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Abstract. The main purpose of this article is to offer some characterizations of §-double
derivations on rings and algebras. To reach this goal, we prove the following theorem:

Let n > 1 be an integer and let R be an n!-torsion free ring with the identity element 1.
Suppose that there exist two additive mappings d,d : R — R such that

n—2n—2—=k

d(z") = Zx"_jd(x)xj_l + Z Z wkd(m)xié(m)xn_Q_k_i
i=1 k=0 i=0

is fulfilled for all x € R. If §(1) = 0, then d is a Jordan §-double derivation. In particular,
if R is a semiprime algebra and further, 6%(2?) = §*(x)z + 262(z) + 2(5(x))? holds for all
x € R, then d — %(52 is an ordinary derivation on R.
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1. Introduction and preliminaries

Throughout the paper, R will represent an associative ring with the identity element 1.
We consider z° = 1 for all z € R. The center of R is

ZMR)={zeR | zy=yzx forall yecR}.
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Given an integer n > 2, a ring R is said to be n-torsion free, if for x € R, nx = 0 implies
x = 0. We denote the commutator xy — yx by [z,y] for all z,y € R. Recall that a ring
R is prime if for z,y € R, xRy = {0} implies z = 0 or y = 0, and is semiprime in case
xRz = {0} implies = 0.

As well, the above-mentioned statements are considered for algebras. An additive map-
ping d : R — R, where R is an arbitrary ring, is called a derivation (resp. Jordan
derivation) if d(zy) = d(z)y + xd(y) (resp. d(x?) = d(x)x + xd(x)) holds for all x,y € R.
One can easily prove that every derivation is a Jordan derivation, but the converse is not
true, in general . An additive mapping d : R — R is called a left derivation (resp. Jordan
left derivation) if d(zy) = xd(y) + yd(x) (resp. d(x?) = 2xd(x)) holds for all z,y € R.
A classical result of Herstein [7] asserts that any Jordan derivation on a 2-torsion free
prime ring is a derivation. A brief proof of Herstein’s result can be found in [3]. Cusack
[5] generalized Herstein’s result to 2-torsion free semiprime rings (see also [2] for an al-
ternative proof). A series of results related to derivations on prime and semiprime rings
can be found in [1-4, 8, 11-13].

M. Mirzavaziri and E. O. Tehrani [9] introduced the concept of a (9, e)-double deriva-
tion. Let d,e : R — R be additive mappings. An additive mapping D : R — R is a
(0,¢)-double derivation if D(xy) = D(z)y + 2D (y) + 0(z)e(y) + e(x)d(y) is fulfilled for
all ,y € R. By a d-double derivation we mean a (4, d)-double derivation, i.e.

D(zy) = D(z)y + 2D (y) + 26(x)d(y),

for all z,y € R. Let A be an algebra and let D : A — A be a linear (4, d)-double
derivation. If d = 3D, then d(ab) = d(a)b + ad(b) + 6(a)é(b) holds for all a,b € A.
In this study, we consider the additive mapping d as a (d,0)-double derivation on a
ring R. Indeed, an additive mapping d : R — R is called a (6, )-double derivation if
d(zy) = d(z)y + zd(y) + 6(x)d(y) holds for all z,y € R. It is clear that if 6(x)d(y) =0
for all z,y € R, then d is an ordinary derivation. Here, we want to characterize such
d-double derivations. Similar to Jordan derivations, an additive mapping d is called a
Jordan é-double derivation if d(z?) = d(x)z + zd(x) + (§(z))? holds for all z € R. Let
n > 1 be an integer and let d,d : R — R be two additive maps satisfying

2 n

3
|

n —2—k
d(z") = Zx"*jd(aﬁ)xj*l + Z xké(x)xié(m)x"*%k*i,
j=1 i=0

iy

0

for all x € R. If R is an n!-torsion free ring with the identity element 1 and (1) = 0,
then d is a Jordan d-double derivation. In particular, if R is a semiprime algebra and
further,

6 (2?) = 0% (z)x + 26%(2) + 2(6(w))?,

for all x € R, then d — %(52 is an ordinary derivation on R. After defining a left §-double
derivation, we present a characterization of such mappings on algebras.

At the end of the paper, by getting idea from a work of Vukman [10], we offer another
characterization of §-double derivations on Banach algebras as follows. Let A be a Banach
algebra with the identity element 1 and 6,d : A — A be two additive maps satisfying
d(a) = —ad(a™)a — ad(a"1)d(a) for each invertible element a € A. If §(a) = —ad(a"!)a
holds for every invertible element a, then d is a Jordan d-double derivation. In particular,
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2
if A is semiprime and ((5(@)) = %(52(a2) —6%(a)a — a52(a)) holds for all a € A, then

d— %52 is a derivation on .A.

2. Main results
We begin with the following definition.

Definition 2.1 Let R be aring and let § : R — R be an additive mapping. An additive
mapping d : R — R is called a §-double derivation if d(xy) = d(z)y + xd(y) + d(z)d(y)
for all z,y € R. The additive mapping d is said to be a Jordan §-double derivation if
d(z?) = d(z)x + zd(z) + (§(x))? for all x € R.

The first main theorem reads as follows:

Theorem 2.2 Let n > 1 be an integer and R be an n!-torsion free ring with the
identity element 1. Suppose that d,d : R — R are two additive maps satisfying d(z") =
>y e Id(x) el 4 SR S 2R gk ()25 ()2 2R for all z € R.If §(1) = 0,
then d is a Jordan d-double derivation. In particular, if R is a semiprime algebra and
further, 6%(2?) = 6%(z)(x) + 26%(z) + 2(6(x))* holds for all € R, then d — £6 is a
derivation on R.

Proof. Let y be an element of Z(R) such that both d(y) and d(y) are zero. Based on
the above hypothesis, we have

k
2% (x) 26 (x)gn 2R (1)

—2 n—

2

2
k=0 =0

3

d(z") = Za:"*jd(x)xjfl +
j=1

for all x € R. Putting = + y instead of x in equation (1), we have

(Y- (0)a" ) = Y@+ y) @)@+ )
i=0 j=1
n—2n—2—k
3D @@ @+ y) o) (@ +y)
k=0 =0
n—1 n—1
- S ()t
ki=0 '
n—2 n—2
30 () @) e )
k1=
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n—3 n—3

) :L,'I’L—3—k1 ykl

n—2

+ Z (k; )x"‘z_klykld(x)(x +y)

k1=0
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n-3
+o (@ ty)i(a) Y (k 3)$”‘3"“2yk25("’”)}
k=0
2 2n_4 N naks, ks
+ |(z +y)°(0(x)) Z <ks >a: ’
ks=0
n—5
+ (x +y)*(z)(z + y)d(x) Z (kg 5)3;”_5 e
k3=0
n—d
+ot (@)@ ) <k 4> S )]
k;B 3
ey
B kn—1

Using (1) and collecting together terms of the above-mentioned relations involving the
same number of factors of y, it can be obtained that

Z%‘(l‘,y) =0, xz€eR, (2)
where
(@, y) (j) A" y') - (:L) 2" lyd ()2t
=1
n i n—2—i—p

oy

p=0 q=0

/—\
\_/

Yy xp5 )xq5(az)x”727i7p7q

Having replaced y, 2y, 3y,..., (n — 1)y instead of y in (2), we obtain a system of n — 1
homogeneous equations as follows:

Z?;ll 72(x7 y) =0
S iz, 2y) = 0
S i@, 3y) =0

(i, (= 1)y) =0
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It is observed that the coefficient matrix of the above system is:

(1) () (3) (r-1)
2(%) 2(%) 2150

It is evident that

Since det X # 0, the above-mentioned system has only a trivial solution. In particular,
Yn—2(x,y) = 0. Indeed,

n

LT o g ETEBYERS o o PERTREVEE

=1 p=0 g=0
= (0t = Yoy 2@ - )y 2d@a— () 6@)? (%)

Since 0(1) = 0, we have d(1) = nd(1) + 0 = nd(1) and it demonstrates that d(1) = 0.
Substituting 1 instead of y in (*), we achieve

()ia) = Jad@) = (0w~ ()o@ =0 ®

n—2 n—2 n—2

for all x € R. Since R is an n!-torsion free ring, it follows from equation (3) that
d(2?) = zd(z) + d(z)x + (5(x))*,  zER. (4)

In other words, d is a Jordan d-double derivation. Now, assume that R is a semiprime
algebra and further, 6%(22) = §2(x)(z) + 20%(x) + 2(5(x))? for all z € R. This equation
along with (4) imply that d(2%) = zd(z) + d(z)z + $(6%(2?) — 6%(x)z — 26%(z)). Hence,
(d—36%)(2?) = 2(d—562)(z)+ (d— £6%)(2)z. It means that d— 362 is a Jordan derivation.
It follows from Theorem 1 of [2] that d — %52 is an ordinary derivation on R. Thereby,
our claim is achieved. |

Using the above theorem, we obtain the following corollary:

Corollary 2.3 Let n > 1 be an integer and A be a semiprime algebra with the identity
element 1. Suppose that d,d : A — A are two additive mappings such that

d(a™) = Y0 a"Fd(a)ad ™ + Y p8 SidF ako(a)ald(a)an 2R for all @ € AL IF 6 is
a derivation, then d is a d-double derivation.

Proof. Previous theorem along with the assumption that § is a derivation imply that
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A=d-— %(52 is a derivation. Therefore, we have

d(ab) = A(ab) + %52(ab) = A(a)b+ aA(b) + %(52(@1) + ad?(b) + 25(@)5(6))
= d(a)b + ad(b) + 6(a)5(b)

for all a,b € A. It means that d is a §-double derivation. [ |

Definition 2.4 Let R be a ring and let § : R — R be an additive mapping. An additive
mapping d : R — R is called a left §-double derivation if d(zy) = xd(y)+yd(x)+(z)d(y)
holds for all z,y € R. In addition, the additive mapping d is said to be a Jordan left
S-double derivation if d(z?) = 2xd(z) + (§(z))? is fulfilled for all z € R.

Below, we provide a characterization of Jordan left §-double derivations.

Theorem 2.5 Let n > 1 be an integer and R be an n!-torsion free ring with the identity
element 1. Suppose that d,§ : R — R are two additive maps satisfying

d(z") = na"td(z) + (:

)a"2(3(x))?

forallz € R.If 6(1) = 0, then d(z?) = 2:cd(x) 2 In particular, if R is a semiprime
algebra and further, 6%(z?%) = 2(3352 (6(x)) ) holds for all z € R, then d — 67 is a
derivation mapping R into Z(R).

Proof. Similar to the presented argument in Theorem 2.2, let y be an element of Z(R)

such that both d(y) and d(y) are zero. According to the aforementioned assumption, we
have

d(z") = na""td(x) + (:)xn_2(5(a§))2 (5)

for all x € R. Having put « + y instead of x in the above equation, we have

(> (e ) = ey @) + () @+ )2 0())?

=0

Therefore, we have

d@)+ ()d@ )+ ()2 ot )dlay

n—1

n n—1
= na"td(x) + n(l ):U”_de(x) + n(2 )x”_3y2d(:ﬂ) + ..+ ny" ld(x)

+ () 20w+ () (") Pyo@) + .+ ()22

2 1

Using (5) and collecting together terms of above-mentioned relations involving the same
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number of factors of y, we obtain
n—1
> Aiw,y) =0, =zeR, (6)

i=1

where

Yty n (e - () (e e

Ai(z,y) = (

Having replaced y, 2y, 3y, . . ., (n — 1)y instead of y in (6), we obtain a system of n — 1
homogeneous equations as follows:

S Ni(a,y) =0
S Ni(r,2y) =0

S N, 3y) =0

ST (e (n— 1)y) = 0

It is evident that the coefficient matrix of the above system is:

(1) () ) (r-1)
() 223) ... 27(5o)

(n— 1)) (n— 1) (n—13E) ... (n— 1" ()

Obviously,
n—1
det Y = (H(;;))(n— n I G-
k=1 1<i<j<n—1

Since det Y # 0, the above-mentioned system has only a trivial solution. In particular,
An—2(z,y) =0, i.e.

() —2(

n—2 n—2

)my”_Qd(:U) - <n

n—2

)y (6(@))? = 0.
Since R is an n!-torsion free ring, we have
d(z*y""?) = 20y" " %d(z) — y"2(8(2))* = 0. (7)

Putting = 1 in equation (5) and using the hypothesis that 6(1) = 0, we achieve
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d(1) = 0. Thus, we can put 1 instead of y in (7) to obtain
d(a?) = 2wd(x) + (3(2))?, (8)

for all € A. It means that d is a Jordan left §-double derivation. Now, assume that R
is a semiprime algebra and further, §2(2?) = 2(9662(1’) + ((5(3:))2) holds for all z € R.

From this equation and equation (8), we arrive at
1
d(x?) = 2zd(z) + 552@2) — x26%(x) 9)

Therefore, (d — 26%)(2%) = 22(d — 16%)(x), and it means that A = d — 362 is a Jordan
left derivation. At this moment, Theorem 2 of [10] is exactly what we need to complete
the proof. [ |

We are now ready to establish another characterization of J-double derivations on
algebras.

Corollary 2.6 Let n > 1 be an integer and A be a semiprime algebra with the identity
element 1. Suppose that d,é : A — A are two additive maps satisfying

d(a™) = na"'d(a) + (")an—2(5(a))2
2
for all a € A. If § is a left derivation, then d is a d-double derivation mapping A into

Z(A).

Proof. It follows from Theorem 2 of [10] that 0 is a derivation mapping A into Z(.A).
Theorem 2.5 of the current study implies that A(a) = d(a) — 36%(a) € Z(A) for all
a € A, and consequently, d(A) C Z(A). A straightforward verification shows that d is a
0-double derivation. [ ]

The following theorem has been motivated by a work of Vukman [10].

Theorem 2.7 Let A be a Banach algebra with the identity element 1 and let

d,0: A— A,
be two additive maps satisfying
d(a) = —ad(a Y a — ad(a1)d(a) (10)
for all invertible elements a € A. If 6(a) = —ad(a"!)a for all invertible elements a,

then d is a Jordan d-double derivation. In particular, if A is semiprime and further,
(5(x))? = %(52(332) — 82(x)x — a:52(x)> holds for all z € A, then d — 342 is a derivation.

Proof. Let x be an arbitrary element of A and let n be a positive number so that
|75l < 1. It is evident that [|Z] < 1, too. If we consider a = nl + z, then we have

@ =142 =1- =% Since ||7*| < 1, it follows from Theorem 1.4.2 of [6] that 1 — —* is

n
invertible and consequently, a is invertible. Similarly, we can show that 1 — a is also an
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invertible element of A. In the following, we use the well-known Hua identity
2 1 1\ 7!
aza—(a* —i—(l—a)*) .

Applying equation (10), we have

aﬁ):dm)—dgmﬂ+m1—ar5*§
=d(a) + (cfl +(1- a)fl)fld(af1 +(1- a)fl)(af1 +(1- a)fl)fl
Fa T+ 1-a ) + (-0 e+ (-0 )
=d(a) +

a(l —a)(—a td(a)a™ —a"'(a)d(a™1))a(1 - a)
+a(l—a)(—(1-a)td(1 -a)(1—a)™t) — <(1 —a) (1 -a)s((1—a)™h)
xa(l—a))+ (a(l —a)(—a5(a)a (1 —a)" 61 —a)(1 —a)!
X (—(a7t+ (1~ a)71)71)5(a*1)) +1l-a) e+ 1 -a)H)
=d(a) —a(1l — a)a td(a)ara(1 — a) — a(1 — a)a"'6(a)d(a Ha(l — a)
+a(l —a)(1—a)td(a)(1 —a)ta(l —a)+ (a(l —a)(1—a)"'6(a)
U(1—@)+a@—am4M@d4wM@+5MM—5@»

—a(1-a)(1-a)"'5(a)(1 —a)~"(ad(a) + &(a)a — &(a))

= d(a) — (1 - a)d(a)(1 —a) — (1 — a)d(a)d(a”")a(1 — a) + ad(a)a
+ad(a)d((1 —a) a(l - a) + (1 = a)(6(a))* + (1 — a)d(a)a™'é(a)a

— (1 —a)d(a)a™t(a) — ad(a)(1 — a)tad(a) — ad(a)(1 — a)"*(a)a

+ ad(a)(1 —a)"1d(a)
= d(a)a + ad(a) — §(a)d(a H)a + §(a)d(a)a* + ad(a)d(a 1 )a
—ad(a)d(a™)a? +ad(a)(1 — a)~'6(a)(1 —a)~! (1—a) +(8(a))”
—a(6(a))* + d(a)a™é(a)a — ad(a)a'5(a)a — d(a)a™"é(a) + (ad(a)
X 6(a)) —ad(a)(1 —a)” 1aé( ) —ad(a )(l—a) (a)a+a5(a)(1—a) 0(a)
= d(a)a + ad(a) + (6(a))* — a(d(a))* — ad(a)(1 — a)~"ad(a)
+ad(a)(1 —a)"16(a) (see 6(a) = —ad(a™1)a)
= d(a)a + ad(a) + (8(a))” - a(é(a))® — ad(a)((1 —a) " — 1)d(a)
+ad(a)(1 —a)"'6(a) = d(a)a + ad(a) + (§(a))?.

)
(

Since §(1) = —16(17 1)1, 6(1) = 0 and it implies that d(1) = 0. We know that d(a?) =
d(a)a + ad(a) + (6(a))?. Having put @ = nl + = in the previous equation, we have
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d(n? + 2nz + 2%) = d(z)(nl + z) + (n1 4 z)d(x) + (6(x))?. Therefore,
d(z?) = d(z)x + zd(x) + (6(2))?,

for all x € A, ie. d is a Jordan é-double derivation. Now, assume that (§(z))? =
%(52(332) ~ 8 (a)e — méQ(x)) for all = € A. Hence, d(z2) = zd(z) + d(z)z + %(52(@«2) _

62(x)x —x52(m)); equivalently we have, (d — £6%)(2%) = z(d— 36%)(2) + (d — 56%)(z)=. It

means that d — %(52 is a Jordan derivation. Now, Theorem 1 of [2] completes our proof.
|
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