Journal of Linear and Topological Algebra Vol. 05, No. 02, 2016, 93-104

Common fixed point of four maps in S_b -metric spaces

Sh. Sedghi^{b*}, A. Gholidahneh^b, T. Došenović^c, J. Esfahani^b, S. Radenović^{a,d,*}

^a Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia.
 ^b Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
 ^c Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Serbia.
 ^d Department of Mathematics, University of Novi Pazar, Novi Pazar, Serbia.

Received 5 March 2016; Revised 5 May 2016; Accepted 7 June 2016.

Abstract. In this paper is introduced a new type of generalization of metric spaces called S_b metric space. For this new kind of spaces it has been proved a common fixed point theorem for four mappings which satisfy generalized contractive condition. We also present example to confirm our theorem.

© 2016 IAUCTB. All rights reserved.

Keywords: Common fixed point, S_b -metric spaces, compatible mappings, Cauchy sequence.

2010 AMS Subject Classification: Primary: 47H10; Secondary: 54H25.

1. Introduction

The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions, see ([1]-[12]). Fixed point problems for contractive mappings in metric spaces with a partially order have been studied by many authors. Sedghi and Shobe [12] proved a common fixed point of four maps in complete metric spaces. Abbas et al. in [1] proved a common fixed points of four mappings satisfying a generalized weak contractive condition in the partially ordered metric spaces. Roshan et al. [8] proved a common fixed point of four maps in *b*-metric spaces.

The aim of this paper is to present some common fixed point results for four mappings satisfying generalized contractive condition in a S_b -metric space, where the S_b -metric is

© 2016 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

^{*}Corresponding author. E-mail address: radens@beotel.rs (S. Radenović).

Print ISSN: 2252-0201 Online ISSN: 2345-5934

not necessary continuous. First we recall some notions, lemmas and examples which will be useful later.

Definition 1.1 [10] Let X be a nonempty set. A S-metric on X is a function $S: X^3 \to [0, \infty)$ that satisfies the following conditions for all $x, y, z, a \in X$.

- (S1) 0 < S(x, y, z) for all $x, y, z \in X$ with $x \neq y \neq z \neq x$,
- (S2) $S(x, y, z) = 0 \Leftrightarrow x = y = z$,
- (S3) $S(x, y, z) \leq S(x, x, a) + S(y, y, a) + S(z, z, a)$ for all $x, y, z, a \in X$.

The pair (X, S) is called a S-metric space.

Example 1.2 [10] Let $X = \mathbb{R}^2$ and d be an ordinary metric on X. Therefore S(x, y, z) = d(x, y) + d(x, z) + d(y, z) for all $x, y, z \in \mathbb{R}^2$, is a S-metric on X.

Lemma 1.3 [9] In a S-metric space we have S(x, x, y) = S(y, y, x).

Definition 1.4 [11] Let (X, S) be a S-metric space. For r > 0 and $x \in X$ we define the open ball $B_S(x, r)$ and closed ball $B_S[x, r]$ with center x and radius r as follows respectively:

$$B_s(x,r) = \{ y \in X : S(y,y,x) < r \}, B_s[x,r] = \{ y \in X : S(y,y,x) \leqslant r \}.$$

Definition 1.5 [11] Let (X, S) be a S-metric space and $A \subseteq X$.

- (1) If for every $x \in X$ there exists r > 0 such that $B_s(x, r) \subseteq A$, then the subset A is called open subset of X.
- (2) Subset A of X is said to be S-bounded if there exists r > 0 such that S(x, x, y) < r for all $x, y \in A$.
- (3) A sequence $\{x_n\}$ in X convergents to x if and only if $S(x_n, x_n, x) \to 0$ as $n \to \infty$. That is for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for each $n \ge n_0$, $S(x_n, x_n, x) < \varepsilon$ and we denote by $\lim_{n \to \infty} x_n = x$.
- (4) Sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for each $n, m \ge n_0$, $S(x_n, x_n, x_m) < \varepsilon$.
- (5) The S-metric space (X, S) is said to be complete if every Cauchy sequence is convergent.
- (6) Let τ be the of all $A \subseteq X$ witch $x \in A$ if and only if there exists r > 0 such that $B_s(x, r) \subseteq A$. Then τ is a topology on X.

Lemma 1.6 [11] Let (X, S) be a S-metric space. If there exist sequence $\{x_n\}, \{y_n\}$ such that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$, then $\lim_{n \to \infty} S(x_n, x_n, y_n) = S(x, x, y)$.

Following the results of Czerwik [3] and Bakhtin [2] in the next definition we introduced the notion of S_b -metric space, as a generalization of S- metric space in which the triangular inequality has been replaced by weaker one.

Definition 1.7 Let X be a nonempty set and $b \ge 1$ be a given real number. Suppose that a mapping $S: X^3 \to [0, \infty)$ satisfies :

- (S_b1) 0 < S(x, y, z) for all $x, y, z \in X$ with $x \neq y \neq z \neq x$,
- $(S_b2) \ S(x, y, z) = 0 \Leftrightarrow x = y = z,$

(S_b3) $S(x, y, z) \leq b(S(x, x, a) + S(y, y, a) + S(z, z, a))$ for all $x, y, z, a \in X$

Then S is called a S_b -metric and the pair (X, S) is called a S_b -metric space.

Remark 1 It should be noted that, the class of S_b -metric spaces is effectively larger than that of S-metric spaces. Indeed each S-metric space is a S_b -metric space with b = 1.

Following example shows that a S_b -metric on X need not be a S-metric on X.

Example 1.8 Let (X, S) be a S-metric space, and $S_*(x, y, z) = S(x, y, z)^p$, where p > 1 is a real number. Note that S_* is a S_b -metric with $b = 2^{2(p-1)}$. Obviously, S_* satisfies condition $(S_b1), (S_b2)$ of Definition 1.7, so it suffice to show (S_b3) holds. If $1 , then the covexity of the function <math>f(x) = x^p, (x > 0)$ implies that $(a+b)^p \leq 2^{p-1}(a^p+b^p)$. Thus, for each $x, y, z, a \in X$, we obtain

$$S_*(x, y, z) = S(x, y, z)^p$$

$$\leq ([S(x, x, a) + S(y, y, a)] + S(z, z, a))^p$$

$$\leq 2^{p-1}([S(x, x, a) + S(y, y, a)]^p + S(z, z, a)^p)$$

$$\leq 2^{p-1}(2^{p-1}(S(x, x, a)^p + S(y, y, a)^p) + S(z, z, a)^p)$$

$$\leq 2^{(p-1)}(2^{p-1}(S(x, x, a)^p + S(y, y, a)^p) + 2^{p-1}S(z, z, a)^p)$$

$$= 2^{2(p-1)}(S(x, x, a)^p + S(y, y, a)^p + S(z, z, a)^p)$$

$$= 2^{2(p-1)}(S_*(x, x, a) + S_*(y, y, a) + S_*(z, z, a))$$

so, S_* is a S_b -metric with $b = 2^{2(p-1)}$.

Also in the above example, (X, S_*) is not necessarily a S-metric space. For example, let $X = \mathbb{R}$ and $S_*(x, y, z) = (|y + z - 2x| + |y - z|)^2$ is a S_b -metric on \mathbb{R} , with p = 2, $b = 2^{2(2-1)} = 4$, for all $x, y, z \in \mathbb{R}$. But it is not a S-metric on \mathbb{R} .

To see this, let $x = 3, y = 5, z = 7, a = \frac{7}{2}$. Hence, we get

$$S_*(3,5,7) = (|5+7-6|+|5-7|)^2 = 8^2 = 64$$

$$S_*(3,3,\frac{7}{2}) = (\left|3+\frac{7}{2}-6\right|+\left|3-\frac{7}{2}\right|)^2 = 1^2 = 1$$

$$S_*(5,5,\frac{7}{2}) = (\left|5+\frac{7}{2}-10\right|+\left|5-\frac{7}{2}\right|)^2 = 3^2 = 9$$

$$S_*(7,7,\frac{7}{2}) = (\left|7+\frac{7}{2}-14\right|+\left|7-\frac{7}{2}\right|)^2 = 7^2 = 49.$$

Therefore, $S_*(3, 5, 7) = 64 \ge 59 = S_*(3, 3, \frac{7}{2}) + S_*(5, 5, \frac{7}{2}) + S_*(7, 7, \frac{7}{2}).$ Now we present some definitions and propositions in S_b -metric space.

Definition 1.9 Let (X, S) be a S_b -metric space. Then, for $x \in X$, r > 0 we defined the open ball $B_S(x, r)$ and closed ball $B_S[x, r]$ with center x and radius r as follows respectively:

$$B_S(x,r) = \{ y \in X : S(y,y,x) < r \},\$$

$$B_S[x,r] = \{ y \in X : S(y,y,x) \leqslant r \}.$$

Example 1.10 Let $X = \mathbb{R}$. Denote $S(x, y, z) = (|y + z - 2x| + |y - z|)^2$ is a S_b -metric on \mathbb{R} with $b = 2^{2(2-1)} = 4$, for all $x, y, z \in \mathbb{R}$. Thus

$$B_S(1,2) = \{y \in \mathbb{R} : S(y,y,1) < 2\}$$

= $\{y \in \mathbb{R} : |y-1| < \frac{\sqrt{2}}{2}\}$
= $\{y \in \mathbb{R} : 1 - \frac{\sqrt{2}}{2} < y < 1 + \frac{\sqrt{2}}{2}\}$
= $(1 - \frac{\sqrt{2}}{2}, 1 + \frac{\sqrt{2}}{2}).$

Lemma 1.11 In a S_b -metric space, we have

 $S(x, x, y) \leqslant bS(y, y, x)$

and

$$S(y, y, x) \leq bS(x, x, y)$$

Proof. By third condition of S_b -metric, we have

$$S(x, x, y) \leqslant b(2S(x, x, x) + S(y, y, x)) = bS(y, y, x)$$

and similarly

$$S(y,y,x) \leqslant b(2S(y,y,y) + S(x,x,y)) = bS(x,x,y).$$

Lemma 1.12 Let (X, S) be a S_b -metric space. Then

$$S(x, x, z) \leq 2bS(x, x, z) + b^2S(y, y, z).$$

Proof. By third condition of S_b -metric and lemma (1.3), we have

$$\begin{split} S(x,x,z) &\leqslant b(S(x,x,y)+S(x,x,y)+S(z,z,y)) \\ &\leqslant b(2S(x,x,y)+bS(y,y,z)) \\ &= 2bS(x,x,y)+b^2S(y,y,z). \end{split}$$

The notions of convergence and Cauchy sequence is introducing as in the case of S-metric spaces.

Definition 1.13 Let (X, S) be a S_b -metric space. A sequence $\{x_n\}$ in X is said to be : (1) S_b -Cauchy sequence if, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $S(x_n, x_n, x_m) < \varepsilon$ for each $m, n \ge n_0$.

(2) S_b -convergent to a point $x \in X$ if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that $S(x_n, x_n, x) < \varepsilon$ or $S(x, x, x_n) < \varepsilon$ for all $n \ge n_0$ and we denote by

 $\lim_{n \to \infty} x_n = x.$

Definition 1.14 A S_b -metric space (X, S) is called complete if every S_b -Cauchy sequence is S_b -convergent in X.

Definition 1.15 Let (X, S) and (X', S') be S_b -metric spaces, and let $f : (X, S) \to$ (X', S') be a function. Then f is said to be continuous at a point $a \in X$ if and only if for every sequence x_n in X, $S(x_n, x_n, a) \to 0$ implies $S'(f(x_n), f(x_n), f(a)) \to 0$. A function f is continuous at X if and only if it is continuous at all $a \in X$.

The term of compatible mappings is introduced analogously as in the case of S-metric spaces.

Definition 1.16 Let (X, S) be a S_b -metric space. A pair $\{f, g\}$ is said to be compatible if and only if $\lim_{n \to \infty} S(fgx_n, fgx_n, gfx_n) = 0$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some $t \in X$.

Lemma 1.17 Let (X, S) be a S_b -metric space with $b \ge 1$, and suppose that $\{x_n\}$ is a S_b -convergent to x, then we have

$$\frac{1}{b^2}S(x,x,y) \leqslant \liminf_{n \longrightarrow \infty} S(x_n,x_n,y) \leqslant \limsup_{n \longrightarrow \infty} S(x_n,x_n,y) \leqslant b^2 S(x,x,y).$$

In particular, if x = y, then we have $\lim_{n \to \infty} S(x_n, x_n, y) = 0$.

Proof. By (S_b3) and Lemma 1.12, we have

$$S(x_n, x_n, y) \leq 2bS(x_n, x_n, x) + b^2S(x, x, y),$$

and

$$\frac{1}{b^2}S(x,x,y) \leqslant 2S(x_n,x_n,x) + S(x_n,x_n,y).$$

Taking the upper limit as $n \to \infty$ in the first inequality and the lower limit as $n \to \infty$ in the second inequality we obtain the desired result.

Lemma 1.18 Let (X, S) be a S_b -metric space. If there exist two sequences $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n \to \infty} S(x_n, x_n, y_n) = 0$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{\substack{n \to \infty \\ Proof.}} x_n = t \text{ for some } t \in X \text{ then } \lim_{\substack{n \to \infty \\ p \to \infty}} y_n = t.$

$$S(y_n, y_n, t) \leq b(2S(y_n, y_n, x_n) + bS(x_n, x_n, t)).$$

Now, by taking the upper limit when $n \to \infty$ in the above inequality we get

$$\limsup_{n \to \infty} S(y_n, y_n, t) \leqslant b^2(\limsup_{n \to \infty} 2S(x_n, x_n, y_n) + \limsup_{n \to \infty} S(x_n, x_n, t)) = 0.$$

Hence $\lim_{n \to \infty} y_n = t$.

2. Main results

Our first results is the following common fixed point theorem.

Theorem 2.1 Suppose that f, g, M and T are self mappings on a complete S_b -metric space (X, S) such that $f(X) \subseteq T(X), g(X) \subseteq M(X)$. If

$$S(fx, fx, gy) \leqslant \frac{q}{b^4} \max\{S(Mx, Mx, Ty), S(fx, fx, Mx), S(gy, gy, Ty),$$
(1)

$$\frac{1}{2}(S(Mx,Mx,gy) + S(fx,fx,Ty)))\}$$

holds for each $x, y \in X$ with 0 < q < 1 and $b \ge \frac{3}{2}$, then f, g, M and T have a unique common fixed point in X provided that M and T are continuous and pairs $\{f, M\}$ and $\{g, T\}$ are compatible.

Proof. Let $x_0 \in X$. As $f(X) \subseteq T(X)$, there exists $x_1 \in X$ such that $fx_0 = Tx_1$. Since $gx_1 \in M(X)$, we can choose $x_2 \in X$ such that $gx_1 = Mx_2$. In general, x_{2n+1} and x_{2n+2} are chosen in X such that $fx_{2n} = Tx_{2n+1}$ and $gx_{2n+1} = Mx_{2n+2}$. Define a sequence y_n in X such that $y_{2n} = fx_{2n} = Tx_{2n+1}$, and $y_{2n+1} = gx_{2n+1} = Mx_{2n+2}$, for all $n \ge 0$. Now, we show that y_n is a Cauchy sequence. Consider

$$\begin{split} S(y_{2n}, y_{2n+1}) &= S(fx_{2n}, fx_{2n}, gx_{2n+1}) \\ &\leqslant \frac{q}{b^4} \max \left\{ S(Mx_{2n}, Mx_{2n}, Tx_{2n+1}), S(fx_{2n}, fx_{2n}, Mx_{2n}), \right. \\ &S(gx_{2n+1}, gx_{2n+1}, Tx_{2n+1}), \\ & \frac{1}{2}(S(Mx_{2n}, Mx_{2n}, gx_{2n+1}) + S(fx_{2n}, fx_{2n}, Tx_{2n+1})) \right\} \\ &= \frac{q}{b^4} \max \left\{ S(y_{2n-1}, y_{2n-1}, y_{2n}), S(y_{2n}, y_{2n}, y_{2n-1}), \right. \\ &S(y_{2n+1}, y_{2n+1}, y_{2n}), \\ & \frac{1}{2}(S(y_{2n-1}, y_{2n-1}, y_{2n+1}) + S(y_{2n}, y_{2n}, y_{2n})) \right\} \\ &\leqslant \frac{q}{b^4} \max \left\{ S(y_{2n-1}, y_{2n-1}, y_{2n}), bS(y_{2n-1}, y_{2n-1}, y_{2n}), \right. \\ &S(y_{2n+1}, y_{2n+1}, y_{2n}), \frac{S(y_{2n-1}, y_{2n-1}, y_{2n-1}, y_{2n}), bS(y_{2n-1}, y_{2n-1}, y_{2n}), \\ &S(y_{2n+1}, y_{2n+1}, y_{2n}), \frac{S(y_{2n-1}, y_{2n-1}, y_{2n-1}, y_{2n-1}, y_{2n}), S(y_{2n+1}, y_{2n+1}, y_{2n}), \\ & \frac{b}{b^4} \max \left\{ S(y_{2n-1}, y_{2n-1}, y_{2n}), bS(y_{2n-1}, y_{2n-1}, y_{2n}) + S(y_{2n+1}, y_{2n+1}, y_{2n}) \right\} \\ &\leqslant \frac{q}{b^4} \max \left\{ S(y_{2n-1}, y_{2n-1}, y_{2n}), bS(y_{2n-1}, y_{2n-1}, y_{2n}) + S(y_{2n+1}, y_{2n+1}, y_{2n}) \right\} \\ &\leqslant \frac{q}{b^4} \max \left\{ S(y_{2n-1}, y_{2n-1}, y_{2n}) + S(y_{2n-1}, y_{2n-1}, y_{2n}) + S(y_{2n+1}, y_{2n+1}, y_{2n+1}) \right\} \\ &\leqslant \frac{q}{b^4} \max \left\{ S(y_{2n-1}, y_{2n-1}, y_{2n}) + bS(y_{2n-1}, y_{2n-1}, y_{2n}) \right\} \\ &\leqslant \frac{q}{b^4} \max \left\{ S(y_{2n-1}, y_{2n-1}, y_{2n}) + bS(y_{2n-1}, y_{2n-1}, y_{2n}) \right\} \\ &$$

Now, since

$$S(y_{2n-1}, y_{2n-1}, y_{2n}) \leq bS(y_{2n-1}, y_{2n-1}, y_{2n})$$
$$\leq bS(y_{2n-1}, y_{2n-1}, y_{2n}) + \frac{b^2}{2}S(y_{2n}, y_{2n}, y_{2n+1})$$

we have

$$S(y_{2n}, y_{2n}, y_{2n+1}) \leq \max \left\{ bS(y_{2n}, y_{2n}, y_{2n+1}), \\ bS(y_{2n-1}, y_{2n-1}, y_{2n}) + \frac{b^2}{2}S(y_{2n}, y_{2n}, y_{2n+1}) \right\}.$$

If max = $bS(y_{2n}, y_{2n}, y_{2n+1})$ we obtain

$$S(y_{2n}, y_{2n}, y_{2n+1}) \leqslant \frac{q}{b^3} S(y_{2n}, y_{2n}, y_{2n+1}) < S(y_{2n}, y_{2n}, y_{2n+1})$$

Contradiction. So, $\max = bS(y_{2n-1}, y_{2n-1}, y_{2n}) + \frac{b^2}{2}S(y_{2n}, y_{2n}, y_{2n+1})$ and we have

$$S(y_{2n}, y_{2n}, y_{2n+1}) \leqslant \frac{q}{b^4} \left(bS(y_{2n-1}, y_{2n-1}, y_{2n}) + \frac{b^2}{2} S(y_{2n}, y_{2n}, y_{2n+1}) \right)$$

i.e.,

$$S(y_{2n}, y_{2n}, y_{2n+1}) \leq \frac{2q}{2b^3 - qb}S(y_{2n-1}, y_{2n-1}, y_{2n}).$$

Let $\lambda = \frac{2q}{2b^3 - qb}$. Since $b \ge \frac{3}{2}$ we have that $0 < \lambda < 1$. Now,

$$S(y_{2n}, y_{2n}, y_{2n+1}) \leq \lambda S(y_{2n-1}, y_{2n-1}, y_{2n}) \leq \lambda^2 S(y_{2n-2}, y_{2n-2}, y_{2n-1})$$

$$\leq \dots \leq \lambda^n S(y_0, y_0, y_1).$$

Hence, for all $n \ge 2$, we obtain

$$S(y_{n-1}, y_{n-1}, y_n) \leq \dots \leq \lambda^{n-1} S(y_0, y_0, y_1).$$
(2)

Using Lemma 1.11 and (S_b3) , and (2) for all n > m, we have

$$\begin{split} S(y_m, y_m, y_n) &\leqslant b(2S(y_m, y_m, y_{m+1}) + S(y_n, y_n, y_{m+1})) \\ &\leqslant 2bS(y_m, y_m, y_{m+1}) + b^2S(y_{m+1}, y_{m+1}, y_n) \\ &\leqslant 2bS(y_m, y_m, y_{m+1}) + 2b^3S(y_{m+1}, y_{m+1}, y_{m+2}) \\ &\quad + b^4S(y_{m+2}, y_{m+2}, y_n) \leqslant \dots \\ &\leqslant 2b(S(y_m, y_m, y_{m+1}) + b^2S(y_{m+1}, y_{m+1}, y_{m+2}) \\ &\quad + \dots + b^{2(n-m-1)}S(y_{n-1}, y_{n-1}, y_n)) \\ &\leqslant 2b(\lambda^m + b^2\lambda^{m+1} + \dots + b^{2(n-m-1)}\lambda^{n-1})S(y_0, y_0, y_1) \\ &\leqslant 2bS(y_0, y_0, y_1)(\lambda^m + b^2\lambda^{m+1} + \dots) \\ &\leqslant \frac{2b\lambda^m}{1 - b^2\lambda}S(y_0, y_0, y_1). \end{split}$$

On taking limit as $m, n \to \infty$, we have $S(y_m, y_m, y_n) \to 0$ as $b^2 \lambda < 1$. Therefore $\{y_n\}$ is a Cauchy sequence. Since X is a complete S_b -metric space, there is some y in X such that

$$\lim_{n \to \infty} fx_{2n} = \lim_{n \to \infty} Tx_{2n+1} = \lim_{n \to \infty} gx_{2n+1} = \lim_{n \to \infty} Mx_{2n+2} = y.$$

We show that y is a common fixed point of f, g, M and T. Since M is continuous, therefore

$$\lim_{n \to \infty} M^2 x_{2n+2} = My \quad and \quad \lim_{n \to \infty} Mf x_{2n} = My.$$

Since a pair $\{f, M\}$ is compatible, $\lim_{n \to \infty} S(fMx_{2n}, fMx_{2n}, Mfx_{2n}) = 0$. So by Lemma 1.18, we have $\lim_{n \to \infty} fMx_{2n} = My$. Putting $x = Mx_{2n}$ and $y = x_{2n+1}$ in (1) we obtain

$$S(fMx_{2n}, fMx_{2n}, gx_{2n+1}) \leqslant \frac{q}{b^4} \max \left\{ S(M^2x_{2n}, M^2x_{2n}, Tx_{2n+1}), \\ S(fMx_{2n}, fMx_{2n}, M^2x_{2n}), S(gx_{2n+1}, gx_{2n+1}, Tx_{2n+1}), \\ \frac{1}{2} \left(S(M^2x_{2n}, M^2x_{2n}, gx_{2n+1}) + S(fMx_{2n}, fMx_{2n}, Tx_{2n+1}) \right) \right\}.$$

$$(3)$$

Taking the upper limit as $n \to \infty$ in (3) and using Lemma 1.17, we get

$$\begin{split} \frac{S(My, My, y)}{b^2} &\leqslant \limsup_{n \to \infty} S(fMx_{2n}, fMx_{2n}, gx_{2n+1}) \\ &\leqslant \frac{q}{b^4} \max \left\{ \limsup_{n \to \infty} S(M^2x_{2n}, M^2x_{2n}, Tx_{2n+1}), \right. \\ &\lim_{n \to \infty} \sup S(fMx_{2n}, fMx_{2n}, M^2x_{2n}), \\ &\lim_{n \to \infty} \sup S(gx_{2n+1}, gx_{2n+1}, Tx_{2n+1}), \\ &\frac{1}{2} \left(\limsup_{n \to \infty} S(M^2x_{2n}, M^2x_{2n}, gx_{2n+1}) \right. \\ &\left. +\limsup_{n \to \infty} S(fMx_{2n}, fMx_{2n}, Tx_{2n+1}) \right) \right\} \\ &\leqslant \frac{q}{b^4} \max \left\{ b^2 S(My, My, y), 0, 0, \frac{b^2}{2} \left(S(My, My, y) + S(My, My, y) \right) \right\} \\ &= \frac{q}{b^4} b^2 S(My, My, y) = \frac{q}{b^2} S(My, My, y). \end{split}$$

Consequently, $S(My, My, y) \leq qS(My, My, y)$. As 0 < q < 1, so My = y. Using continuity of T, we obtain $\lim_{n \to \infty} T^2 x_{2n+1} = Ty$ and $\lim_{n \to \infty} Tgx_{2n+1} = Ty$. Since g and T are compatible, $\lim_{n \to \infty} S(gTx_n, gTx_n, Tgx_n) = 0$. So, by Lemma 1.18, we have $\lim_{n \to \infty} gTx_{2n} = Ty$. Putting $x = x_{2n}$ and $y = Tx_{2n+1}$ in (1), we obtain

$$S(fx_{2n}, fx_{2n}, gTx_{2n+1}) \leqslant \frac{q}{b^4} \max \left\{ S(Mx_{2n}, Mx_{2n}, T^2x_{2n+1}), \\ S(fx_{2n}, fx_{2n}, Mx_{2n}), S(gTx_{2n+1}, gTx_{2n+1}, T^2x_{2n+1}), \\ \frac{1}{2} \left(S(Mx_{2n}, Mx_{2n}, gTx_{2n+1}) + S(fx_{2n}, fx_{2n}, T^2x_{2n+1}) \right) \right\}.$$

$$(4)$$

Taking upper limit as $n \to \infty$ in (4) and using Lemma 1.17, we obtain

$$\begin{aligned} \frac{S(y, y, Ty)}{b^2} &\leqslant \limsup_{n \to \infty} S(fx_{2n}, fx_{2n}, gTx_{2n+1}) \\ &\leqslant \frac{q}{b^4} \max\{b^2(S(y, y, Ty), 0, 0, \frac{b^2}{2}S(y, y, Ty) + S(y, y, Ty))\} \\ &= \frac{qS(y, y, Ty)}{b^2}, \end{aligned}$$

which implies that Ty = y. Also, we can apply condition (1) to obtain

$$S(fy, fy, gx_{2n+1}) \leqslant \frac{q}{b^4} \max \left\{ S(My, My, Tx_{2n+1}), S(fy, fy, My), \\ S(gx_{2n+1}, gx_{2n+1}, Tx_{2n+1}), \frac{1}{2} \left(S(My, My, gx_{2n+1}) + S(fy, fy, Tx_{2n+1}) \right) \right\}.$$
(5)

Taking upper limit $n \to \infty$ in (5), and using My = Ty = y, we have

$$\begin{split} \frac{S(fy, fy, y)}{b^2} \leqslant \frac{q}{b^4} \max\{b^2 S(My, My, y), b^2 S(fy, fy, My), b^2 S(y, y, y), \\ & \frac{b^2}{2}(S(My, My, y) + S(fy, fy, y)) \\ & = \frac{q}{b^2} S(fy, fy, y), \end{split}$$

which implies that S(fy, fy, y) = 0 and fy = y as 0 < q < 1. Finally, from condition (1), and the fact My = Ty = fy = y, we have

$$\begin{split} S(y,y,gy) &= S(fy,fy,gy) \\ &\leqslant \frac{q}{b^4} \max\{S(My,My,Ty),S(fy,fy,My),S(gy,gy,Ty), \\ &\frac{1}{2}(S(My,My,gy) + S(fy,fy,Ty)) \\ &\leqslant \frac{q}{b^3}S(y,y,gy) \\ &\leqslant qS(y,y,gy), \end{split}$$

which implies that S(y, y, gy) = 0 and gy = y. Hence My = Ty = fy = gy = y. If there exists another common fixed point x in X for f, g, M and T, then

$$\begin{split} S(x,x,y) &= S(fx,fx,gy) \\ &\leqslant \frac{q}{b^4} \max\{S(Mx,Mx,Ty),S(fx,fx,Mx),S(gy,gy,Ty), \\ &\quad \frac{1}{2}(S(Mx,Mx,gy) + S(fx,fx,Ty)) \\ &= \frac{q}{b^4} \max\{S(x,x,y),S(x,x,x),S(y,y,y),\frac{1}{2}(S(x,x,y) + S(x,x,y))\} \\ &= \frac{q}{b^4}S(x,x,y) \\ &\leqslant qS(x,x,y), \end{split}$$

which further implies that S(x, x, y) = 0 and hence, x = y. Thus, y is a unique common fixed point of f, g, M and T.

Example 2.2 Let X = [0, 1] be endowed with S_b -metric $S_*(x, y, z) = (|y+z-2x|+|y-z|)^2$, where b = 4. Define f, g, M and T on X by $f(x) = (\frac{x}{4})^8$, $g(x) = (\frac{x}{8})^4$, $M(x) = (\frac{x}{4})^4$, $T(x) = (\frac{x}{8})^2$. Obviously, $f(X) \subseteq T(X)$ and $g(X) \subseteq M(X)$. Furthermore, the pairs $\{f, M\}$ and $\{g, T\}$

102

are compatible. For each $x, y \in X$, we have

$$\begin{split} S(fx,fx,gy) &= (|gy - fx| + |fx - gy|)^2 \\ &= (2|fx - gy|)^2 \\ &= 4((\frac{x}{4})^8 - (\frac{y}{8})^4)^2 \\ &= 4((\frac{x}{4})^4 + (\frac{y}{8})^2)^2 \cdot ((\frac{x}{4})^4 - (\frac{y}{8})^2)^2 \\ &\leqslant (\frac{1}{4^4} + \frac{1}{8^2})^2 S(Mx,Mx,Ty) \\ &= \frac{\frac{25}{4^4}}{4^4} S(Mx,Mx,Ty), \end{split}$$

where $\frac{25}{4^4} \leq q \leq 1$ and b = 4. Thus, f, g, M and T satisfy all condition of Theorem 2.1. Moreover 0 is the unique common fixed point of f, g, M and T.

Corollary 2.3 Let (X, S) be a complete S_b -metric space and $f, g : X \to X$ two mappings such that

$$S(fx, fx, gy) \leqslant \frac{q}{b^4} \max\{S(x, x, y), S(fx, fx, x), S(gy, gy, y), \frac{1}{2}(S(x, x, gy) + S(fx, fx, y))\}, S(fx, fx, y), S(fx, y), S($$

holds for all $x, y \in X$ with 0 < q < 1 and $b \ge \frac{3}{2}$. Then, there exists a unique point $y \in X$ such that fy = gy = y.

Proof. If we take $M = T = I_X$ (identity mapping on X), then theorem (2.1) gives that f and g have a unique common fixed point.

Proof. If we take f and g as identity maps on X, then Theorem 2.1 gives that M and T have a unique common fixed point.

Corollary 2.4 Let (X, S) be a complete S_b -metric space and $f : X \to X$ mapping such that

$$S(fx, fx, fy) \leq \frac{q}{b^4} \max\{S(x, x, y), S(fx, fx, x), S(fy, fy, y), \frac{1}{2}(S(x, x, fy) + S(fx, fx, y))\}, S(fx, fx, y), S(fy, fy, y), S(fy, y), S(fy,$$

holds for all $x, y \in X$ with 0 < q < 1 and $b \ge \frac{3}{2}$. Then f has a unique fixed point in X. **Proof.** Take M and T as identity maps on X and f = g and then apply Theorem 2.1.

Acknowledgment

The third author is thankful to Ministry of Education, Sciences and Technological Development of Serbia.

References

 M. Abbas, T. Nazir, S. Radenović, Common fixed point of four maps in partially ordered matric spaces, Applied Mathematics Letters, 24 (2011), 1520-1526.

- [2] I.A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 26-37.
- [3] S. Czerwik, Contraction Mappings in b-metric Spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5-11.
- [4] N. V. Dung, On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces, Fixed Point Theory Appl. 2013, Article ID 48 (2013).
- G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (4) (1986), 771-779.
- [6] H. Rahimi, M. Abbas, G. Soleimani Rad, Common Fixed Point Results for Four Mappings on Ordered Vector Metric Spaces, Filomat 29 (4) (2015), 865-878.
- [7] H. Rahimi, G. Soleimani Rad, Some fixed point results in metric type space, J. Basic Appl. Sci. Res 2 (9) (2012), 3901-3908.
- J. R. Roshan, N. Shobkolaei, S. Sedghi and M. Abbas, Common fixed point of four maps in b-metric spaces, [8] Hacettepe Journal of Mathemetics and Statistics, 43 (4) (2014), 613-624.
- [9] S. Sedghi, I. Alton, N. Shobe and M. Salahshour, Some properties of S-metric space and fixed point results, Kyung pook Math. J. 54 (2014), 113-122.
- [10] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64 (2012), 258-266.
- [11] S. Sedghi, N. Shobe, T. Došenović, Fixed point results in S-metric spaces, Nonlinear Functional Analysis and [11] S. Sedghi, N. Shobe, 12D5567.
 [12] S. Sedghi, N. Shobe, Common fixed point theorems for four mappings in complete metric spaces, Bulletin of
- the Iranian Mathematical Society, 33 (2) (2007), 37-47.