alized this results, one of the generalization is given by Liu and Xu [2] in 2013. They
replaced the constant k with vector k, the element of cone P with the condition that
r(k) < 1.

In 2012, Sastry et al [4] proved the following theorems.

∗Corresponding author.
E-mail address: azizahmed02@gmail.com (A. Ahmed); zoran.mitrovic@etf.unibl.org (Z. D. Mitrović); drjn-
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Theorem 1.1 Let (X, d) be a complete cone metric space and P ⊆ E be a Banach
algebra cone. Let T be a self mapping of X satisfying

d(Tx, Ty) ⩽ kd(x, y)

for some k ∈ P with 0 < ∥k∥ < 1 and for all x, y ∈ X. Then T has a unique fixed point.

Theorem 1.2 Let (X, d) be a complete cone metric space and P ⊆ E be a Banach
algebra cone. Let T be a self mapping of X. If there exists k ∈ P such that k is invertible,
k−1 ∈ P , 0 < ∥k∥ < 1

2 and

d(Tx, Ty) ⩽ k[d(Tx, x) + d(Ty, y)]

for all x, y ∈ X, then T has a unique fixed point.

In [4], the authors raised the following open problems.

Question 1.3 If the hypothesis 0 < ∥k∥ < 1 in Theorem 1.1 is replaced by the vector
k ∈ P , with θ ≺ k ≺ e or θ ≺ k ≪ e, then do we still get the same conclusion?

Question 1.4 If the hypothesis 0 < ∥k∥ < 1
2 in Theorem 1.2, is replaced by the vector

k ∈ P , with θ ≺ k ≺ 1
2e or θ ≺ k ≪ 1

2e, then do we still get the same conclusion?

In this paper we give the positive answer to these problems and which are more general
form of Banach and Kannan fixed point theorems, in which we replace the condition
r(k) < 1 with θ ≺ k ≺ e. The following definitions and results will be needed in the
sequel.

Let A be a real Banach algebra that is a real Banach space in which an operation of
multiplication is defined subject to the following properties:

(1) (xy)z = x(yz),
(2) x(y + z) = xy + xz and (x+ y)z = xz + yz,
(3) α(xy) = (αx)y = x(αy),
(4) ||xy|| ⩽ ∥x∥∥y∥.

for all x, y, z ∈ A and α ∈ R. An algebra A with unit element e, is called unital algebra
A, i.e. multiplicative identity e such that ex = xe = x for all x ∈ A. An element x ∈ A
is said to be invertible if there is an inverse element y ∈ A such that xy = yx = e. The
inverse of x is denoted by x−1.

A subset P of a Banach algebra A is called a cone if

(1) P is non-empty, closed and {θ, e} ⊂ P ;
(2) aP + bP ⊂ P, for all non-negative real numbers a and b;
(3) P 2 = PP ⊂ P ;
(4) P ∩ (−P ) = {θ};

where θ denotes the null of the Banach algebra A. For a given cone P ⊆ A, we can define
a partial ordering ⪯ with respect to P by x ⪯ y if and only if y − x ∈ P and we write
x ≺ y if x ⪯ y and x ̸= y while x ≪ y will stands for y − x ∈ intP , where intP denotes
the interior of P . If intP ̸= ∅ then P is called a solid cone. The cone P is called normal
if there is a number M > 0 such that for all x, y ∈ A,

θ ⪯ x ⪯ y ⇒ ∥x∥ ⩽ M∥y∥.
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Definition 1.5 ([2]) Let X be a non-empty set. Let A be a Banach algebra and P ⊆ A
be a cone. Suppose the mapping d : X ×X → A satisfies

(1) θ ⪯ d(x, y) for every x, y ∈ X and d(x, y) = θ if and only if x = y,
(2) d(x, y) = d(y, x) for every x, y ∈ X,
(3) d(x, y) ⪯ d(x, z) + d(z, y) for every x, y, z ∈ X.

Then (X, d) is called cone metric space over a Banach algebra.

Example 1.6 Let A = {a = (aij)33 : aij ∈ R, 1 ⩽ i, j ⩽ 3} and

∥a∥ =
1

3

∑
1⩽i,j⩽3

|aij |.

Take a cone P = {a ∈ A : aij ⩾ 0, 1 ⩽ i, j ⩽ 3} in A. Let X = {1, 2, 3}. Define a mapping
d : X ×X −→ A by d(1, 1) = d(2, 2) = d(3, 3) = (0)33 and

d(1, 2) = d(2, 1) =

2 2 4
3 4 3
2 5 3

 ,

d(3, 1) = d(1, 3) =

5 4 6
6 7 5
5 6 4

 ,

d(2, 3) = d(3, 2) =

4 5 6
5 7 6
7 7 5

 .

Then (X, d) be a cone metric space over Banach algebra.

Definition 1.7 ([5]) Let (X, d) be a cone metric space over a Banach algebra A, x ∈ X
and let {xn} be a sequence in X and {un} a sequence in A. Then

(1) {xn} converges to x whenever for each c ∈ A with θ ≪ c there is a natural
number N such that d(xn, c) ≪ c for all n ⩾ N ;

(2) {xn} is a Cauchy sequence whenever for each c ∈ A with θ ≪ c there is a natural
number N such that d(xn, xm) ≪ c for all n,m ⩾ N ;

(3) A cone metric space over Banach algebra X is said to be complete if every Cauchy
sequence in X is convergent in X;

(4) {un} is a c-sequence if for each θ ≪ c, there is a natural number N such that
un ≪ c for all n ⩾ N .

Lemma 1.8 ([6]) Let E is a real Banach space with a solid cone P and if θ ⪯ u ≪ c
for each θ ≪ c then u = θ.

Proposition 1.9 ([7]) Let P be a solid cone in a Banach space A and let {xn} and
{yn} are sequences in P . If {xn} and {yn}are c-sequence and α, β ∈ P then {αxn+βyn}
is a c-sequence.
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2. Main Result

Now we define more generalized Lipschitz mapping on the cone metric space over Banach
algebra.

Definition 2.1 Let (X, d) be a cone metric space over Banach algebra. A mapping
T : X → X is called more generalized Lipschitz mapping if there exists a vector k ∈ P
with k ≺ e and for all x, y ∈ X, we have

d(Tx, Ty) ⪯ kd(x, y).

Lemma 2.2 Let P ⊆ A be a cone of Banach algebra A. If a, k ∈ P are such that k ≺ e,
a ⪯ ka and (e− k)−1 exists then a = θ.

Proof. Since a, k ∈ P and a ⪯ ka, we have ka−a ∈ P . Consequently, θ ⪯ (k− e)a ∈ P .
Since (e − k)−1 ∈ P exists .We get it −(e − k)−1(e − k)a ∈ P , and from here follows
−a ∈ P . Since P ∩ (−P ) = {θ}, we have a = θ. ■

Lemma 2.3 Let (X, d) be a cone metric space over a Banach algebra A, k ∈ X such
that θ ⪯ k ≺ e and (e− k)−1 exists. Then {kn} is a c-sequence.

Proof. How do θ ⪯ k ≺ e we get it

kn ⪯ ki (1)

for all i ∈ {1, . . . , n}. Therefore, we obtain

(n+ 1)kn ⪯ e+ k + k2 + · · ·+ kn. (2)

From θ ⪯ e− k and (2), we have

(e− k)(n+ 1)kn ⪯ (e− k)(e+ k + k2 + · · ·+ kn)

= e− kn+1

⪯ e.

Thus, (e− k)(n+ 1)kn ⪯ e. Hence,

kn ⪯ 1

n+ 1
(e− k)−1.

For any θ ≪ c we get that there exists a positive integer n0 such that n ⩾ n0 implies
1

n+1(e−k)−1 ≪ c (because
{

1
n+1(e− k)−1

}
is a convergent sequence). So n ⩾ n0 implies

kn ≪ c and {kn} is c-sequence. ■

Now we shall prove Banach fixed point theorem for more generalized Lipschitz mapping
in setting of a cone metric space over Banach algebra.

Theorem 2.4 Let (X, d) be a complete a cone metric space over Banach algebra A. Let
k ∈ P such that k ≺ e and (e − k)−1 exists. Suppose that the mapping T : X → X
satisfies more generalized Lipschitz condition

d(Tx, Ty) ⪯ kd(x, y) (3)
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for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrary, choose xn ∈ X such that xn = Txn−1 for n ⩾ 1, we
get the sequence {xn}. From condition (3) we obtain,

d(xn+1, xn) = d(Txn, Txn−1) ⪯ kd(xn, xn−1) ⪯ ... ⪯ knd(x0, x1). (4)

If xn+1 = xn, then xn is a fixed point of T and hence the proof is complete. So, let
xn+1 ̸= xn for n ⩾ 0. Hence xn+q ̸= xn for n ⩾ 0 and q ⩾ 1. If possible suppose
xn+q = xn for some n ⩾ 0 and q ⩾ 1 then we have, xn+q+1 = xn+1 then from condition
(3) we obtain

d(xn+1, xn) = d(xn+q+1, xn+q) ⪯ kqd(xn+1, xn).

Hence, from Lemma 2.2, we have d(xn+1, xn) = θ. So, xn+1 = xn, which is contradiction.
From triangular inequality and condition (3), we have

d(xm, xn) ⪯ d(xm, xm+1) + d(xm+1, xn+1) + d(xn+1, xn)

⪯ kmd(x0, x1) + kd(xm, xn) + knd(x0, x1),

which implies that

(e− k)d(xm, xn) ⪯ (km + kn)d(x0, x1).

Thus, d(xm, xn) ⪯ (e− k)−1(km+ kn)d(x0, x1), for all m,n ∈ N and m < n. Hence, from
Lemma 2.3 and Proposition 1.9 we obtain that {xn} is a Cauchy sequence in (X, d). By
completeness of (X, d), there exists x∗ ∈ X such that limn→∞ xn = x∗. We have

d(Tx∗, x∗) ⪯ d(Tx∗, xn) + d(xn, x
∗)

= d(Tx∗, Txn−1) + d(xn, x
∗)

⪯ kd(x∗, xn−1) + d(xn, x
∗).

Since {d(xn, x∗)} is a c-sequence, we obtain d(Tx∗, x∗) = θ. So, we have Tx∗ = x∗. Hence,
x∗ is a fixed point of T . Let y∗ be the another fixed point of T . Then we have

d(x∗, y∗) = d(Tx∗, T y∗) ⪯ kd(x∗, y∗).

Thus, by Lemma 2.2, we have d(x∗, y∗) = θ. Hence x∗ is an unique fixed point of T . ■

Now, we shall prove Kannan fixed point theorem for more generalized Lipschitz map-
ping in setting of a cone metric space over Banach algebra.

Theorem 2.5 Let (X, d) be a complete a cone metric space over Banach algebra A. Let
k ∈ P such that θ ⪯ k ≺ 1

2e and (e− k)−1 exists. Suppose that the mapping T : X → X
satisfies more generalized Lipschitz condition

d(Tx, Ty) ⪯ k[d(Tx, x) + d(Ty, y)], (5)

for all x, y ∈ X. Then T has a unique fixed point in X.
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Proof. Let x0 ∈ X be arbitrary, choose xn ∈ X and set xn = Txn−1 for n ⩾ 1, we get
the sequence {xn}. Now, we have

d(xn+1, xn) = d(Txn, Txn−1)

⪯ k[d(Txn, xn) + d(Txn−1, xn−1)],

which implies that

d(xn+1, xn) ⪯ k(e− k)−1d(xn, xn−1).

Let h = k(e − k)−1. Since k ≺ e
2 , we obtain k ≺ e − k and from here follows h ≺ e.

Therefore,

d(xn+1, xn) ⪯ hnd(x1, x0). (6)

If xn+1 = xn, then xn is a fixed point of T . Hence the proof is complete. Thus, let
xn+1 ̸= xn for n ⩾ 0. Hence, xn+q ̸= xn for n ⩾ 0 and q ⩾ 1. If possible suppose
xn+q = xn for some n ⩾ 0 and q ⩾ 1, then we have xn+q+1 = xn+1, and (6) gives

d(xn+1, xn) = d(xn+q+1, xn+q) ⪯ hqd(xn+1, xn).

Hence, from Lemma 2.2, we have d(xn+1, xn) = θ. So, xn+1 = xn, which is contradiction.
Now, from conditions (5) and (6), we have

d(xm, xn) ⪯ k[d(xm+1, xm) + d(xn+1, xn)

⪯ k[hmd(x1, x0) + hnd(x1, x0)]

⪯ k(hm + hn)d(x1, x0)

for all m,n ∈ N and m < n. Consequently, from Lemma 2.3 and Proposition 1.9, we
obtain that {xn} is a Cauchy sequence in (X, d). By completeness of (X, d) there exists
x∗ ∈ X such that limn→∞ xn = x∗. Thus,

d(Tx∗, x∗) ⪯ d(Tx∗, xn) + d(xn, x
∗)

= d(Tx∗, Txn−1) + d(xn, x
∗)

⪯ k[d(Tx∗, x∗) + d(Txn−1, xn−1)] + d(xn, x
∗).

Consequently,

d(Tx∗, x∗) ⪯ (e− k)−1kd(xn, xn−1) + (e− k)−1d(xn, x
∗).

Since {d(xn, x∗)} is a c-sequence we obtain d(Tx∗, x∗) = θ. So, Tx∗ = x∗.
Now, we obtain that x∗ is a unique fixed point of T . Let y∗ be the another fixed point

of T . Then we have

d(x∗, y∗) = d(Tx∗, T y∗) ⪯ k[d(Tx∗, x∗) + d(Ty∗, y∗)] ⪯ θ,

which implies x∗ = y∗. So, x∗ is an unique fixed point of T . ■
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Remark 1 Note that we have used some of the ideas from the paper [3].

We present one example to illustrate the Theorem 2.4.

Example 2.6 Consider the Example 1.6. Let T : X → X be a mapping define by

T1 = T2 = 2, T3 = 1 and k =

0.7 0.0 0.0
0.0 0.6 0.0
0.0 0.0 0.9

 ∈ P , then k ≺ e and (e − k)−1 exists. By

simple calculations we can see that all the conditions of Theorem 2.4 are satisfied. The
point x = 2 is the unique fixed point of T .
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