Journal of Linear and Topological Algebra Vol. 06, No. 02, 2017, 135-146

On the energy of non-commuting graphs

M. Ghorbani^{a*}, Z. Gharavi-Alkhansari^a

^aDepartment of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, Iran.

Received 1 April 2017; Revised 8 July 2017; Accepted 29 August 2017.

Abstract. For given non-abelian group G, the non-commuting (NC)-graph $\Gamma(G)$ is a graph with the vertex set $G \setminus Z(G)$ and two distinct vertices $x, y \in V(\Gamma)$ are adjacent whenever $xy \neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.

© 2017 IAUCTB. All rights reserved.

Keywords: Non-commuting graph, characteristic polynomial, linear group.2010 AMS Subject Classification: 22E46, 53C35, 57S20.

1. Introduction

Paul Erdős was the first person who considered the non-commuting graph to answer a question on the size of the cliques of a graph in 1975, see [7]. In general, the noncommuting graph or briefly the NC-graph $\Gamma(G)$ associated to the non-abelian group G with center Z(G), is a simple and undirected graph with the vertex set $G \setminus Z(G)$ in which two vertices join whenever they don't commute. For background materials about NC-graphs, we encourage the interested reader to see references [1, 2, 5, 6].

For given graph Γ , its characteristic polynomial is defined as $\chi(\Gamma, \lambda) = det(\lambda I - A)$, where A is the adjacency matrix of Γ . The eigenvalues of Γ are the roots of this polynomial and the multi-set $\{\lambda_1, \dots, \lambda_n\}$ of eigenvalues of A forms the spectrum of Γ . By this notation, the energy of Γ is defined as [4]:

$$\mathcal{E}(\Gamma) = \sum_{i=1}^{n} |\lambda_i|.$$

*Corresponding author. E-mail address: mghorbani@srttu.edu (M. Ghorbani).

© 2017 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir Here, in Section 2, we compute the spectrum of NC-graph of group G where $G \in \{QD_{2^n}, PSL(2, 2^k), GL(2, q)\}$ and in Section 3, at first we compute the related Laplacian eigenvalues and then we compute the energy of these graphs.

2. Main Results

Here, we find the spectrum of NC-graph of three following groups: the projective special linear group $PSL(2, 2^k)$, where $k \ge 2$, the general linear group GL(2, q), where $q = p^n$ (*p* is a prime integer and $n \ge 4$) and the quasi-dihedral group QD_{2^n} , with the following presentations:

$$QD_{2^n} = \langle a, b : a^{2^{n-1}} = b^2 = 1, \ bab^{-1} = a^{2^{n-2}-1} \rangle.$$

Theorem 2.1 The spectrum of NC- graph of group QD_{2^n} is

$$\{[2^{n-2}-1-k]^1, [-2]^{2^{n-2}-1}, [0]^{3 \times 2^{n-2}-3}, [2^{n-2}-1+k]^1\},\$$

where $k = \sqrt{(5 \times 2^{n-2} - 1)(2^{n-2} - 1)}$.

Proof. The group QD_{2^n} is a non-abelian group of order 2^n and $Z(QD_{2^n}) = \{1, a^{2^{n-2}}\}$. For non-central elements, the centralizers are as follows

$$C_{QD_{2^n}}(a) = C_{QD_{2^n}}(a^i) = \langle a \rangle \text{ for } 1 \leq i \leq 2^{n-1} - 1, i \neq 2^{n-2}$$

and

$$C_{QD_{2^n}}(a^j b) = \{1, a^{2^{n-2}}, a^j b, a^{j+2^{n-2}}b\}$$
 for $1 \le j \le 2^{n-2}$.

Since the centralizers are abelian subgroups, QD_{2^n} is an AC-group and therefore $\Gamma(QD_{2^n})$ is a multipartite graph with parts V_i 's $(0 \leq i \leq 2^{n-2})$ as follows:

$$V_0 = \{a, a^2, \cdots, a^{2^{n-2}-1}, a^{2^{n-2}+1}, \cdots, a^{2^{n-1}-1}\},\$$
$$V_j = \{a^j b, a^{j+2^{n-2}}b\}, \ 1 \le j \le 2^{n-2}.$$

By putting $p = 2^{n-1} - 2$ and q = p/2, the adjacency matrix of $\Gamma(QD_{2^n})$ is

$$M = \begin{pmatrix} 0_q & J_{q \times (q+1)} \\ J_{(q+1) \times q} & (J-I)_{q+1} \end{pmatrix} \otimes J_2 = A \otimes J_2$$

The spectrum of J_2 is $\{[0]^1, [2]^1\}$ and by [3, Lemma 2], the spectrum of A is

$$\{[0]^{q-1}, [-1]^q, [\frac{q-\sqrt{q(5(q+1)-1)}}{2}]^1, [\frac{q+\sqrt{q(5(q+1)-1)}}{2}]^1\}$$

Now by using [3, Theorem 1], the proof is completed.

Theorem 2.2 The spectrum of NC-graph of the projective special linear group $PSL(2, 2^k)$, where $k \ge 2$ is

$$\{[-u]^{t-1}, [-u+1]^u, [-u+2]^{s-1}, [0]^{(u+1)(u-2)+s(u-3)+t(u-1)}, [x_1]^1, [x_2]^1, [x_3]^1\}, \}$$

where $u = 2^k$, $s = 2^{k-1}(2^k + 1)$, $t = 2^{k-1}(2^k - 1)$ and x_1, x_2, x_3 are the roots of the equation $x^3 + (2^{k+2} - 2^{3k} - 2)x^2 + (2^{3k+1} - 2^{4k+1} + 5 \times 2^k(2^k - 1))x + 2^{4k+1} + 2^{3k} - 2^{5k} - 2^{2k+1}$.

Proof. The center of non-abelian group $PSL(2, 2^k)$ of order $2^k(2^{2k} - 1)$ is trivial. By [1, Proposition 3.21], for non-central elements of $PSL(2, 2^k)$ the set of centralizers is $\{gPg^{-1}, gAg^{-1}, gBg^{-1} : g \in PSL(2, 2^k)\}$, where P is an elementary abelian 2-group of order 2^k and A, B are cyclic subgroups of order $2^k - 1$ and $2^k + 1$, respectively. Let $u = 2^k$, $s = 2^{k-1}(2^k + 1)$ and $t = 2^{k-1}(2^k - 1)$. The number of conjugates of P, A and B in $PSL(2, 2^k)$ are u + 1, s and t respectively. All centralizers of $PSL(2, 2^k)$ are abelian, since it is an AC-group. Also, it is not difficult to see that they are disjoint from each other. This yields $\Gamma(PSL(2, 2^k))$ is a multipartite graph. Let p = u - 1, q = u - 2, then the adjacency matrix of $\Gamma(PSL(2, 2^k))$ is the following block matrix:

$$M = \begin{pmatrix} 0_p & J_p & \cdots & J_p & J_{p \times q} & \cdots & J_{p \times q} & J_{p \times u} & \cdots & J_{p \times u} \\ J_p & & & & & & \\ \vdots & & \ddots & & & & & \\ J_p & \cdots & J_p & 0_p & J_{p \times q} & \cdots & J_{p \times u} & \cdots & J_{p \times u} \\ J_{q \times p} & \cdots & J_{q \times p} & 0_q & & J_q & J_{q \times u} & \cdots & J_{q \times u} \\ \vdots & & & \ddots & & & \\ J_{q \times p} & \cdots & J_{q \times p} & J_q & \cdots & 0_q & J_{q \times u} & \cdots & J_{q \times u} \\ \vdots & & & \ddots & & \\ J_{u \times p} & \cdots & J_{u \times p} & J_{u \times q} & \cdots & J_{u \times q} & 0_u & J_u \\ \vdots & & & \ddots & \\ J_{u \times p} & \cdots & J_{u \times p} & J_{u \times q} & \cdots & J_{u \times q} & J_u & 0_u \end{pmatrix}_{(u+1)+s+t}$$

Let $N^r = xI + rJ$, then

$$det(xI - M) = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = det(A)det(D - CA^{-1}B),$$

where

$$A = \begin{pmatrix} N_p^1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & N_p^1 & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & N_p^1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & N_q^1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & N_q^1 & 0 \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & N_q^1 \end{pmatrix}_{(u+1)+s}$$

M. Ghorbani et al. / J. Linear. Topological. Algebra. 06(02) (2017) 135-146.

$$B = \begin{pmatrix} -N_{p \times u}^{1} & 0 & \cdots & 0 \\ 0 & & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ -N_{q \times u}^{1} & 0 & \cdots & 0 \\ 0 & & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{((u+1)+s) \times t}$$

,

$$C = \begin{pmatrix} -(u+1)J_{u \times p} - J_{u \times p} \cdots - J_{u \times p} - sJ_{u \times q} - J_{u \times q} \cdots - J_{u \times q} \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}_{t \times (u+s+1)}$$

and

$$D = \begin{pmatrix} N_u^{-t+1} - J_u \cdots - J_u \\ 0 & N_u^1 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & N_u^1 \end{pmatrix}_t.$$

We have

$$det(A) = det(N_p^1)^{u+1}det(N_q^1)^s = x^{(u+1)(u-2)+s(u-3)}(x+(u-1))^{u+1}(x+(u-2))^s$$

and so

$$det(D - CA^{-1}B) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x + (u - 1))(x + (u - 2))}x^{t(u - 1)}(x + u)^{t - 1},$$

where, x_1 , x_2 , x_3 , are the roots of the following equation

$$x^{3} + (2^{k+2} - 2^{3k} - 2)x^{2} + (2^{3k+1} - 2^{4k+1} + 5 \times 2^{k}(2^{k} - 1))x + 2^{4k+1} + 2^{3k} - 2^{5k} - 2^{2k+1}$$

Thus

$$det(xI - M) = det(A)det(D - CA^{-1}B)$$

= $x^{(u+1)(u-2)+s(u-3)+t(u-1)}(x + (u-1))^{u}(x + (u-2))^{s-1}(x + u)^{t-1}$
 $(x - x_1)(x - x_2)(x - x_3).$

Hence, the result follows.

Theorem 2.3 The spectrum of NC- graph of the general linear group GL(2,q), where $q = p^n > 2$ and p is prime integer is given by

$$\{[-2s]^{s-1}, [-k]^{t-1}, [-l]^{u-1}, [0]^{l(u-1)+s(2s-1)+t(k-1)}, [x_1]^1, [x_2]^1, [x_3]^1\},\$$

where $u = \frac{q(q+1)}{2}$, $s = \frac{q(q-1)}{2}$, t = q+1, l = (q-1)(q-2), $k = (q-1)^2$ and x_1, x_2, x_3 are the roots of the equation

$$\begin{aligned} x^3 + (-q^4 + q^3 + 4q^2 + 2)x^2 + (-2q^6 + 6q^5 - q^4 - 13q^3 + 15q^2 - 5q)x - q^8 + 5q^7 \\ - 8q^6 + 2q^5 + 7q^4 - 7q^3 + 2q^2. \end{aligned}$$

Proof. The order of non-abelian group GL(2,q) is $(q^2-1)(q^2-q)$ and it is well-known that |Z(GL(2,q))| = q - 1. By [1, Proposition 3.26], all non-central elements of GL(2,q) have the set of centralizers as $\{gDg^{-1}, gIg^{-1}, gPZ(GL(2,q))g^{-1} : g \in GL(2,q)\}$, where D is the subgroup of GL(2,q) consisting of all diagonal matrices, I is a cyclic subgroup GL(2,q) having order $q^2 - 1$ and P is the Sylow p-subgroup of GL(2,q) consisting of all upper triangular matrices whose diagonal entries are 1. The orders of D and PZ(GL(2,q)) are $(q-1)^2$ and q(q-1) respectively. The number of conjugates of D, I and PZ(GL(2,q)) in GL(2,q) are $\frac{q(q+1)}{2}$, $\frac{q(q-1)}{2}$ and q+1 respectively. Let $u = \frac{q(q+1)}{2}$, $s = \frac{q(q-1)}{2}$, t = q+1, l = (q-1)(q-2) and $k = (q-1)^2$. Similar to the last case $\Gamma(GL(2,q))$ is a multipartite graph and the order of its parts are |D| - |Z(GL(2,q))| = l, |I| - |Z(GL(2,q))| = 2s and |PZ(GL(2,q))| - |Z(GL(2,q))| = k. The adjacency matrix of $\Gamma(GL(2,q))$ has the following form:

$$M = \begin{pmatrix} 0_l & J_l & \cdots & J_l & J_{l \times k} & \cdots & J_{l \times k} & J_{l \times 2s} & \cdots & J_{l \times 2s} \\ J_l & & & & & & \\ \vdots & & \ddots & & & & \\ J_l & \cdots & J_l & 0_l & J_{l \times k} & \cdots & J_{l \times k} & J_{l \times 2s} & \cdots & J_{l \times 2s} \\ J_{k \times l} & \cdots & J_{k \times l} & 0_k & J_k & J_{k \times 2s} & \cdots & J_{k \times 2s} \\ \vdots & & & \ddots & & \\ J_{2s \times l} & \cdots & J_{2s \times l} & J_{2s \times k} & \cdots & J_{2s \times k} & 0_{2s} & J_{2s} \\ \vdots & & & & \ddots & \\ J_{2s \times l} & \cdots & J_{2s \times l} & J_{2s \times k} & \cdots & J_{2s \times k} & J_{2s} & 0_{2s} \end{pmatrix}_{u+t+s}$$

Let $N^r = xI + rJ$, similar to the proof of last theorem we have

$$det(xI - M) = det(A)det(D - CA^{-1}B),$$

where

$$A = \begin{pmatrix} N_l^1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & N_l^1 & 0 & 0 & & & 0 \\ \vdots & \ddots & \vdots & \vdots & & & \vdots \\ 0 & 0 & \cdots & N_l^1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & N_k^1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & N_k^1 & 0 \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & N_k^1 \end{pmatrix}_{u+t}$$

M. Ghorbani et al. / J. Linear. Topological. Algebra. 06(02) (2017) 135-146.

$$B = \begin{pmatrix} -N_{l \times 2s}^{1} & 0 & \cdots & 0 \\ 0 & & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ -N_{k \times 2s}^{1} & 0 & \cdots & 0 \\ 0 & & & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{(u+t) \times s}$$

,

$$C = \begin{pmatrix} -uJ_{2s\times l} - J_{2s\times l} \cdots - J_{2s\times l} - tJ_{2s\times k} - J_{2s\times k} \cdots - J_{2s\times k} \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}_{s\times(u+t)}$$

and

$$D = \begin{pmatrix} N_{2s}^{-s+1} - J_{2s} \cdots - J_{2s} \\ 0 & N_{2s}^1 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & N_{2s}^1 \end{pmatrix}_s.$$

We have

$$det(A) = det(N_l^1)^u det(N_k^1)^t = x^{u(l-1)+t(k-1)}(x+l)^u(x+k)^t$$

and hence

$$det(D - CA^{-1}B) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x + l)(x + k)} x^{s(2s-1)}(x + 2s)^{s-1},$$

where, x_1 , x_2 , x_3 are the roots of the equation

$$\begin{aligned} x^3 + (-q^4 + q^3 + 4q^2 + 2)x^2 + (-2q^6 + 6q^5 - q^4 - 13q^3 + 15q^2 - 5q)x - q^8 + 5q^7 \\ &- 8q^6 + 2q^5 + 7q^4 - 7q^3 + 2q^2. \end{aligned}$$

Thus

$$det(xI - M) = x^{l(u-1)+s(2s-1)+t(k-1)}(x+l)^{u-1}(x+k)^{t-1}(x+2s)^{s-1}(x-x_1)$$
$$(x-x_2)(x-x_3).$$

3. Laplacian Eigenvalues

The aim of this section is to find the Laplacian spectrum of NC-graph of three groups $PSL(2,2^k)$, GL(2,q) and QD_{2^n} .

Theorem 3.1 The Laplacian spectrum of NC-graph of the projective special linear group $PSL(2, 2^k)$, where $k \ge 2$, is given by

$$\{[0]^1, [u^3 - 2u - 1]^{t(u-1)}, [u^3 - 2u]^{(u-2)(u+1)}, [u^3 - 2u + 1]^{s(u-3)}, [u^3 - u - 1]^{t+s+u}\},$$

where $u = 2^k$, $s = 2^{k-1}(2^k + 1)$, $t = 2^{k-1}(2^k - 1)$.

Proof. By Theorem 2, the degree of each element in the centralizer of the form xPx^{-1} , xAx^{-1} and xBx^{-1} is $u^3 - 2u$, $u^3 - 2u + 1$ and $u^3 - 2u - 1$, respectively. Let $z = u^3 - 2u$, p = u - 1, q = u - 2, X = x - z, L = XI - J and L' = (X - 1)I - J, then

$$det(xI - (\Delta - M)) = det(A)det(D - CA^{-1}B),$$

where

$$A = \begin{pmatrix} L_p & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & L_p & 0 & 0 & & & 0 \\ \vdots & \ddots & \vdots & \vdots & & & \vdots \\ 0 & 0 & \cdots & L_p & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & L'_q & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & L'_q & 0 \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & L'_q \end{pmatrix}_{(u+1)+s}$$

$$B = \begin{pmatrix} (J - (X+1)I)_{p \times u} & 0 & \cdots & 0 \\ 0 & & & 0 \\ \vdots & & & \vdots \\ 0 & & \cdots & 0 \\ (J - (X+1)I)_{q \times u} & 0 & \cdots & 0 \\ 0 & & & & 0 \\ \vdots & & & \vdots \\ 0 & & \cdots & 0 \end{pmatrix}_{((u+1)+s) \times t},$$

$$C = \begin{pmatrix} (u+1)J_{u \times p} \ J_{u \times p} \ \cdots \ J_{u \times p} \ sJ_{u \times q} \ J_{u \times q} \ \cdots \ J_{u \times q} \\ 0 \ \cdots \ 0 \ 0 \ \cdots \ 0 \\ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \\ 0 \ \cdots \ 0 \ 0 \ \cdots \ 0 \end{pmatrix}_{t \times (u+s+1)}$$

and

,

$$D = \begin{pmatrix} ((X+1)I + (t-1)J)_u & J_u & \cdots & J_u \\ 0 & ((X+1) - J)_u & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & ((X+1) - J)_u \end{pmatrix}_t.$$

We have

$$det(A) = det((XI - J)_p)^{u+1} det(((X - 1)I - J)_q)^s$$

= $X^{(u+1)(u-2)}(X - (u - 1))^{u+1}(x - 1)^{s(u-3)}(X - 1 - (u - 2))^s$
= $(x - u^3 + 2u)^{(u-2)(u+1)}(x - u^3 + 2u - 1)^{s(u-3)}(x - u^3 + u + 1)^{u+1+s}$

and thus

$$det(D - CA^{-1}B) = x(x - u^3 + 2u + 1)^{t(u-1)}(x - u^3 + u + 1)^{t-1}$$

= $x(x - u^3 + 2u)^{(u+1)(u-2)}(x - u^3 + 2u - 1)^{s(u-3)}$
 $(x - u^3 + u + 1)^{s+t+u}(x - u^3 + 2u + 1)^{t(u-1)}.$

Theorem 3.2 The Laplacian spectrum of the NC-graph of general linear group GL(2, q), where $q = p^n > 2$ and p is prime integer is

$$\{[0]^{1}, [(q^{3} - 2q - 1)(q - 1)]^{s(2s-1)}, [(q^{3} - 2q)(q - 1)]^{t(k-1)}, [(q^{3} - 2q + 1)(q - 1)]^{u(l-1)}, [(q^{3} - q - 1)(q - 1)]^{u+t+s-1}\},$$

where
$$u = \frac{q(q+1)}{2}$$
, $s = \frac{q(q-1)}{2}$, $t = q+1$, $l = (q-1)(q-2)$, $k = (q-1)^2$.

Proof. By Theorem 3, the degree of each element in centralizer of the form gDg^{-1} , $gPZ(GL(2,q))g^{-1}$ and gIg^{-1} is $(q-1)(q^3-2q+1)$, $(q-1)(q^3-2q)$, $(q-1)(q^3-2q-1)$, respectively. Let $R = (q-1)(q^3-2q)$, $N^r = (R+r)I$, X = x-R, L = (X - (q-1))I - J and L' = XI - J. In order to find the eigenvalues of $\Delta - M$, we compute $det(xI - (\Delta - M))$ which can easily comes to the following form

$$det(xI - (\Delta - M)) = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = det(A)det(D - CA^{-1}B),$$

where

$$A = \begin{pmatrix} L_l & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & L_l & 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & L_k' & 0 & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & L_k' \end{pmatrix}_{u+t} ,$$

$$B = \begin{pmatrix} (J - (X + (q-1))I)_{l \times 2s} & 0 & \cdots & 0 \\ 0 & & & & \vdots \\ 0 & & & & 0 \\ \vdots & & & & \vdots \\ 0 & & & & 0 \end{pmatrix}_{(u+t) \times s} ,$$

$$C = \begin{pmatrix} uJ_{2s \times l} J_{2s \times l} \cdots J_{2s \times l} tJ_{2s \times k} J_{2s \times k} \cdots J_{2s \times k} \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}_{s \times (u+t)}$$

and

$$D = \begin{pmatrix} ((X + (q - 1))I + (s - 1)J)_{2s} J_{2s} \cdots J_{2s} \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & ((X + (q - 1))I - J)_{2s} \end{pmatrix}_s.$$

We have

$$det(A) = (det(L_l))^u (det(L'_k))^t$$

= $((X - (q - 1))^{l-1} (X - (q - 1) - l))^u (X^{k-1} (X - k))^t$
= $(x - (q - 1)(q^3 - 2q + 1))^{u(l-1)} (x - (q - 1)(q^3 - q - 1))^{u+t}$
 $(x - (q - 1)(q^3 - 2q))^{(k-1)t}.$

It is not difficult to see that

$$det(D - CA^{-1}B) = (X + R)(X + (q - 1))^{s(2s-1)}(X + (q - 1) - 2s)^{s-1}$$
$$= x(x - (q - 1)(q^3 - 2q - 1))^{s(2s-1)}(x - (q - 1)(q^3 - q - 1))^{s-1}$$

and the result follows.

Theorem 3.3 The Laplacian spectrum of the NC-graph of quasi-dihedral group QD_{2^n} is

$$\{[0]^1, [2^{n-1}]^{2^{n-1}-3}, [2^n-4]^{2^{n-2}}, [2^n-2]^{2^{n-2}}\}$$

Proof. By Theorem 1, the NC-graph of group QD_{2^n} has the following parts

$$V_0 = \{a, a^2, \cdots, a^{2^{n-2}-1}, a^{2^{n-2}+1}, \cdots, a^{2^{n-1}-1}\}$$

and

$$V_j = \{a^j b, a^{j+2^{n-2}}b\}$$
 for $1 \le j \le 2^{n-2}$

Each element in part V_0 has degree 2^{n-1} and every element in each V_j has degree $2^n - 4$. Let $X = x - 2^{n-1}$ and $X' = x - 2^n + 4$. In order to find the Laplacian spectrum of $\Gamma(QD_{2^n})$, we compute $det(xI - (\Delta - M))$, as follows:

$$det(xI - (\Delta - M)) = \begin{vmatrix} XI_2 & 0_2 & \cdots & 0_2 & J_2 & \cdots & J_2 \\ 0_2 & XI_2 & 0_2 & J_2 & \cdots & J_2 \\ \vdots & & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0_2 & \cdots & XI_2 & J_2 & \cdots & J_2 \\ J_2 & \cdots & J_2 & X'I_2 & J_2 \\ \vdots & & & & \\ J_2 & \cdots & J_2 & J_2 & \cdots & X'I_2 \end{vmatrix}$$

It can be easily seen that:

$$det(xI - (\Delta - M)) = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = det(A)det(D - CA^{-1}B),$$

where

$$A = \begin{pmatrix} XI_2 & 0_2 & \cdots & 0_2 \\ 0_2 & XI_2 & 0_2 \\ \vdots & \ddots & \vdots \\ 0_2 & \cdots & XI_2 \end{pmatrix}_{2p},$$
$$B = \begin{pmatrix} 2^{n-1}J_2 & J_2 & \cdots & J_2 \\ 0_2 & \cdots & 0_2 \\ \vdots & & \vdots \\ 0_2 & \cdots & 0_2 \end{pmatrix}_{2p \times \frac{p+2}{2}},$$

$$C = \begin{pmatrix} (2^{n-2}-1)J_2 & J_2 & \cdots & J_2 \\ 0_2 & \cdots & 0_2 \\ \vdots & & \vdots \\ 0_2 & \cdots & 0_2 \end{pmatrix}_{\frac{p+2}{2} \times 2p}$$

and

$$D = \begin{pmatrix} X'I_2 + (2^{n-2} - 1)J_2 & J_2 & \cdots & J_2 \\ 0_2 & X'I_2 - J_2 & 0_2 \\ \vdots & & \ddots & \vdots \\ 0_2 & \cdots & X'I_2 - J_2 \end{pmatrix}_{\frac{p+2}{2}}$$

We have

$$det(A) = (det(XI_2))^{2^{n-2}-1} = ((x-2^{n-1})^2)^{2^{n-2}-1} = (x-2^{n-1})^{2^{n-1}-2}$$

and

$$det(D - CA^{-1}B) = \frac{x(x - 2^n + 2)^{2^{n-2}}(x - 2^n + 4)^{2^{n-2} - 1}}{x - 2^{n-1}}.$$

Therefore

$$det(xI - (\Delta - M)) = det(A)det(D - CA^{-1}B)$$
$$= x(x - 2^{n-1})^{2^{n-1}-3}(x - 2^n + 4)^{2^{n-2}}(x - 2^n + 2)^{2^{n-2}}.$$

Hence, the result follows.

Here, we find the energy of NC-graph of three groups $PSL(2, 2^k)$, GL(2, q) and QD_{2^n} . **Theorem 3.4** The energy of NC-graph of group QD_{2^n} is

$$\mathcal{E}(\Gamma(QD_{2^n})) = 2^{n-1} - 2 + 2\sqrt{(5 \times 2^{n-2} - 1)(2^{n-2} - 1)}.$$

Proof. By using Theorem 1, we have

$$\mathcal{E}(\Gamma(QD_{2^n})) = (2^{n-2} - 1)|-2| + 1|2^{n-2} - 1 - k| + 1|2^{n-2} - 1 + k|$$

= 2ⁿ⁻¹ - 2 - 2ⁿ⁻² + 1 + k + 2ⁿ⁻² - 1 + k
= 2ⁿ⁻¹ - 2 + 2k = 2ⁿ⁻¹ - 2 + 2\sqrt{(5 \times 2^{n-2} - 1)(2^{n-2} - 1)}.

Theorem 3.5

$$\mathcal{E}(\Gamma(PSL(2,2^k))) = 2^{3k} - 2^{k+2} + 2 + \alpha,$$

where $\alpha = |x_1| + |x_2| + |x_3|$ and x_1, x_2, x_3 are given in Theorem 2.

Theorem 3.6 The energy of the NC-graph of general linear group GL(2,q), where $q = p^n > 2$ and p is prime integer is

$$\mathcal{E}(\Gamma(PSL(2,2^k))) = (q-1)(q^3 - 4q + 2) + \beta,$$

where $\beta = |x_1| + |x_2| + |x_3|$.

Proof. The proof follows from Theorem 3.

References

- [1] A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, J. Algebra. 298 (2006), 468-492.
- [2]M. R. Darafsheh, Groups with the same non-commuting graph, Discrete Appl. Math. 157 (2009), 833-837. [3] M. Ghorbani, Z. Gharavi-AlKhansari, An algebraic study of non-commuting graphs, Filomat. 31 (2017),
- 663-669.
- [4] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz Graz. 103 (1978), 1-22.
 [5] A. R. Moghaddamfar, W. J. Shi, W. Zhou, A. R. Zokayi, On the non-commuting graph associated with a finite group, Siberian Math. J. 46 (2005), 325-332. [6] G. L. Morgan, C. W. Parker, The diameter of the commuting graph of a finite group with trivial centre, J.
- Algebra. 393 (2013), 41-59.
- [7] B. H. Neumann, A problem of Paul Erdős on groups, J. Austral. Math. Soc. Ser. A. 21 (1976), 467-472.