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Abstract. In this paper, we present some efficient numerical algorithm for solving system of
fuzzy polynomial equations based on Newton’s method. The modified Adomian decomposi-
tion method is applied to construct the numerical algorithms. Some numerical illustrations
are given to show the efficiency of algorithms.
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1. Introduction

Since the beginning of the 1980’s. The Adomian decomposition method has been applied
to a wide class of functional equations [10, 11]. Adomian gives the solution as of finite
series usually converging to an accurate solution. Abbaoui and Cherruault [2] applied
the standard Adomian decomposition on simple iteration method to solve the equation
f(x) = 0, where f(x) is a nonlinear function, and proved the convergence of the series
solution.

Abbasbandy [3] improved Newton-Raphson method to solve the nonlinear equation
f(x) = 0 based on modified Adomian’s method, and in [4] he extended Newton’s method
for a system of nonlinear equation by modified Adomian decomposition method.

The concept of fuzzy numbers and arithmetic operation with these numbers were first
introduce and investigated by [13, 15, 20]. One of the major applications of fuzzy number
arithmetic is in nonlinear systems whose parameters are all or partially represented by
fuzzy numbers [14, 17, 19].
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Abbasbandy and Asady [5], applied the Newton’s method for solving fuzzy nonlinear
equations, f(x) = c and the numerical solution of a fuzzy nonlinear equation and system
of fuzzy nonlinear equations was considered in [6, 7, 21]. Allahviranloo et al [12] applied
the Fixed point method for solving fuzzy nonlinear equations. Tavassoli et al [23], applied
the Newton’s method for solving dual fuzzy nonlinear equations, f(x) = g(x) + c. The
topic of numerical solution of fuzzy polynomials by fuzzy neural network investigated
by Abbasbandy et al. [8], this method for finding solution to polynomials of the form
a1x + a2x

2 + . . . + anx
n = a0 for x ∈ R (if exists) and a0, a1, . . . , an are fuzzy numbers

and system of s fuzzy polynomial equations such as [9]:

f1(x1, x2, . . . , xn) = a10,
...

fl(x1, x2, . . . , xn) = al0,
...

fs(x1, x2, . . . , xn) = as0,

where x1, x2, . . . , xn ∈ R and all coefficients are fuzzy numbers. Otadi and Mosleh [22]
applied the Adomian decomposition method for solving fuzzy polynomial equation of the
form a1x + a2x

2 + . . . + anx
n = a0 where x, a0 and all coefficients are fuzzy numbers.

It is the purpose of this paper to introduce an efficient extension of Newton’s method
by modified Adomian decomposition method for solving (if it exists) system of fuzzy
polynomials.

The structure of this paper is organized as follows: In Section 2, we recall some fun-
damental results on fuzzy numbers. The proposed algorithm for finding a fuzzy root (if
it exists) of a system of fuzzy polynomials are discussed in Section 3. This leads us to
conclude by giving a comparison with other methods in Section 4. Numerical examples
are given in Section 5.

2. Preliminaries

Definition 2.1 [16, 24, 25] A fuzzy number is a fuzzy set like u : R → I = [0, 1] which
satisfies

(1) u is upper semicontinuous,
(2) u(x) = 0 outside some interval [c, d],
(3) There are real numbers a, b such that c ⩽ a ⩽ b ⩽ d and

3.1. u(x) is monotonic increasing on [c, a],
3.2. u(x) is monotonic decreasing on [b, d],
3.3. u(x) = 1, a ⩽ x ⩽ b.

The set of all these fuzzy numbers is denoted by E. An equivalent parametric is also
given in [18] as follows:

Definition 2.2 A fuzzy number u is a pair (u, u) of functions u(r), u(r); 0 ⩽ r ⩽ 1 which
satisfy the following requirements:

i. u(r) is a bounded monotonic increasing left continuous function on (0, 1] and right
continuous at 0.

ii. u(r) is a bounded monotonic decreasing left continuous function on (0, 1] and right
continuous at 0.

iii. u(r) ⩽ u(r), 0 ⩽ r ⩽ 1.
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A popular fuzzy number is the trapezoidal fuzzy number u = (x0, y0, σ, β) with inter-
val defuzzifier [x0, y0] and left fuzziness σ and right fuzziness β where the membership
function is

u(x) =



x−x0+σ
σ , x0 − σ ≤ x ⩽ x0,

1 x ∈ [x0, y0],
y0−x+β

β y0 ≤ x ≤ y0 + β,

0 otherwise.

Its parametric form is

u(r) = x0 − σ + σr, u(r) = y0 + β − βr. (1)

Let u = (x0, y0, σ, β), be a trapezoidal fuzzy number and x0 = y0, then u is called a
triangular fuzzy number and is denoted by u = (x0, δ, β).

The addition and scaler multiplication of fuzzy numbers are defined by the extension
principle and can be equivalently represented as follows.

For arbitrary u = (u, u), v = (v, v) and k > 0 we define addition (u+v), multiplication
(u.v) and multiplication by scalar k as

(u+ v)(r) = u(r) + v(r), (u+ v)(r) = u(r) + v(r),

(u.v)(r) = min{u(r).v(r), u(r).v(r), u(r).v(r), u(r).v(r)},

(u.v)(r) = max{u(r).v(r), u(r).v(r), u(r).v(r), u(r).v(r)},

(ku)(r) = ku(r), (ku)(r) = ku(r).

(2)

Definition 2.3 Let u and v be fuzzy numbers with r-level set [u]r = [u1(r), u2(r)] and
[v]r = [v1(r), v2(r)]. We metricize the set of fuzzy numbers by the Hausdorff distance

D(u, v) = supr∈[0,1]max{| u1(r)− v1(r) |, | u2(r)− v2(r) |}. (3)

i.e. D(u, v) is the maximal distance between r level sets of u and v.

3. The Adomian decomposition method

Consider the system of s fuzzy polynomial equations



f1(x1, x2, . . . , xn) = c1,
...

fl(x1, x2, . . . , xn) = cl,
...

fs(x1, x2, . . . , xn) = cs,

(4)
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with

fl(x1, x2, . . . , xn) = cl =
∑n

i=1 alixi +
∑n

i=1

∑n
j=1 alijxixj+∑n

i=1

∑n
j=1

∑n
k=1 alijkxixjxk + . . . , 1 ⩽ l ⩽ s,

(5)

where x1, x2, . . . , xn and all coefficients are fuzzy numbers.
This full form of mathematical description can be represented by a system of partial

quadratic fuzzy polynomials consisting of only two variables in the form of{
P (x, y) = a1x+ a2y + a3xy + a4x

2 + a5y
2 = c1,

Q(x, y) = b1x+ b2y + b3xy + b4x
2 + b5y

2 = c2,
(6)

where x, y, c1, c2 and all coefficients are fuzzy numbers. Let{
P (x, y) = (P (x, x, y, y; r), P (x, x, y, y; r)),

Q(x, y) = (Q(x, x, y, y; r), Q(x, x, y, y; r)), for r ∈ [0, 1],

with 

P (x, x, y, y; r) = min{P (u, v) | u ∈ [x(r), x(r)],
v ∈ [y(r), y(r)], ai ∈ [ai(r), ai(r)], i = 1, ..., 5},

P (x, x, y, y; r) = max{P (u, v) | u ∈ [x(r), x(r)],
v ∈ [y(r), y(r)], ai ∈ [ai(r), ai(r)], i = 1, ..., 5},

Q(x, x, y, y; r) = min{Q(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], bi ∈ [bi(r), bi(r)], i = 1, ..., 5},
Q(x, x, y, y; r) = max{Q(u, v) | u ∈ [x(r), x(r)],

v ∈ [y(r), y(r)], bi ∈ [bi(r), bi(r)], i = 1, ..., 5}.

The parametric form for any r ∈ [0, 1], is as follows:


P (x, x, y, y; r) = c1(r),

P (x, x, y, y; r) = c1(r),
Q(x, x, y, y; r) = c2(r),

Q(x, x, y, y; r) = c2(r),

(7)

where c1 = (c1(r), c1(r)) and c2 = (c2(r), c2(r)). The problem (7) can be reformulated in
an equivalent form as 

F (x, x, y, y; r) = 0,

F (x, x, y, y; r) = 0,
G(x, x, y, y; r) = 0,

G(x, x, y, y; r) = 0,

(8)

where 
F (x, x, y, y; r) = P (x, x, y, y; r)− c1(r),

F (x, x, y, y; r) = P (x, x, y, y; r)− c1(r),
G(x, x, y, y; r) = Q(x, x, y, y; r)− c2(r),

G(x, x, y, y; r) = Q(x, x, y, y; r)− c2(r).
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Suppose that (α, β, γ, θ) is the solution of (8), i.e.,


F (α, β, γ, θ; r) = 0,
F (α, β, γ, θ; r) = 0,
G(α, β, γ, θ; r) = 0,
G(α, β, γ, θ; r) = 0.

Now, if we use the Taylor series of F , F ,G,G about (x, x, y, y), then for each r ∈ [0, 1],



F (x− h, x− k, y − l, y − d; r) = F (x, x, y, y; r)− hF x(x, x, y, y; r)
−kF x(x, x, y, y; r)− lF y(x, x, y, y; r)− dF y(x, x, y, y; r)

+O(h2 + k2 + l2 + d2 + hk + hl + hd+ kl + kd+ ld) = 0,
F (x− h, x− k, y − l, y − d; r) = F (x, x, y, y; r)− hF x(x, x, y, y; r)

−kF x(x, x, y, y; r)− lF y(x, x, y, y; r)− dF y(x, x, y, y; r)

+O(h2 + k2 + l2 + d2 + hk + hl + hd+ kl + kd+ ld) = 0,
G(x− h, x− k, y − l, y − d; r) = G(x, x, y, y; r)− hGx(x, x, y, y; r)

−kGx(x, x, y, y; r)− lGy(x, x, y, y; r)− dGy(x, x, y, y; r)

+O(h2 + k2 + l2 + d2 + hk + hl + hd+ kl + kd+ ld) = 0,
G(x− h, x− k, y − l, y − d; r) = G(x, x, y, y; r)− hGx(x, x, y, y; r)

−kGx(x, x, y, y; r)− lGy(x, x, y, y; r)− dGy(x, x, y, y; r)

+O(h2 + k2 + l2 + d2 + hk + hl + hd+ kl + kd+ ld) = 0,

that F x means that, the derivative of F with respect to x and so on. We assume, of course,
that all needed partial derivatives exist and are bounded. Therefore for sufficiently small
h(r), k(r), l(r) and d(r) for each r ∈ [0, 1],



F (x, x, y, y; r)− hF x(x, x, y, y; r)− kF x(x, x, y, y; r)
−lF y(x, x, y, y; r)− dF y(x, x, y, y; r) ≃ 0,

F (x, x, y, y; r)− hF x(x, x, y, y; r)− kF x(x, x, y, y; r)

−lF y(x, x, y, y; r)− dF y(x, x, y, y; r) ≃ 0,

G(x, x, y, y; r)− hGx(x, x, y, y; r)− kGx(x, x, y, y; r)
−lGy(x, x, y, y; r)− dGy(x, x, y, y; r) ≃ 0,

G(x, x, y, y; r)− hGx(x, x, y, y; r)− kGx(x, x, y, y; r)

−lGy(x, x, y, y; r)− dGy(x, x, y, y; r) ≃ 0,

and hence h(r), k(r), l(r) and d(r) are unknown quantities that can be obtained by solving
the following equations, for each r ∈ [0, 1]

J(x, x, y, y; r)


h(r)
k(r)
l(r)
d(r)

 =


F (x, x, y, y; r)

F (x, x, y, y; r)
G(x, x, y, y; r)

G(x, x, , y, y; r)

 , (9)
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where

J(x, x, y, y; r) =


F x F x F y F y

F x F x F y F y

Gx Gx Gy F y

Gx Gx Gy F y

 (x, x, y, y; r).

The Newton’s method is given by
xn+1(r) = xn(r) + hn(r),
xn+1(r) = xn(r) + kn(r),
y
n+1

(r) = y
n
(r) + ln(r),

yn+1(r) = yn(r) + dn(r),

(10)

where n = 0, 1, 2, . . . and hn(r), kn(r), ln(r), dn(r) are given by (9). For initial guess, one
can use the trapezoidal fuzzy number

x0 = (x(1), x(1), x(1)− x(0), x(0)− x(1)),

y0 = (y(1), y(1), y(1)− y(0), y(0)− y(1)),

and in parametric form

x0(r) = x(1) + (x(1)− x(0))(r − 1),
x0(r) = x(1) + (x(0)− x(1))(1− r),
y
0
(r) = y(1) + (y(1)− y(0))(r − 1),

y0(r) = y(1) + (y(0)− y(1))(1− r).

The iteration (10) will converge to (α, β, γ, θ) if the starting point (x0(r), x0(r)
, y

0
(r), y0(r)) is close enough to (α, β, γ, θ) for 0 ⩽ r ⩽ 1, local convergence property, see

[11] for more details.
If we use Taylor’s expansion of F (x, x, y, y; r) and F (x, x, y, y; r) to a higher order and

we are looking for h(r), k(r), l(r) and d(r) such as:

[F − hF x − kF x − lF y − dF y +
1

2
(h2F x x + k2F x x + l2F y y + d2F y y

+ 2hkF x x + 2ldF y y + 2hlF x y ++2hdF x y + 2klF x y ++2kdF x y)](x, x, y, y; r) ≃ 0,

[F − hF x − kF x − lF y − dF y +
1

2
(h2F x x + k2F x x + l2F y y + d2F y y

+ 2hkF x x + 2ldF y y + 2hlF x y ++2hdF x y + 2klF x y ++2kdF x y)](x, x, y, y; r) ≃ 0,

[G− hGx − kGx − lGy − dGy +
1

2
(h2Gx x + k2Gx x + l2Gy y + d2Gy y

+ 2hkGx x + 2ldGy y + 2hlGx y ++2hdGx y + 2klGx y ++2kdGx y)](x, x, y, y; r) ≃ 0,

[G− hGx − kGx − lGy − dGy +
1

2
(h2Gx x + k2Gx x + l2Gy y + d2Gy y

+ 2hkGx x + 2ldGy y + 2hlGx y ++2hdGx y + 2klGx y ++2kdGx y)](x, x, y, y; r) ≃ 0,
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given

h(r) = [F − kF x − lF y − dF y +
1

2
(h2F x x + k2F x x + l2F y y + d2F y y + 2hkF x x

+ 2ldF y y + 2hlF x y ++2hdF x y + 2klF x y ++2kdF x y)/F x](x, x, y, y; r),

k(r) = [F − hF x − lF y − dF y +
1

2
(h2F x x + k2F x x + l2F y y + d2F y y + 2hkF x x

+ 2ldF y y + 2hlF x y ++2hdF x y + 2klF x y ++2kdF x y)/F x](x, x, y, y; r),

l(r) = [G− hGx − kGx − dGy +
1

2
(h2Gx x + k2Gx x + l2Gy y + d2Gy y + 2hkGx x

+ 2ldGy y + 2hlGx y ++2hdGx y + 2klGx y ++2kdGx y)/Gy](x, x, y, y; r),

d(r) = [G− hGx − kGx − lGy +
1

2
(h2Gx x + k2Gx x + l2Gy y + d2Gy y + 2hkGx x

+ 2ldGy y + 2hlGx y ++2hdGx y + 2klGx y ++2kdGx y)/Gy](x, x, y, y; r),

or 
h(r)
k(r)
l(r)
d(r)

 =


e1
e2
e3
e4

+N



h(r)
k(r)
l(r)
d(r)


 =


e1
e2
e3
e4

+


N1(h, k, l, d)
N2(h, k, l, d)
N3(h, k, l, d)
N4(h, k, l, d)

 , (11)

where e1 = F
Fx

(x, x, y, y; r), e2 = F
Fx

(x, x, y, y; r), e3 = G
Gy

(x, x, y, y; r) and e4 =

G
Gy

(x, x, y, y; r) are constants and N is a vector quadratic polynomial and for approxi-

mating h(r), k(r), l(r) and d(r), we can apply the multivariable Adomian decomposition
method [1].

The Adomian decomposition technique considers representing the solution of (11) as
a series

h =

∞∑
n=0

hn, k =

∞∑
n=0

kn, l =

∞∑
n=0

ln, d =

∞∑
n=0

dn (12)

and the nonlinear functions are decomposed as

Ni(h, k, l, d) =

∞∑
n=0

Ain(h0, . . . , hn, k0, . . . , kn, l0, . . . , ln, , d0, . . . , dn), i = 1, ..., 4. (13)

where the Ain’s are Adomian’s polynomials given by [3],

Ain =
1

n!

dn

dλn
[Ni(

∞∑
j=0

λjhj ,

∞∑
j=0

λjkj ,

∞∑
j=0

λjlj ,

∞∑
j=0

λjdj)]λ=0

for i = 1, ..., 4, j = 0, 1, . . . .
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Upon substituting (12), (13) in the (11) yields

h0 = e1, hn+1 = A1n, k0 = e2, kn+1 = A2n,

l0 = e3, ln+1 = A3n, d0 = e4, dn+1 = A4n,

for n = 0, 1, . . . , multivariable polynomials Ain are generated by practical formulae pre-
sented in [1], for i = 1, 2, 3, 4, we have

Ai0 = Ni(h0, k0, l0, d0),

Ain =
∑
φ

h
p1

1

p1!
. . .

h
pn
n

pn!
.
k
q1
1

q1!
. . .

k
qn
n

qn!
.
l
s1
1

s1!
. . .

l
sn
n

sn!
.
d
t1
1

t1!
. . .

d
tn
n

tn!

.
∂φ1+φ2+φ3+φ4

∂hφ1∂kφ2∂dφ3∂lφ4
Ni(h0, k0, d0, l0), n ̸= 0,

where φ stands for (p1 + 2p2 + . . . + npn) + (q1 + 2q2 + . . . + nqn) + (s1 + 2s2 + . . . +
nsn) + (t1 + 2t2 + . . . + ntn) = n, and φ1 = p1 + p2 + . . . + pn, φ2 = q1 + q2 + . . . + qn,
φ3 = s1 + s2 + . . .+ sn, φ4 = t1 + t2 + . . .+ tn.
In practice, of course, the sum of the infinite series has to be truncated at some finite order
M. The quantities

∑M
n=0 hn,

∑M
n=0 kn,

∑M
n=0 ln and

∑M
n=0 dn, can thus be reasonable

approximations of the exact solution of (8), providedM is sufficiently large. AsM −→ ∞,
the series converge smoothly toward the exact solution for 0 ⩽ r ⩽ 1 [2]. Let

HM = h0 + h1 + . . .+ hM = h0 +A10 +A11 + . . .+A1M−1,
KM = k0 + k1 + . . .+ kM = k0 +A20 +A21 + . . .+A2M−1,
LM = l0 + l1 + . . .+ lM = l0 +A30 +A31 + . . .+A3M−1,
DM = d0 + d1 + . . .+ dM = d0 +A40 +A41 + . . .+A4M−1,

(14)

denote the (M + 1)-term approximations of h, k, l and d, respectively. Since the series
converge very rapidly, then (14) can serve as a practical solution in each iteration.

We will show that the number of terms required to obtain an accurate computable
solution is very small.
Case 1: For M = 0,

h ≃ H0 = h0 =
F

F x

(x, x, y, y; r),

k ≃ K0 = k0 =
F

F x

(x, x, y, y; r),

l ≃ L0 = l0 =
G

Gy

(x, x, y, y; r),

d ≃ D0 = d0 =
G

Gy

(x, x, y, y; r),
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α = x− h ≃ x−H0 = x− F

F x

(x, x, y, y; r),

β = x− k ≃ x−K0 = x− F

F x

(x, x, y, y; r),

γ = y − l ≃ y − L0 = y − G

Gy

(x, x, y, y; r),

θ = y − d ≃ y −D0 = y − G

Gy

(x, x, y, y; r)

and 

xn+1 = xn − F
Fx

(xn, xn, yn, yn; r),

xn+1 = xn − F
Fx

(xn, xn, yn, yn; r),

y
n+1

= y
n
− G

Gy
(xn, xn, yn, yn; r),

yn+1 = yn − G
Gy

(xn, xn, yn, yn; r),

for n = 0, 1, . . . .

Case 2: For M = 1

h1 = A1,0 = N1(h0, k0, l0, d0) = [(h
2
0

2 F x x +
k2
0

2 F x x +
l20
2 F y y +

d2
0

2 F y y

+h0k0F x x + h0l0F x y + h0d0F x y + k0l0F x y + k0d0F x y

+l0d0F y y)/F x](x, x, y, y; r),

k1 = A2,0 = N2(h0, k0, l0, d0) = [(h
2
0

2 F x x +
k2
0

2 F x x +
l20
2 F y y +

d2
0

2 F y y

+h0k0F x x + h0l0F x y + h0d0F x y + k0l0F x y + k0d0F x y

+l0d0F y y)/F x](x, x, y, y; r),

l1 = A3,0 = N3(h0, k0, l0, d0) = [(h
2
0

2 Gx x +
k2
0

2 Gx x +
l20
2Gy y +

d2
0

2 Gy y

+h0k0Gx x + h0l0Gx y + h0d0Gx y + k0l0Gx y + k0d0Gx y

+l0d0Gy y)/Gy](x, x, y, y; r),
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d1 = A4,0 = N4(h0, k0, l0, d0) = [(h
2
0

2 Gx x +
k2
0

2 Gx x +
l20
2Gy y +

d2
0

2 Gy y

+h0k0Gx x + h0l0Gx y + h0d0F x y + k0l0Gx y + k0d0Gx y

+l0d0Gy y)/Gy](x, x, y, y; r),

where h0 = F
Fx

(x, x, y, y; r), k0 = F
Fx

(x, x, y, y; r), l0 = G
Gy

(x, x, y, y; r) and d0 =

G
Gy

(x, x, y, y; r), then

α = x− h ≃ x−H1 = x− h0 −A1,0,

β = x− k ≃ x−K1 = x− k0 −A2,0,

γ = y − l ≃ y − L1 = y − l0 −A3,0,

θ = y − d ≃ y −D1 = y − d0 −A4,0.

Hence, we have the following iterations:

xn+1 = xn −H1(xn, xn, yn, yn; r),

xn+1 = xn −K1(xn, xn, yn, yn; r),

y
n+1

= y
n
− L1(xn, xn, yn, yn; r),

yn+1 = yn −D1(xn, xn, yn, yn; r)

for n = 0, 1, . . .. We can also obtain similar relations for M = 2, 3, . . . .
The Adomian decomposition method is simply generalized to more variables and upper

degrees as well.

4. Comparison with other methods

This study would not be completed without comparing it with other existing methods.
Some comparisons are as follows:

• In [5] and [6] researchers used the Newton’s method for solving fuzzy nonlinear equa-
tions and systems of fuzzy nonlinear equations and in [12] researchers used the Fixed
point method for solving fuzzy nonlinear equations. The Adomian decomposition
method for M = 0 is the Newton’s method. See examples 1, 2 for more details.

• In [8, 9] a FNN2 equivalent to the fuzzy polynomial equation and system of fuzzy
polynomials F of s fuzzy polynomial equations such as

f1(x1, x2, . . . , xn) = A10,
...

fl(x1, x2, . . . , xn) = Al0,
...

fs(x1, x2, . . . , xn) = As0

(15)

where, x1, x2, . . . , xn ∈ R and all coefficients are fuzzy numbers were built. In this
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paper, Adomian decomposition method for solving system of fuzzy polynomials where
x1, x2, . . . , xn and all coefficients are fuzzy numbers was proposed. See examples 1, 2
for more details.

• In [22] researchers used the Adomian decomposition method for solving fuzzy poly-
nomial equations of the form

∑n
i=1 aix

i = c where x, c and all coefficients are fuzzy
numbers. In this paper, Adomian decomposition method for solving system of fuzzy
polynomial equations was proposed.

5. Numerical examples

We consider some examples for the Adomian decomposition method. In the computer
simulation of this examples, we use the following specifications of the Adomian decom-
position method. For each fuzzy numbers, we use r = 0, 0.1, . . . , 1, where we calculate
the total error of each iteration by

ei = max{D(xi, xi−1), D(yi, yi−1)}.

Example 5.1 Consider the system of fuzzy polynomial equations{
x2 + y = (3, 1, 1.75),
x+ y2 = (5, 1.4375, 2.75),

assume that x and y are positive, then the parametric form of this equation is as follows:
x2(r) + y(r) = 2 + r,
x2(r) + y(r) = 4.75− 1.75r,
x(r) + y2(r) = 3.5625 + 1.4375r,
x(r) + y2(r) = 7.75− 2.75r.

Initial guess is x0 = (1.25, 0.5, 0.25) and y0 = (1.75, 0.25, 0.5). For M = 0

h ≃ H0 = h0 =
F

F x

(x, x, y, y; r), k ≃ K0 = k0 =
F

F x

(x, x, y, y; r),

l ≃ L0 = l0 =
G

Gy

(x, x, y, y; r), d ≃ D0 = d0 =
G

Gy

(x, x, y, y; r),

and

α = x− h ≃ x−H0 = x− F

F x

(x, x, y, y; r),

β = x− k ≃ x−K0 = x− F

F x

(x, x, y, y; r),

γ = y − l ≃ y − L0 = y − G

Gy

(x, x, y, y; r),

θ = y − d ≃ y −D0 = y − G

Gy

(x, x, y, y; r),



248 M. Mosleh / J. Linear. Topological. Algebra. 06(03) (2017) 237-250.

then

M Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6
0 0.2639 0.1336 0.0395 0.0357 0.0103 0.0100
1 0.1831 0.0422 0.0131 0.0092 2.6131× 10−3 2.4532× 10−4

Table 1. The error of Adomian decomposition method.
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Initial guess
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Exact

Fig. 2. Approximate and analytical solution of example 1 for y.
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0.9

1
Initial guess
Adomian
Exact

Fig. 3. Approximate and analytical solution of example 2 for x.



xn+1 = xn − x2
n+y

n
−(2+r)

2xn
,

xn+1 = xn − x2
n+yn−(4.75−1.75r)

2xn
,

y
n+1

= y
n
− xn+y2

n
−(3.5625+1.4375r)

2y
n

,

yn+1 = yn − xn+y2
n−(7.75−2.75r)

2yn
,

for n = 0, 1, . . . , 6.
By Adomian decomposition method, we obtain the numerical results for M = 0, 1. See
figures 1,2 and table 1 for more details.
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0.8

0.9
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Initial guess
Adomian
Exact

Fig. 1. Approximate and analytical solution of example 1 for x.

Example 5.2 Consider the system of fuzzy polynomial equations

{
x3 + y = (2.5, 1.375, 4.859375),
x+ y2 = (3.25, 1.75, 2.5),

assume that x and y are positive, then the parametric form of this equation is as follows:


x3(r) + y(r) = 1.125 + 1.375r,
x3(r) + y(r) = 7.359375− 4.859375r,
x(r) + y2(r) = 1.5 + 1.75r,
x(r) + y2(r) = 5.75− 2.5r.

M Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6
0 1.4531 0.5312 0.1432 0.0339 0.0198 0.0114
1 0.4436 0.1253 0.0635 0.0092 1.5131× 10−3 3.464× 10−4

Table 2. The error of Adomian decomposition method.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial guess
Adomian
Exact

Fig. 4. Approximate and analytical solution of example 2 for y.

Initial guess is x0 = (0.75, 0.25, 0.25) and y0 = (1.25, 0.25, 0.75).
By Adomian decomposition method, we obtain the numerical results for M = 0, 1. See
figures 3,4 and table 2 for more details.
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6. Conclusion

In this paper, we proposed numerical method for solving a system of fuzzy polynomial
equations. Initially we wrote fuzzy polynomials in a parametric form and then solve it
by Adomian decomposition method.
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