Common fixed point of four maps in S_{b}-metric spaces

Sh. Sedghi ${ }^{\mathrm{b} *}$, A. Gholidahneh ${ }^{\mathrm{b}}$, T. Došenovićc ${ }^{\text {c }}$, J. Esfahani ${ }^{\text {b }}$, S. Radenovićád, ${ }^{\text {, } *}$
${ }^{a}$ Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia.
${ }^{\mathrm{b}}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
${ }^{c}$ Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Serbia.
${ }^{\mathrm{d}}$ Department of Mathematics, University of Novi Pazar, Novi Pazar, Serbia.

Received 5 March 2016; Revised 5 May 2016; Accepted 7 June 2016.

Abstract

In this paper is introduced a new type of generalization of metric spaces called S_{b} metric space. For this new kind of spaces it has been proved a common fixed point theorem for four mappings which satisfy generalized contractive condition. We also present example to confirm our theorem.

(c) 2016 IAUCTB. All rights reserved.

Keywords: Common fixed point, S_{b}-metric spaces, compatible mappings, Cauchy sequence.
2010 AMS Subject Classification: Primary: 47H10; Secondary: 54H25.

1. Introduction

The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions, see ([1]-[12]). Fixed point problems for contractive mappings in metric spaces with a partially order have been studied by many authors. Sedghi and Shobe [12] proved a common fixed point of four maps in complete metric spaces. Abbas et al. in [1] proved a common fixed points of four mappings satisfying a generalized weak contractive condition in the partially ordered metric spaces. Roshan et al. [8] proved a common fixed point of four maps in b-metric spaces.

The aim of this paper is to present some common fixed point results for four mappings satisfying generalized contractive condition in a S_{b}-metric space, where the S_{b}-metric is

[^0]not necessary continuous. First we recall some notions, lemmas and examples which will be useful later.

Definition 1.1 [10] Let X be a nonempty set. A S-metric on X is a function $S: X^{3} \rightarrow$ $[0, \infty)$ that satisfies the following conditions for all $x, y, z, a \in X$.
(S1) $0<S(x, y, z)$ for all $x, y, z \in X$ with $x \neq y \neq z \neq x$,
(S2) $S(x, y, z)=0 \Leftrightarrow x=y=z$,
(S3) $S(x, y, z) \leqslant S(x, x, a)+S(y, y, a)+S(z, z, a)$ for all $x, y, z, a \in X$.
The pair (X, S) is called a S-metric space.
Example 1.2 [10] Let $X=\mathbb{R}^{2}$ and d be an ordinary metric on X. Therefore $S(x, y, z)=$ $d(x, y)+d(x, z)+d(y, z)$ for all $x, y, z \in \mathbb{R}^{2}$, is a S-metric on X.
Lemma 1.3 [9] In a S-metric space we have $S(x, x, y)=S(y, y, x)$.
Definition 1.4 [11] Let (X, S) be a S-metric space. For $r>0$ and $x \in X$ we define the open ball $B_{S}(x, r)$ and closed ball $B_{S}[x, r]$ with center x and radius r as follows respectively:

$$
\begin{aligned}
B_{s}(x, r) & =\{y \in X: S(y, y, x)<r\}, \\
B_{s}[x, r] & =\{y \in X: S(y, y, x) \leqslant r\} .
\end{aligned}
$$

Definition 1.5 [11] Let (X, S) be a S-metric space and $A \subseteq X$.
(1) If for every $x \in X$ there exists $r>0$ such that $B_{s}(x, r) \subseteq A$, then the subset A is called open subset of X.
(2) Subset A of X is said to be S-bounded if there exists $r>0$ such that $S(x, x, y)<r$ for all $x, y \in A$.
(3) A sequence $\left\{x_{n}\right\}$ in X convergents to x if and only if $S\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow$ ∞. That is for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for each $n \geqslant n_{0}$, $S\left(x_{n}, x_{n}, x\right)<\varepsilon$ and we denote by $\lim _{n \rightarrow \infty} x_{n}=x$.
(4) Sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for each $n, m \geqslant n_{0}, S\left(x_{n}, x_{n}, x_{m}\right)<\varepsilon$.
(5) The S-metric space (X, S) is said to be complete if every Cauchy sequence is convergent.
(6) Let τ be the of all $A \subseteq X$ witch $x \in A$ if and only if there exists $r>0$ such that $B_{s}(x, r) \subseteq A$. Then τ is a topology on X.
Lemma 1.6 [11] Let (X, S) be a S-metric space. If there exist sequence $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that $\lim _{n \longrightarrow \infty} x_{n}=x$ and $\lim _{n \longrightarrow \infty} y_{n}=y$, then $\lim _{n \longrightarrow \infty} S\left(x_{n}, x_{n}, y_{n}\right)=S(x, x, y)$.

Following the results of Czerwik [3] and Bakhtin [2] in the next definition we introduced the notion of S_{b}-metric space, as a generalization of S - metric space in which the triangular inequality has been replaced by weaker one.

Definition 1.7 Let X be a nonempty set and $b \geqslant 1$ be a given real number. Suppose that a mapping $S: X^{3} \rightarrow[0, \infty)$ satisfies :
$\left(\mathrm{S}_{b} 1\right) 0<S(x, y, z)$ for all $x, y, z \in X$ with $x \neq y \neq z \neq x$,
$\left(\mathrm{S}_{b} 2\right) S(x, y, z)=0 \Leftrightarrow x=y=z$,
$\left(\mathrm{S}_{b} 3\right) S(x, y, z) \leqslant b(S(x, x, a)+S(y, y, a)+S(z, z, a))$ for all $x, y, z, a \in X$

Then S is called a S_{b}-metric and the pair (X, S) is called a S_{b}-metric space.
Remark 1 It should be noted that, the class of S_{b}-metric spaces is effectively larger than that of S-metric spaces. Indeed each S-metric space is a S_{b}-metric space with $b=1$.

Following example shows that a S_{b}-metric on X need not be a S-metric on X.
Example 1.8 Let (X, S) be a S-metric space, and $S_{*}(x, y, z)=S(x, y, z)^{p}$, where $p>1$ is a real number. Note that S_{*} is a S_{b}-metric with $b=2^{2(p-1)}$. Obviously, S_{*} satisfies condition $\left(S_{b} 1\right),\left(S_{b} 2\right)$ of Definition 1.7, so it suffice to show ($S_{b} 3$) holds. If $1<p<\infty$, then the covexity of the function $f(x)=x^{p},(x>0)$ implies that $(a+b)^{p} \leqslant 2^{p-1}\left(a^{p}+b^{p}\right)$. Thus, for each $x, y, z, a \in X$, we obtain

$$
\begin{aligned}
S_{*}(x, y, z) & =S(x, y, z)^{p} \\
& \leqslant([S(x, x, a)+S(y, y, a)]+S(z, z, a))^{p} \\
& \leqslant 2^{p-1}\left([S(x, x, a)+S(y, y, a)]^{p}+S(z, z, a)^{p}\right) \\
& \leqslant 2^{p-1}\left(2^{p-1}\left(S(x, x, a)^{p}+S(y, y, a)^{p}\right)+S(z, z, a)^{p}\right) \\
& \leqslant 2^{(p-1)}\left(2^{p-1}\left(S(x, x, a)^{p}+S(y, y, a)^{p}\right)+2^{p-1} S(z, z, a)^{p}\right) \\
& =2^{2(p-1)}\left(S(x, x, a)^{p}+S(y, y, a)^{p}+S(z, z, a)^{p}\right) \\
& =2^{2(p-1)}\left(S_{*}(x, x, a)+S_{*}(y, y, a)+S_{*}(z, z, a)\right)
\end{aligned}
$$

so, S_{*} is a S_{b}-metric with $b=2^{2(p-1)}$.
Also in the above example, $\left(X, S_{*}\right)$ is not necessarily a S-metric space. For example, let $X=\mathbb{R}$ and $S_{*}(x, y, z)=(|y+z-2 x|+|y-z|)^{2}$ is a S_{b}-metric on \mathbb{R}, with $p=2$, $b=2^{2(2-1)}=4$, for all $x, y, z \in \mathbb{R}$. But it is not a S-metric on \mathbb{R}.

To see this, let $x=3, y=5, z=7, a=\frac{7}{2}$. Hence, we get

$$
\begin{aligned}
& S_{*}(3,5,7)=(|5+7-6|+|5-7|)^{2}=8^{2}=64 \\
& S_{*}\left(3,3, \frac{7}{2}\right)=\left(\left|3+\frac{7}{2}-6\right|+\left|3-\frac{7}{2}\right|\right)^{2}=1^{2}=1 \\
& S_{*}\left(5,5, \frac{7}{2}\right)=\left(\left|5+\frac{7}{2}-10\right|+\left|5-\frac{7}{2}\right|\right)^{2}=3^{2}=9 \\
& S_{*}\left(7,7, \frac{7}{2}\right)=\left(\left|7+\frac{7}{2}-14\right|+\left|7-\frac{7}{2}\right|\right)^{2}=7^{2}=49 .
\end{aligned}
$$

Therefore, $S_{*}(3,5,7)=64 \geqslant 59=S_{*}\left(3,3, \frac{7}{2}\right)+S_{*}\left(5,5, \frac{7}{2}\right)+S_{*}\left(7,7, \frac{7}{2}\right)$.
Now we present some definitions and propositions in S_{b}-metric space.
Definition 1.9 Let (X, S) be a S_{b}-metric space. Then, for $x \in X, r>0$ we defined the open ball $B_{S}(x, r)$ and closed ball $B_{S}[x, r]$ with center x and radius r as follows respectively:

$$
\begin{aligned}
B_{S}(x, r) & =\{y \in X: S(y, y, x)<r\}, \\
B_{S}[x, r] & =\{y \in X: S(y, y, x) \leqslant r\} .
\end{aligned}
$$

Example 1.10 Let $X=\mathbb{R}$. Denote $S(x, y, z)=(|y+z-2 x|+|y-z|)^{2}$ is a S_{b}-metric on \mathbb{R} with $b=2^{2(2-1)}=4$, for all $x, y, z \in \mathbb{R}$. Thus

$$
\begin{aligned}
B_{S}(1,2) & =\{y \in \mathbb{R}: S(y, y, 1)<2\} \\
& =\left\{y \in \mathbb{R}:|y-1|<\frac{\sqrt{2}}{2}\right\} \\
& =\left\{y \in \mathbb{R}: 1-\frac{\sqrt{2}}{2}<y<1+\frac{\sqrt{2}}{2}\right\} \\
& =\left(1-\frac{\sqrt{2}}{2}, 1+\frac{\sqrt{2}}{2}\right) .
\end{aligned}
$$

Lemma 1.11 In a S_{b}-metric space, we have

$$
S(x, x, y) \leqslant b S(y, y, x)
$$

and

$$
S(y, y, x) \leqslant b S(x, x, y)
$$

Proof. By third condition of S_{b}-metric, we have

$$
S(x, x, y) \leqslant b(2 S(x, x, x)+S(y, y, x))=b S(y, y, x)
$$

and similarly

$$
S(y, y, x) \leqslant b(2 S(y, y, y)+S(x, x, y))=b S(x, x, y) .
$$

Lemma 1.12 Let (X, S) be a S_{b}-metric space. Then

$$
S(x, x, z) \leqslant 2 b S(x, x, z)+b^{2} S(y, y, z) .
$$

Proof. By third condition of S_{b}-metric and lemma (1.3), we have

$$
\begin{aligned}
S(x, x, z) & \leqslant b(S(x, x, y)+S(x, x, y)+S(z, z, y)) \\
& \leqslant b(2 S(x, x, y)+b S(y, y, z)) \\
& =2 b S(x, x, y)+b^{2} S(y, y, z) .
\end{aligned}
$$

The notions of convergence and Cauchy sequence is introducing as in the case of S-metric spaces.

Definition 1.13 Let (X, S) be a S_{b}-metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be: (1) S_{b}-Cauchy sequence if, for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $S\left(x_{n}, x_{n}, x_{m}\right)<\varepsilon$ for each $m, n \geqslant n_{0}$.
(2) S_{b}-convergent to a point $x \in X$ if, for each $\varepsilon>0$, there exists a positive integer n_{0} such that $S\left(x_{n}, x_{n}, x\right)<\varepsilon$ or $S\left(x, x, x_{n}\right)<\varepsilon$ for all $n \geqslant n_{0}$ and we denote by

$$
\lim _{n \longrightarrow \infty} x_{n}=x .
$$

Definition 1.14 A S_{b}-metric space (X, S) is called complete if every S_{b}-Cauchy sequence is S_{b}-convergent in X.

Definition 1.15 Let (X, S) and $\left(X^{\prime}, S^{\prime}\right)$ be S_{b}-metric spaces, and let $f:(X, S) \rightarrow$ (X^{\prime}, S^{\prime}) be a function. Then f is said to be continuous at a point $a \in X$ if and only if for every sequence x_{n} in $X, S\left(x_{n}, x_{n}, a\right) \rightarrow 0$ implies $S^{\prime}\left(f\left(x_{n}\right), f\left(x_{n}\right), f(a)\right) \rightarrow 0$. A function f is continuous at X if and only if it is continuous at all $a \in X$.

The term of compatible mappings is introduced analogously as in the case of S-metric spaces.

Definition 1.16 Let (X, S) be a S_{b}-metric space. A pair $\{f, g\}$ is said to be compatible if and only if $\lim _{n \longrightarrow \infty} S\left(f g x_{n}, f g x_{n}, g f x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \longrightarrow \infty} f x_{n}=\lim _{n \longrightarrow \infty} g x_{n}=t$ for some $t \in X$.
Lemma 1.17 Let (X, S) be a S_{b}-metric space with $b \geqslant 1$, and suppose that $\left\{x_{n}\right\}$ is a S_{b}-convergent to x, then we have

$$
\frac{1}{b^{2}} S(x, x, y) \leqslant \liminf _{n \longrightarrow \infty} S\left(x_{n}, x_{n}, y\right) \leqslant \limsup _{n \longrightarrow \infty} S\left(x_{n}, x_{n}, y\right) \leqslant b^{2} S(x, x, y)
$$

In particular, if $x=y$, then we have $\lim _{n \longrightarrow \infty} S\left(x_{n}, x_{n}, y\right)=0$.
Proof. By $\left(S_{b} 3\right)$ and Lemma 1.12, we have

$$
S\left(x_{n}, x_{n}, y\right) \leqslant 2 b S\left(x_{n}, x_{n}, x\right)+b^{2} S(x, x, y)
$$

and

$$
\frac{1}{b^{2}} S(x, x, y) \leqslant 2 S\left(x_{n}, x_{n}, x\right)+S\left(x_{n}, x_{n}, y\right)
$$

Taking the upper limit as $n \rightarrow \infty$ in the first inequality and the lower limit as $n \rightarrow \infty$ in the second inequality we obtain the desired result.

Lemma 1.18 Let (X, S) be a S_{b}-metric space. If there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \longrightarrow \infty} S\left(x_{n}, x_{n}, y_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \xrightarrow{\longrightarrow}} x_{n}=t$ for some $t \in X$ then $\lim _{n \xrightarrow{\longrightarrow}} y_{n}=t$.
$\stackrel{n \longrightarrow}{\text { Proof }}$. By a triangle inequality in a ${ }^{n} S_{b}$-metric space, we have

$$
S\left(y_{n}, y_{n}, t\right) \leqslant b\left(2 S\left(y_{n}, y_{n}, x_{n}\right)+b S\left(x_{n}, x_{n}, t\right)\right)
$$

Now, by taking the upper limit when $n \rightarrow \infty$ in the above inequality we get

$$
\limsup _{n \longrightarrow \infty} S\left(y_{n}, y_{n}, t\right) \leqslant b^{2}\left(\limsup _{n \longrightarrow \infty} 2 S\left(x_{n}, x_{n}, y_{n}\right)+\limsup _{n \longrightarrow \infty} S\left(x_{n}, x_{n}, t\right)\right)=0
$$

Hence $\lim _{n \longrightarrow \infty} y_{n}=t$.

2. Main results

Our first results is the following common fixed point theorem.
Theorem 2.1 Suppose that f, g, M and T are self mappings on a complete S_{b}-metric space (X, S) such that $f(X) \subseteq T(X), g(X) \subseteq M(X)$. If

$$
\begin{align*}
S(f x, f x, g y) \leqslant & \frac{q}{b^{4}} \max \{S(M x, M x, T y), S(f x, f x, M x), S(g y, g y, T y), \tag{1}\\
& \left.\frac{1}{2}(S(M x, M x, g y)+S(f x, f x, T y))\right\}
\end{align*}
$$

holds for each $x, y \in X$ with $0<q<1$ and $b \geqslant \frac{3}{2}$, then f, g, M and T have a unique common fixed point in X provided that M and T are continuous and pairs $\{f, M\}$ and $\{g, T\}$ are compatible.

Proof. Let $x_{0} \in X$. As $f(X) \subseteq T(X)$, there exists $x_{1} \in X$ such that $f x_{0}=T x_{1}$. Since $g x_{1} \in M(X)$, we can choose $x_{2} \in X$ such that $g x_{1}=M x_{2}$. In general, $x_{2 n+1}$ and $x_{2 n+2}$ are chosen in X such that $f x_{2 n}=T x_{2 n+1}$ and $g x_{2 n+1}=M x_{2 n+2}$. Define a sequence y_{n} in X such that $y_{2 n}=f x_{2 n}=T x_{2 n+1}$, and $y_{2 n+1}=g x_{2 n+1}=M x_{2 n+2}$, for all $n \geqslant 0$. Now, we show that y_{n} is a Cauchy sequence. Consider

$$
\begin{aligned}
S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)= & S\left(f x_{2 n}, f x_{2 n}, g x_{2 n+1}\right) \\
\leqslant & \frac{q}{b^{4}} \max \left\{S\left(M x_{2 n}, M x_{2 n}, T x_{2 n+1}\right), S\left(f x_{2 n}, f x_{2 n}, M x_{2 n}\right),\right. \\
& S\left(g x_{2 n+1}, g x_{2 n+1}, T x_{2 n+1}\right), \\
& \left.\frac{1}{2}\left(S\left(M x_{2 n}, M x_{2 n}, g x_{2 n+1}\right)+S\left(f x_{2 n}, f x_{2 n}, T x_{2 n+1}\right)\right)\right\} \\
= & \frac{q}{b^{4}} \max \left\{S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right), S\left(y_{2 n}, y_{2 n}, y_{2 n-1}\right),\right. \\
& S\left(y_{2 n+1}, y_{2 n+1}, y_{2 n}\right), \\
& \left.\frac{1}{2}\left(S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n+1}\right)+S\left(y_{2 n}, y_{2 n}, y_{2 n}\right)\right)\right\} \\
\leqslant & \frac{q}{b^{4}} \max \left\{S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right), b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right),\right. \\
& \left.S\left(y_{2 n+1}, y_{2 n+1}, y_{2 n}\right), \frac{S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n+1}\right)}{2}\right\} \\
\leqslant & \frac{q}{b^{4}} \max \left\{S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right), b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right), S\left(y_{2 n+1}, y_{2 n+1}, y_{2 n}\right),\right. \\
& \left.\frac{b}{2}\left(S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+S\left(y_{2 n+1}, y_{2 n+1}, y_{2 n}\right)\right)\right\} \\
\leqslant & \frac{q}{b^{4}} \max \left\{S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right), b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right), b S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right),\right. \\
& \left.\frac{b}{2}\left(2 S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+b S\left(y_{2 n+1}, y_{2 n+1}, y_{2 n}\right)\right)\right\} .
\end{aligned}
$$

Now, since

$$
\begin{aligned}
S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right) & \leqslant b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right) \\
& \leqslant b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+\frac{b^{2}}{2} S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right) & \leqslant \max \left\{b S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)\right. \\
& \left.b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+\frac{b^{2}}{2} S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)\right\} .
\end{aligned}
$$

If $\max =b S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)$ we obtain

$$
S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right) \leqslant \frac{q}{b^{3}} S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)<S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)
$$

Contradiction. So, $\max =b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+\frac{b^{2}}{2} S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)$ and we have

$$
S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right) \leqslant \frac{q}{b^{4}}\left(b S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)+\frac{b^{2}}{2} S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right)\right)
$$

i.e.,

$$
S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right) \leqslant \frac{2 q}{2 b^{3}-q b} S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right)
$$

Let $\lambda=\frac{2 q}{2 b^{3}-q b}$. Since $b \geqslant \frac{3}{2}$ we have that $0<\lambda<1$. Now,

$$
\begin{aligned}
S\left(y_{2 n}, y_{2 n}, y_{2 n+1}\right) & \leqslant \lambda S\left(y_{2 n-1}, y_{2 n-1}, y_{2 n}\right) \leqslant \lambda^{2} S\left(y_{2 n-2}, y_{2 n-2}, y_{2 n-1}\right) \\
& \leqslant \ldots \leqslant \lambda^{n} S\left(y_{0}, y_{0}, y_{1}\right)
\end{aligned}
$$

Hence, for all $n \geqslant 2$, we obtain

$$
\begin{equation*}
S\left(y_{n-1}, y_{n-1}, y_{n}\right) \leqslant \ldots \leqslant \lambda^{n-1} S\left(y_{0}, y_{0}, y_{1}\right) \tag{2}
\end{equation*}
$$

Using Lemma 1.11 and ($S_{b} 3$), and (2) for all $n>m$, we have

$$
\begin{aligned}
S\left(y_{m}, y_{m}, y_{n}\right) \leqslant & b\left(2 S\left(y_{m}, y_{m}, y_{m+1}\right)+S\left(y_{n}, y_{n}, y_{m+1}\right)\right) \\
\leqslant & 2 b S\left(y_{m}, y_{m}, y_{m+1}\right)+b^{2} S\left(y_{m+1}, y_{m+1}, y_{n}\right) \\
\leqslant & 2 b S\left(y_{m}, y_{m}, y_{m+1}\right)+2 b^{3} S\left(y_{m+1}, y_{m+1}, y_{m+2}\right) \\
& +b^{4} S\left(y_{m+2}, y_{m+2}, y_{n}\right) \leqslant \ldots \\
\leqslant & 2 b\left(S\left(y_{m}, y_{m}, y_{m+1}\right)+b^{2} S\left(y_{m+1}, y_{m+1}, y_{m+2}\right)\right. \\
& \left.+\cdots+b^{2(n-m-1)} S\left(y_{n-1}, y_{n-1}, y_{n}\right)\right) \\
\leqslant & 2 b\left(\lambda^{m}+b^{2} \lambda^{m+1}+\cdots+b^{2(n-m-1)} \lambda^{n-1}\right) S\left(y_{0}, y_{0}, y_{1}\right) \\
\leqslant & 2 b S\left(y_{0}, y_{0}, y_{1}\right)\left(\lambda^{m}+b^{2} \lambda^{m+1}+\ldots\right) \\
\leqslant & \frac{2 b \lambda^{m}}{1-b^{2} \lambda} S\left(y_{0}, y_{0}, y_{1}\right) .
\end{aligned}
$$

On taking limit as $m, n \rightarrow \infty$, we have $S\left(y_{m}, y_{m}, y_{n}\right) \rightarrow 0$ as $b^{2} \lambda<1$. Therefore $\left\{y_{n}\right\}$ is a Cauchy sequence. Since X is a complete S_{b}-metric space, there is some y in X such that

$$
\lim _{n \longrightarrow \infty} f x_{2 n}=\lim _{n \longrightarrow \infty} T x_{2 n+1}=\lim _{n \longrightarrow \infty} g x_{2 n+1}=\lim _{n \longrightarrow \infty} M x_{2 n+2}=y .
$$

We show that y is a common fixed point of f, g, M and T. Since M is continuous, therefore

$$
\lim _{n \longrightarrow \infty} M^{2} x_{2 n+2}=M y \quad \text { and } \quad \lim _{n \longrightarrow \infty} M f x_{2 n}=M y
$$

Since a pair $\{f, M\}$ is compatible, $\lim _{n \rightarrow \infty} S\left(f M x_{2 n}, f M x_{2 n}, M f x_{2 n}\right)=0$. So by Lemma 1.18, we have $\lim _{n \longrightarrow \infty} f M x_{2 n}=M y$. Putting $x=M x_{2 n}$ and $y=x_{2 n+1}$ in (1) we obtain

$$
\begin{align*}
S\left(f M x_{2 n}, f M x_{2 n}, g x_{2 n+1}\right) & \leqslant \frac{q}{b^{4}} \max \left\{S\left(M^{2} x_{2 n}, M^{2} x_{2 n}, T x_{2 n+1}\right),\right. \\
& S\left(f M x_{2 n}, f M x_{2 n}, M^{2} x_{2 n}\right), S\left(g x_{2 n+1}, g x_{2 n+1}, T x_{2 n+1}\right), \\
& \left.\frac{1}{2}\left(S\left(M^{2} x_{2 n}, M^{2} x_{2 n}, g x_{2 n+1}\right)+S\left(f M x_{2 n}, f M x_{2 n}, T x_{2 n+1}\right)\right)\right\} . \tag{3}
\end{align*}
$$

Taking the upper limit as $n \rightarrow \infty$ in (3) and using Lemma 1.17, we get

$$
\begin{aligned}
\frac{S(M y, M y, y)}{b^{2}} \leqslant & \limsup _{n \longrightarrow \infty} S\left(f M x_{2 n}, f M x_{2 n}, g x_{2 n+1}\right) \\
\leqslant & \frac{q}{b^{4}} \max \left\{\limsup _{n \longrightarrow \infty} S\left(M^{2} x_{2 n}, M^{2} x_{2 n}, T x_{2 n+1}\right)\right. \\
& \limsup _{n \longrightarrow \infty} S\left(f M x_{2 n}, f M x_{2 n}, M^{2} x_{2 n}\right) \\
& \limsup _{n \longrightarrow \infty} S\left(g x_{2 n+1}, g x_{2 n+1}, T x_{2 n+1}\right) \\
& \frac{1}{2}\left(\limsup _{n \longrightarrow \infty} S\left(M^{2} x_{2 n}, M^{2} x_{2 n}, g x_{2 n+1}\right)\right. \\
& \left.\left.+\limsup _{n \longrightarrow \infty} S\left(f M x_{2 n}, f M x_{2 n}, T x_{2 n+1}\right)\right)\right\} \\
\leqslant & \frac{q}{b^{4}} \max ^{\max }\left\{b^{2} S(M y, M y, y), 0,0, \frac{b^{2}}{2}(S(M y, M y, y)+S(M y, M y, y))\right\} \\
= & \frac{q}{b^{4}} b^{2} S(M y, M y, y)=\frac{q}{b^{2}} S(M y, M y, y) .
\end{aligned}
$$

Consequently, $S(M y, M y, y) \leqslant q S(M y, M y, y)$. As $0<q<1$, so $M y=y$. Using continuity of T, we obtain $\lim _{n \longrightarrow \infty} T^{2} x_{2 n+1}=T y$ and $\lim _{n \longrightarrow \infty} T g x_{2 n+1}=T y$. Since g and T are compatible, $\lim _{n \longrightarrow \infty} S\left(g T x_{n}, g T x_{n}, T g x_{n}\right)=0$. So, by Lemma 1.18, we have $\lim _{n \longrightarrow \infty} g T x_{2 n}=T y$. Putting $x=x_{2 n}$ and $y=T x_{2 n+1}$ in (1), we obtain

$$
\begin{align*}
S\left(f x_{2 n}, f x_{2 n}, g T x_{2 n+1}\right) & \leqslant \frac{q}{b^{4}} \max \left\{S\left(M x_{2 n}, M x_{2 n}, T^{2} x_{2 n+1}\right)\right. \\
& S\left(f x_{2 n}, f x_{2 n}, M x_{2 n}\right), S\left(g T x_{2 n+1}, g T x_{2 n+1}, T^{2} x_{2 n+1}\right) \tag{4}\\
& \left.\frac{1}{2}\left(S\left(M x_{2 n}, M x_{2 n}, g T x_{2 n+1}\right)+S\left(f x_{2 n}, f x_{2 n}, T^{2} x_{2 n+1}\right)\right)\right\}
\end{align*}
$$

Taking upper limit as $n \rightarrow \infty$ in (4) and using Lemma 1.17, we obtain

$$
\begin{aligned}
\frac{S(y, y, T y)}{b^{2}} & \leqslant \limsup _{n \longrightarrow \infty} S\left(f x_{2 n}, f x_{2 n}, g T x_{2 n+1}\right) \\
& \leqslant \frac{q}{b^{4}} \max \left\{b^{2}\left(S(y, y, T y), 0,0, \frac{b^{2}}{2} S(y, y, T y)+S(y, y, T y)\right)\right\} \\
& =\frac{q S(y, y, T y)}{b^{2}}
\end{aligned}
$$

which implies that $T y=y$. Also, we can apply condition (1) to obtain

$$
\begin{align*}
S\left(f y, f y, g x_{2 n+1}\right) & \leqslant \frac{q}{b^{4}} \max \left\{S\left(M y, M y, T x_{2 n+1}\right), S(f y, f y, M y)\right. \\
& S\left(g x_{2 n+1}, g x_{2 n+1}, T x_{2 n+1}\right), \frac{1}{2}\left(S\left(M y, M y, g x_{2 n+1}\right)\right. \tag{5}\\
& \left.\left.+S\left(f y, f y, T x_{2 n+1}\right)\right)\right\}
\end{align*}
$$

Taking upper limit $n \rightarrow \infty$ in (5), and using $M y=T y=y$, we have

$$
\begin{aligned}
\frac{S(f y, f y, y)}{b^{2}} \leqslant & \frac{q}{b^{4}} \max \left\{b^{2} S(M y, M y, y), b^{2} S(f y, f y, M y), b^{2} S(y, y, y),\right. \\
& \frac{b^{2}}{2}(S(M y, M y, y)+S(f y, f y, y)) \\
= & \frac{q}{b^{2}} S(f y, f y, y),
\end{aligned}
$$

which implies that $S(f y, f y, y)=0$ and $f y=y$ as $0<q<1$. Finally, from condition (1), and the fact $M y=T y=f y=y$, we have

$$
\begin{aligned}
S(y, y, g y)= & S(f y, f y, g y) \\
\leqslant & \frac{q}{b^{4}} \max \{S(M y, M y, T y), S(f y, f y, M y), S(g y, g y, T y), \\
& \frac{1}{2}(S(M y, M y, g y)+S(f y, f y, T y)) \\
\leqslant & \frac{q}{b^{3}} S(y, y, g y) \\
\leqslant & q S(y, y, g y),
\end{aligned}
$$

which implies that $S(y, y, g y)=0$ and $g y=y$. Hence $M y=T y=f y=g y=y$. If there exists another common fixed point x in X for f, g, M and T, then

$$
\begin{aligned}
S(x, x, y)= & S(f x, f x, g y) \\
\leqslant & \frac{q}{b^{4}} \max \{S(M x, M x, T y), S(f x, f x, M x), S(g y, g y, T y), \\
& \frac{1}{2}(S(M x, M x, g y)+S(f x, f x, T y)) \\
= & \frac{q}{b^{4}} \max \left\{S(x, x, y), S(x, x, x), S(y, y, y), \frac{1}{2}(S(x, x, y)+S(x, x, y))\right\} \\
= & \frac{q}{b^{4}} S(x, x, y) \\
\leqslant & q S(x, x, y),
\end{aligned}
$$

which further implies that $S(x, x, y)=0$ and hence, $x=y$. Thus, y is a unique common fixed point of f, g, M and T.

Example 2.2 Let $X=[0,1]$ be endowed with S_{b}-metric $S_{*}(x, y, z)=(|y+z-2 x|+\mid y-$ $z \mid)^{2}$, where $b=4$. Define f, g, M and T on X by $f(x)=\left(\frac{x}{4}\right)^{8}, g(x)=\left(\frac{x}{8}\right)^{4}, M(x)=\left(\frac{x}{4}\right)^{4}$, $T(x)=\left(\frac{x}{8}\right)^{2}$.
Obviously, $f(X) \subseteq T(X)$ and $g(X) \subseteq M(X)$. Furthermore, the pairs $\{f, M\}$ and $\{g, T\}$
are compatible. For each $x, y \in X$, we have

$$
\begin{aligned}
S(f x, f x, g y) & =(|g y-f x|+|f x-g y|)^{2} \\
& =(2|f x-g y|)^{2} \\
& =4\left(\left(\frac{x}{4}\right)^{8}-\left(\frac{y}{8}\right)^{4}\right)^{2} \\
& =4\left(\left(\frac{x}{4}\right)^{4}+\left(\frac{y}{8}\right)^{2}\right)^{2} \cdot\left(\left(\frac{x}{4}\right)^{4}-\left(\frac{y}{8}\right)^{2}\right)^{2} \\
& \leqslant\left(\frac{1}{4^{4}}+\frac{1}{8^{2}}\right)^{2} S(M x, M x, T y) \\
& =\frac{\frac{25}{4^{4}}}{4^{4}} S(M x, M x, T y)
\end{aligned}
$$

where $\frac{25}{4^{4}} \leqslant q \leqslant 1$ and $b=4$. Thus, f, g, M and T satisfy all condition of Theorem 2.1. Moreover 0 is the unique common fixed point of f, g, M and T.

Corollary 2.3 Let (X, S) be a complete S_{b}-metric space and $f, g: X \rightarrow X$ two mappings such that
$S(f x, f x, g y) \leqslant \frac{q}{b^{4}} \max \left\{S(x, x, y), S(f x, f x, x), S(g y, g y, y), \frac{1}{2}(S(x, x, g y)+S(f x, f x, y))\right\}$,
holds for all $x, y \in X$ with $0<q<1$ and $b \geqslant \frac{3}{2}$. Then, there exists a unique point $y \in X$ such that $f y=g y=y$.

Proof. If we take $M=T=I_{X}$ (identity mapping on X), then theorem (2.1) gives that f and g have a unique common fixed point.

Proof. If we take f and g as identity maps on X, then Theorem 2.1 gives that M and T have a unique common fixed point.

Corollary 2.4 Let (X, S) be a complete S_{b}-metric space and $f: X \rightarrow X$ mapping such that
$S(f x, f x, f y) \leqslant \frac{q}{b^{4}} \max \left\{S(x, x, y), S(f x, f x, x), S(f y, f y, y), \frac{1}{2}(S(x, x, f y)+S(f x, f x, y))\right\}$,
holds for all $x, y \in X$ with $0<q<1$ and $b \geqslant \frac{3}{2}$. Then f has a unique fixed point in X.
Proof. Take M and T as identity maps on X and $f=g$ and then apply Theorem 2.1.

Acknowledgment

The third author is thankful to Ministry of Education, Sciences and Technological Development of Serbia.

References

[1] M. Abbas, T. Nazir, S. Radenović, Common fixed point of four maps in partially ordered matric spaces, Applied Mathematics Letters, 24 (2011), 1520-1526.
[2] I.A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 26-37.
[3] S. Czerwik, Contraction Mappings in b-metric Spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5-11.
[4] N. V. Dung, On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces, Fixed Point Theory Appl. 2013, Article ID 48 (2013).
[5] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (4) (1986), 771-779.
[6] H. Rahimi, M. Abbas, G. Soleimani Rad, Common Fixed Point Results for Four Mappings on Ordered Vector Metric Spaces, Filomat 29 (4) (2015), 865-878.
[7] H. Rahimi, G. Soleimani Rad, Some fixed point results in metric type space, J. Basic Appl. Sci. Res 2 (9) (2012), 3901-3908.
[8] J. R. Roshan, N. Shobkolaei, S. Sedghi and M. Abbas, Common fixed point of four maps in b-metric spaces, Hacettepe Journal of Mathemetics and Statistics, 43 (4) (2014), 613-624.
[9] S. Sedghi, I. Alton, N. Shobe and M. Salahshour, Some properties of S-metric space and fixed point results, Kyung pook Math. J. 54 (2014), 113-122.
[10] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64 (2012), 258-266.
[11] S. Sedghi, N. Shobe, T. Došenović, Fixed point results in S-metric spaces, Nonlinear Functional Analysis and Applications, 20 (1) (2015), 55-67.
[12] S. Sedghi, N. Shobe, Common fixed point theorems for four mappings in complete metric spaces, Bulletin of the Iranian Mathematical Society, 33 (2) (2007), 37-47.

[^0]: *Corresponding author.
 E-mail address: radens@beotel.rs (S. Radenović).

