Journal of

Linear and Topological Algebra

J | $\substack{\text { Journal oftinear } \\ \text { and }}$ |
| :---: |

Vol. 08, No. 03, 2019, 211-214

On the square root of quadratic matrices

A. Zardadi ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran. Received 10 February 2019; Revised 1 July 2019; Accepted 2 July 2019.

Communicated by Ghasem Soleimani Rad

Abstract

Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of 2×2 matrices.

(c) 2019 IAUCTB. All rights reserved.

Keywords: Square root of matrix, matrix equation, eigenvalue.
2010 AMS Subject Classification: 15A24.

1. Introduction

Let $M_{n}(\mathbb{C})$ be the algebra of all $n \times n$ complex matrices. In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. Matrix B is said to be a square root of A if the matrix product $B B$ is equal to A.

Now, what is the square root of a matrix such as $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$? It is not, in general, $\left(\begin{array}{ll}\sqrt{a} & \sqrt{b} \\ \sqrt{c} & \sqrt{d}\end{array}\right)$. This is easy to see since the upper left entry of its square is $a+\sqrt{b c}$ and not a.

In recent years, several articles have been written about the root of a matrix, and one can refer to $[4-6]$. A number of methods have been proposed for computing the square root of a matrix, and these are usually based upon Newton's method, either directly or via the sign function (see, e.g., $[1-3]$).

This short paper intends to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of 2×2 matrices.

[^0]
2. Our Method

The set of all matrices which their square is A, denotes by \sqrt{A}, i.e.,

$$
\sqrt{A}=\left\{X: X \in M_{n}(\mathbb{C}), X^{2}=A\right\} .
$$

This set can be very large. For example, we will see that \sqrt{I} has infinite members. We can define the n-th root of a matrix A as follows

$$
\sqrt[n]{A}=\left\{X: X \in M_{n}(\mathbb{C}), X^{n}=A\right\}
$$

It is well known to all, if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then the eigenvalues, are the roots of the polynomial $\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det} A$. From the Cayley-Hamilton theorem, we know that

$$
A^{2}-(\operatorname{tr} A) A+(\operatorname{det} A) I=0 .
$$

Thus, we have $A^{2}=(\operatorname{tr} A) A-(\operatorname{det} A) I$. Therefore, the equation $A^{2}=B$ can be written as follows $(\operatorname{tr} A) A-(\operatorname{det} A) I=B$. Consequently,

$$
\begin{equation*}
A=\frac{1}{\operatorname{tr} A}(B+(\operatorname{det} A)) I \tag{1}
\end{equation*}
$$

We try to write $\operatorname{tr} A$ and $\operatorname{det} A$ as functions of $\operatorname{tr} B$ and $\operatorname{det} B$. To do this end, we need the following three lemmas.
Lemma 2.1 Let A be a 2×2 matrix. Then $\operatorname{tr} A^{2}=(\operatorname{tr} A)^{2}-2 \operatorname{det} A$.
Proof. Assume that λ_{1} and λ_{2} are the eigenvalues of the matrix A. Then we can easily see that $\lambda_{1}^{2}, \lambda_{2}^{2}$ are the eigenvalues of A^{2}. Moreover, $\operatorname{tr} A=\lambda_{1}+\lambda_{2}$ and $\operatorname{det} A=\lambda_{1} \lambda_{2}$. So $\operatorname{tr} A^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}=\left(\lambda_{1}+\lambda_{2}\right)^{2}-2 \lambda_{1} \lambda_{2}$. In other words, let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then $A^{2}=$ $\binom{a^{2}+b c a b+b d}{a c+c d b c+d^{2}}$. Therefore

$$
\begin{aligned}
\operatorname{tr}\left(A^{2}\right)=\left(a^{2}+b c\right)+\left(b c+d^{2}\right) & =a^{2}+2 b c+d^{2} \\
& =(a+d)^{2}-2 a d+2 b c \\
& =(a+d)^{2}-2(a d-b c) \\
& =(\operatorname{tr} A)^{2}-2(\operatorname{det} A)
\end{aligned}
$$

We can state the following remark, whose proof is omitted being similar to the proof of Lemma 2.1.

Remark 1 Let $A, B \in M_{2}(\mathbb{C})$ and $A^{2}=B$. Then the following statements are hold:
(1) $\operatorname{det} A=\sqrt{\operatorname{det} B}$.
(2) $\operatorname{tr} A=\sqrt{\operatorname{tr} B+2 \sqrt{\operatorname{det} B}}$.

Lemma 2.2 Let $A \in M_{2}(\mathbb{C})$. If $\operatorname{tr} A=0$ then $A^{2} \in\langle I\rangle$.
Proof. We will prove Lemma 2.2 in two ways. In general, we have

$$
A^{2}-(\operatorname{tr} A) A+(\operatorname{det} A) I=0
$$

Therefore, if $\operatorname{tr} A=0$ then we obtain $A^{2}=-(\operatorname{det} A) I$ and $A^{2} \in\langle I\rangle$. We can state another proof. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $a+d=0$. Then $A^{2}=\left(\begin{array}{cc}a^{2}+b c & 0 \\ 0 & b c+d^{2}\end{array}\right)$. Hence, $A^{2}=\left(a^{2}+b c\right) I$, since $a^{2}=d^{2}$.

Now, we can consider two cases:
I. If $B \notin\langle I\rangle$, by Lemma $2.2, \operatorname{tr} A \neq 0$. Thus, we can compute A by $A=$ $\frac{1}{\operatorname{tr} A}(B+(\operatorname{det} A) I)$. Note that $\operatorname{tr} A$ and $\operatorname{det} A$ are given by Lemma 1 .
II. If $B \in\langle I\rangle$, we have $B=\alpha I$ for some $\alpha \in \mathbb{C}$. Hence we should calculate $\sqrt{\alpha I}$.

The next lemma says that, it refers to \sqrt{I}.
Lemma 2.3 For each $\alpha \in \mathbb{C}$ and any matrix $A, \sqrt{\alpha A}=\sqrt{\alpha} \sqrt{A}$.
Proof. Assume that $\alpha \neq 0$ and $X \in \sqrt{\alpha A}$. So $X^{2} \in \alpha A$ hence $\frac{1}{\alpha} X^{2}=A$ Therefore, $\frac{1}{\sqrt{\alpha}} X \in \sqrt{A}$, which implies that $X \in \sqrt{\alpha} \sqrt{A}$. Conversely, if $X \in \sqrt{\alpha} \sqrt{A}$, then $\frac{1}{\alpha} X^{2}=A$. Hence, $X^{2}=\alpha A$ and $X \in \sqrt{\alpha A}$.

Now, we try to compute \sqrt{I}. Assume that $A \in M_{2}(\mathbb{C})$ and $A^{2}=I$. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then

$$
A^{2}=\binom{a^{2}+b c a b+b d}{a c+c d b c+d^{2}}=I
$$

Hence, we have

$$
\begin{align*}
& a^{2}+b c=1 \tag{2}\\
& b(a+d)=0 \tag{3}\\
& c(a+d)=0 \tag{4}\\
& b c+d^{2}=1 \tag{5}
\end{align*}
$$

We should solve this system of equations. The equation (3) says that $b=0$ or $a+d=0$ and the equation (4) says that $c=0$ or $a+d=0$. We consider two cases:
i. If $a+d=0$. The equations (3) and (4) hold. We have $a^{2}+b c=1$ or $a=\sqrt{1-b c}$ and since $a+d=0$ we have $d=-a=-\sqrt{1-b c}$. Therefore

$$
A \in\left\{\left(\begin{array}{cc}
\sqrt{1-b c} & b \\
c & -\sqrt{1-b c}
\end{array}\right): b, c \in \mathbb{C}\right\} .
$$

ii. If $a+d \neq 0$, we must have $b=0$ and $c=0$. Hence $a= \pm 1$ and $d= \pm 1$. Therefore, there are two solutions $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. Hence, we can write

$$
\sqrt{I}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{cc}
\sqrt{1-b c} & b \\
c & -\sqrt{1-b c}
\end{array}\right): b, c \in \mathbb{C}\right\} .
$$

Finally, we give some examples to show the efficiency of the presented method.

Example 2.4 Let $B=\left(\begin{array}{ll}1 & 2 \\ 2 & 8\end{array}\right)$. So $\operatorname{det} B=4$ and $\operatorname{tr} B=9$. Therefore, if $A^{2}=B$ then $\operatorname{det} A=\sqrt{\operatorname{det} B}= \pm 2$ and $\operatorname{tr} A= \pm \sqrt{5}$ or $\operatorname{tr} A= \pm \sqrt{13}$. Hence, we have

$$
A=\frac{1}{ \pm \sqrt{13}}\left[\left(\begin{array}{ll}
1 & 2 \\
2 & 8
\end{array}\right) \pm 2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right] \text { or } A=\frac{1}{ \pm \sqrt{5}}\left[\left(\begin{array}{ll}
1 & 2 \\
2 & 8
\end{array}\right) \pm 2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]
$$

Thus,

$$
A= \pm \frac{1}{\sqrt{13}}\left(\begin{array}{cc}
3 & 2 \\
2 & 10
\end{array}\right) \quad \text { or } \quad A= \pm \frac{1}{\sqrt{5}}\left(\begin{array}{cc}
-1 & 2 \\
2 & 6
\end{array}\right)
$$

We may also apply this method to matrices without real eigenvalues.
Example 2.5 Let $B=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. Then $\operatorname{det} B=-1$ and $\operatorname{tr} B=2$. If $A^{2}=B$ then $\operatorname{det} A=$ $\pm i$ and $\operatorname{tr} A= \pm \sqrt{2 \pm 2 i}$. Thus, we have

$$
A= \pm \frac{1}{\sqrt{2+2 i}}\left[\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)+i\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]
$$

The following example consider the case $B \in\langle I\rangle$.
Example 2.6 Let $B=\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$. Therefore, $B=4 I$ and $\sqrt{B}=2 \sqrt{I}$. Hence, we have

$$
\sqrt{B}=\left\{\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right)\right\} \bigcup\left\{\left(\begin{array}{cc}
2 \sqrt{1-b c} & 2 b \\
2 c & -2 \sqrt{1-b c}
\end{array}\right): b, c \in \mathbb{C}\right\}
$$

Acknowledgments

We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

References

[1] G. Alefeld, N. Schneider, On square roots of M-matrices, Linear. Algebra. Appl. 42 (1982), 119-132.
[2] E. D. Denman, A. N. Beavers, The matrix sign function and computations in systems, Appl. Math. Comput. 2 (1) (1976), 63-94.
[3] W. D. Hoskins, D. J. Walton, A faster method of computing the square root of a matrix, IEEE Trans. Automat. Control. 23 (3) (1978), 494-495.
[4] B. W. Levinger, The square root of a 2×2 matrix, Math. Mag. 53 (4) (1980), 222-224.
[5] A. Nazari, H. Fereydooni, M. Bayat, A manual approach for calculating the root of square matrix of dimension, Math. Sci. 7 (1) (2013), 1-6.
[6] D. Sullivan, The square roots of 2×2 matrices, Math. Mag. 66 (5) (1993), 314-316.

[^0]: E-mail address: akramz.math@gmail.com (A. Zardadi).

