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Abstract. Let R be a non-commutative ring with unity. The commuting graph of R denoted
by T'(R), is a graph with a vertex set R\ Z(R) and two vertices a and b are adjacent if and
only if ab = ba. In this paper, we investigate non-commutative rings with unity of order p™
where p is prime and n € {4,5}. It is shown that, I'(R) is the disjoint union of complete
graphs. Finally, we prove that there are exactly five commuting graphs of non-commutative
rings with unity up to twenty vertices and they are 3Ks,3K4, TK2, Ko U2Kg and 4K2 U K.
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1. Introduction

The study of algebraic structures has become an exciting research topic in recent years.
One of the algebraic graphs is commuting graph which was introduced in [2]. Let R
be a non-commutative ring with a unity 1 and let Z(R) denote the center of R. We
assume 1 # 0. A ring with a unity is a division ring if every non-zero element a has a
multiplicative inverse (that is, an element x with az = xa = 1). If X is either an element
or a subset of the ring R, then Cr(X) denote the centralizer of X in R. We introduce a
graph with the vertex set R\ Z(R) and join two vertices a and b if a # b and ab = ba.
This graph is called a commuting graph of R and is denoted by I'(R). Akbari et.al [3]
determined the diameters of some induced subgraphs of I'(M,, (D)), for a division ring
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D and n > 3. Also they showed that if F' is an algebraically closed field or n is a prime
number and I'(M,,(F)) is a connected graph, then diameter of I'(M,,(F")) is equal to 4.

Let G be a simple graph on a vertex set V(G) and edge set E(G). A graph is said
to be connected if each pair of vertices are joined by a walk. If G is a graph, then the
complement of G, denoted by G¢ is a graph with vertex set V(G) in which two vertices
are adjacent if and only if they are not adjacent in G. The complete graph K, is the
graph with n vertices in which each pair of vertices are adjacent. We show G = tK,, for
disjoint union of ¢ complete graph of size m. G is complete t—partite graph if there is a
partition V1 U Vo U... UV, = V(G) of the vertex set, such that v; and v; are adjacent
if and only if v; and v; are in different parts of the partition. If |V;| = ny, then G is
denoted by Ky, n,....n,-

In this paper, we investigate a non-commutative ring with a unity of order p™ where
p is prime and n € {4,5}. We determine that Cr(a) is a commutative ring for every
a € R\ Z(R). In addition, it is shown that, I'(R) is the disjoint union of complete graphs.
Furthermore we prove that a graph with p™ vertices where n < 4 is not a commuting
graph of a non-commutative ring with a unity. Finally, we show that there are exactly
five commuting graphs of non-commutative rings with a unity up to twenty vertices and
they are 3Ks,3Ky, 7TKo, Ko U2Kg and 4Ko U Kg.

1.1  Preliminaries
First we give some results that we will use them in the next section.

Lemma 1.1 [2] Let R be a non-commutative ring and a — b be an edge in I'(R)¢. Then
there is a triangle a — (a + b) — b — a containing the edge a — b in I'(R)*.

Lemma 1.2 [2] For any non-commutative ring R and z,y € V(I'(R)¢), there is a path
between x and y in I'(R)¢ whose length is at most two.

Lemma 1.3 [7] Let R be a non-commutative ring with unity. Then [R : Z(R)] > 4.

Lemma 1.4 [8] Let R be a non-commutative ring and Z(R) # {0}. Then [R: Z(R)] is
not prime.

Lemma 1.5 [6] Let R be a finite ring of order p™ with unity, where p is a prime. If
n < 3, then R is commutative.

Lemma 1.6 [6] Let R be a finite ring of order m with a unity. If m has a cube free
factorization, then R is a commutative ring.

Lemma 1.7 [8] Let R be a non-commutative ring with unity and |R| = p?, then |Z(R)| =
.

Lemma 1.8 Let R be a finite non-commutative ring with unity. Then
[Z(R)| | [R\ Z(R)|.

Proof. The proof is straightforward. [ |

Theorem 1.9 Let R be a non-commutative ring with unity. Then I'(R) is a finite graph
if and only if R is a finite ring.

Proof. Let I'(R) be a graph of ordet m. Then |R\Z(R)| = mandso [R: Z(R)] =t < oc.
IfR=Z(R)U(a1+Z(R))U...U(at—1+Z(R)), then |(a1+Z(R))U...U(ai_1+Z(R))| = m.
Thus |R| = |Z(R)| +m and |Z(R)| < m. The converse is clear. [ |
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Lemma 1.10 Let R be a non-commutative ring with unity and [R : Z(R)] < 7. Then
I'(R) is not a connected graph.

Proof. By Lemma 1.4, [R : Z(R)] is not prime. By Lemma 1.3, [R : Z(R)] € {4,6}.
If [R: Z(R)] = 4, then R = Z(R)U (a + Z(R)) U (b+ Z(R)) U (¢ + Z(R)) where
a,b,c € R\ Z(R). If ab = ba, then R = Cgr(a) U Cg(c). Hence Cr(a) C Cgr(c) or
Cr(c) C Cg(a). This is contradiction by R is not commutative. Let |Z(R)| = t. Then
T(R)® = Ky 4.

If[R:Z(R)] =6,then R=Z(R)U(a1+Z(R))U...U(as+ Z(R)) where a; € R\ Z(R)
for 1 < i < 5. By Lemmas 1.1 and 1.2, there exists 1 < k < 5 such that every elements of
ar + Z(R) are adjacent to every element of a; + Z(R) for i € {1,...,5}\ {k} as vertices
in I'(R)¢. Since induced subgraph of a; + Z(R) in I'(R) is a complete graph of size ¢, K;
is one of the components of I'(R). Therefore I'(R) is not a connected graph. [ |

2. Commuting graph of non-commutative rings with unity of order p”

In this section, we consider the commuting graph of non-commutative rings with unity
of order p"™ where p is prime and n € {4,5}.

Theorem 2.1 Let R be a non-commutative ring with a unity of order p* and a €
R\ Z(R). Then Cg(a) is a commutative ring.

Proof. We know that |Z(R)| € {1,p,p? p?}. Since R is a non-commutative ring with
unity, |Z(R)| = p or p*.

Let |Z(R)| = p. Since Cg(a) is an addition subgroup of R and a ¢ Z(R), |C(R)| = p?
or p3. If |Cr(a)| = p?, then by Lemma 1.5, Cg(a) is a commutative ring. Suppose that
|Cr(a)| = p* and Cg(a) be a non-commutative ring. By Lemma 1.7 , |Z(Cr(a))| = p. It
is clear that Z(R) U (a + Z(R)) € Z(Cg(a)). Thus 2p < p. It is impossible. Therefore
Cr(a) is a commutative ring.

Let |Z(R)| = p®. Then |Cgr(a)| = p?. If Cr(a) is a non-commutative ring, then by
Lemma 1.7, |Z(Cg(a))| = p. But Z(R) C Z(Cg(a)). This is not true and so Cg(a) is a
commutative ring. |

Lemma 2.2 Let R be a non-commutative ring with unity of order p*. If a,b € R\ Z(R)
and ab = ba, then Cr(a) = Cr(b).

Proof. Let x € Cr(a). By Theorem 2.1, xb = bx and so x € Cg(a). Thus Cg(a) C Cr(b).
Similarly Cr(b) C Cr(a). Therefore Cr(a) = Cr(b). [ |

Theorem 2.3 Let R be a non-commutative ring with a unity of order p*. If a,b €
R\ Z(R) and ab # ba, then Cgr(a) N Cr(b) = Z(R).

Proof. If there exists a 2 € Cr(a) NCgr(b) \ Z(R), then by Lemma 2.2, Cr(z) = Cr(a)
and Cg(x) = Cg(b). Thus Cr(a) = Cr(b) and so ab = ba, a contradiction. [ |

Lemma 2.4 Let R be a non-commutative ring with unity of order p* and |Z(R)| = p.
Then there exist a € R\ Z(R) such that |Cg(a)| = p>.

Proof. Since R is a non-commutative ring, |Cr(a)| = p? or p? for a € R\ Z(R). On
the contrary, suppose |Cg(a)| = p? for every a € R\ Z(R). Let a,b € R\ Z(R) and
ab # ba. If there exists x € Cg(a),y € Cgr(b) such that zy = yx, then by Lemma 2.2,
Cr(a) = Cgr(x), Cr(b) = Cr(y) and Cr(x) = Cr(y). So Cr(a) = Cr(b). This is not true.
So for every x € Cr(a) and b € Cg(b), xy # yzx. By Theorem 2.3, Cr(a)NCgr(b) = Z(R).
Thus I'(R) is the disjoint union of I copies of the complete graph Kjs_,. So [V(I'(R))| =
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I[(p® — p). On the other hand, we have |[V(I'(R)| = |R| — |Z(R)| = p* — p. Therefore
4

pt—p=1(p®—p) and so p?> +p+ 1 =I(p+ 1) which is not true. [ |
Theorem 2.5 Let R be a non-commutative ring with a unity of order p*. Then the
commuting graph of R is one of the following cases:

1. F(R) = (p2 +p+ I)K(pQ_p).
ii. D(R) = 1K pepy UleKpsp), where Iy + la(p+ 1) =p? + p+ 1.
iii. T(R) = (p+ 1)K(ps_pa).-

Proof. It follows immediately that |Z(R)| = p or p?. So the proof will be divided into
two cases:

Case 1. Let |Z(R)| = p. By Lemma 2.4, there is a € R\ Z(R) such that |Cr(a)| = p?.

Suppose that |Cr(a)| = p? for every a € R\ Z(R). Let a,b € R\ Z(R) and ab # ba.
By Theorem 2.3, Cr(a) N Cgr(b) = Z(R). If z € Cr(a),y € Cr(b) and zy = yx,
then by Theorem 2.3, Cr(a) = Cg(x), Cr(b) = Cr(y) and Cg(x) = Cg(y). So
Cr(a) = Cgr(b), which is impossible. Therefore, I'(R) is the disjoint union of [
copies the complete graph Kp:_,. So |V(I'(R))| = I(p?> — p). On the other hand,
we have |V(T'(R))| = |R| — |Z(R)| = p* — p. Thus p* — p = I(p? — p) and as
consequence [ = p? +p+ 1, and (i) is proved.
Let a,b € R\ Z(R), |Cgr(a)| = p* and |Cg(b)| = p>. By Theorem 2.3, Cr(a) N
Cr(b) = Z(R). It is easy to check that if z € Cr(a) and y € Cr(b), then zy # yz.
Hence I'(R) is the disjoint union of ; copies of the complete graph Kp»_, and Iy
copies of the complete graph Kp:_,. So |[V(I'(R))| = l1(p? — p) + l2(p> — p). On
the other hand, we have |V (TI'(R))| = p* — p. Thus p* —p = l1(p? — p) +12(p® — p).
Therefore I'(R) = l1 K (2 _p) Ula K(s_py, where [; and I3 satisfy in Iy +la(p+1) =
p? +p+ 1, and part (ii) is proved.

Case 2. Let |Z(R)| = p*. Then |Cr(x)| = p? for every € R\ Z(R). Suppose that
a,b € R\ Z(R) and ab # ba. By Theorem 2.3, Cr(a) N Cr(b) = Z(R). Also if
x € Cgr(a) and y € Cg(b), then zy # yx. Thus I'(R) is the disjoint union of I
copies of the complete graph of size p? — p? and so |V(I'(R))| = I(p? — p?). Since
[V(T(R)| = p* — p?, p* — p* = I(p® — p?). Therefore T'(R) = IK(_,2) where
[ =p—+1, and this completes the proof of (iii).

Lemma 2.6 Let R be a non-commutative ring with a unity of order p® such that Z(R)
is not a field. Then the following is hold:

i. For every a € R\ Z(R), Cr(a) is a commutative ring.
ii. If a,b € R\ Z(R) such that ab = ba, then Cr(a) = Cr(b).
iii. If a,b € R\ Z(R) such that ab # ba, then Cr(a) N Cr(b) = Z(R).

Proof. It is not hard to see that |Z(R)| is p? or p®. Since Z(R) is an addition sub-
group of Cg(a) and R is not commutative ring, |Cr(a)| € {p3 p*}. Let Cr(a) be
a non-commutative ring of order p3. Then |Z(Cg(a))| = p. This is not true since
Z(R) C Z(Cr(a)). If Cr(a) is a non-commutative ring of order p*, then |Z(Cr(a))|
is p or p2. Since @ € R\ Z(R) and Z(R) C Z(Cg(a)), this is impossible. Hence Cg(a) is a
commutative ring. The proof of parts (ii) and (iii) are likewise Lemma 2.2 and Theorem
2.3 , respectively. |

Theorem 2.7 Let R be a non-commutative ring with unity of order p°® such that Z(R)
is not a field. Then the commuting graph of R is one of the following cases:



E. Vatandoost et al. / J. Linear. Topological. Algebra. 05(04) (2016) 289-294. 293

i. T(R) = (p? +p+ 1) Kps_po.
ii. T(R) = 1 Kps_p2 UlgKps_p, where Iy +la(p+1) =p?> +p+ 1.
iii. T(R) = (p+ 1) Kpt_ps.

Proof. Since R is a non-commutative ring and Z(R) is not a field, |Z(R)| € {p?,p*}.

Case 1. Let |Z(R)| = p® Then for a € R\ Z(R), |Cr(a)| = p* or p*. Suppose that
for every a € R\ Z(R), |Cr(a)| = p*. By a similar argument as in Theorem
2.5, if x,y € R, then xy # yx. Thus I'(R) is the disjoint union of [ copies
of complete graph Kp:_,2. Since |V(I'(R))| = p° —p, p* +p+1 = l(p + 1).
This is not true. So there exists a b € R\ Z(R) such that |Cr(b)| = p?. If for
every a € R\ Z(R), |Cr(a)| = p?, then T'(R) = IKps_p> where [ = p> +p + 1.
Otherwise, suppose that |{a; |Cr(a)| = p*}| = I1 and |{b; |Cr(b)| = p*}| = lo.
Thus T'(R) = l1 Kps—p2 U loKps 2 where lj + lo(p+1) =p? +p+ 1.

Case 2. Let |Z(R)| = p3. Since Z(R) C Cr(a) for every a € R\ Z(R), |Cr(a)| = p*. Thus
I'(R) = lKps_ps where | = p + 1. This completes the proof.

3. Determine the Commuting graph up to twenty vertices

In this section we show that there are exactly five commuting graphs on non-commutative
ring with unity up to twenty vertices.

Lemma 3.1 Let G be a graph with 2p vertices where p is an odd prime number and
|[V(G)| # 6, then G is not a commuting graph of a non-commutative ring with unity.

Proof. Suppose G = I'(R) where R is a non-commutative ring with a unity. So |R \
Z(R)| = 2p. By Lemma 1.8, |Z(R)| € {2,p, 2p}.

If |Z(R)| = 2 or p, then |R| = 2 + 2p or 3p respectively. Since p # 3 by Lemma 1.6, R
is a commutative ring. This is contradiction.

If |Z(R)| = 2p, then [R : Z(R)] = 2. This is a contradiction by Lemma 1.3. [ |

Theorem 3.2 Let G be a graph with pg vertices where p and ¢ are two distinct prime
numbers and p < ¢,pt ¢+ 1. Then G is not a commuting graph of a non-commutative
ring with unity.

Proof. Let R be a non-commutative ring with unity and G = I'(R). We look for a
contradiction. |R \ Z(R)| = |V(G)| = pg. By Lemma 1.8, |Z(R)| | pq and so |Z(R)| €
{r,q, pq}.

If |Z(R)| = p, then |R| = p(q¢+1). Since p{ ¢ + 1, by Lemma 1.6, R is a commutative
ring, which is impossible.

If|Z(R)| = q, then |R| = q(p + 1). Since p < ¢, by Lemma 1.6, R is a commutative
ring. Which is not true.

If |Z(R)| = pq, then [R : Z(R)] = 2, which is a contradiction by Lemma 1.3. This
completes the proof. [ |

Lemma 3.3 If G is a graph with p" vertices where n < 4, then G is not a commuting
graph of a non-commutative ring with unity.

Proof. On the contrary suppose R is a non-commutative ring with a unity and G =
I'(R). Since R has unity, |Z(R)| > 2.

If |V(G)| = p, then by Lemma 1.8, |Z(R)| = p. Therefore |Z(R)| = |R\ Z(R)|. So
[R: Z(R)] = 2 which is a contradiction by Lemma 1.3.
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If G has p? vertices, then |Z(R)| € {p,p*}. If |Z(R)| = p?, then |Z(R)| = |R\ Z(R)|
and so [R : Z(R)] = 2. This is impossible. Hence |Z(R)| = p. So |R| = p(p + 1). By
Lemma 1.6, R is a commutative ring. This is not true.

Let |V(G)| = p®. By Lemma 1.8, |Z(R)| € {p,p? p3}. If |Z(R)| = p?, then [R :
Z(R)] = 2. This is impossible. Therefore |R| = p(p? + 1) or p?(p + 1). Since p? { (p* + 1)
and p1 (p+ 1), by Lemma 1.6, R is a commutative ring. This is a contradiction.

|

Theorem 3.4 There are exactly five commuting graphs on non-commutative ring with
unity up to twenty vertices. They are 3K5, 3Ky, TKo, Ko U2Kg and 4K5 U K.

Proof. Let G be a commuting graph of a non-commutative ring R with a unity. Let
[V(G)| < 20. By Lemmas 3.1, 3.2, 3.3, |V(GQ)| € {6,12,14, 16, 18, 20}.

Let |[V(G)| = n be even and let |Z(R)| = %. Then |R| = 3. So [R : Z(R)] = 3. Which
is not true. So [Z(R)| # 5.

Let |V(G)| = 16. By Lemma 1.8, |Z(R)| € {2,4}. So |R| € {18,20}. Hence by Lemma
1.6, R is a commutative ring. This is impossible.

Let |V(G)| = 18. Thus |Z(R)| € {2,3,6}. So |R| € {20,21,24}. By Lemma 1.6, R is a
commutative ring and this is contradiction.

If |[V(G)| = 20, then by Lemma 1.8, |Z(R)| € {2,4,5}. Hence |R| € {22,24,25}. Again
R is a commutartive ring.

Therefore |V (G)| € {6,12,14}. If |V(G)| = 6, then by Lemmas 1.3 and 1.8, |Z(R)| = 2
and so |R| = 8. By the proof of Lemma 1.10, G = 3K>.

If G has 12 vertices, then |Z(R)| = 4. So |R| = 16. By Theorem 2.5, G = 3K4. Let G
be a commuting greaph of order 14. Then |Z(R)| = 2 and |R| = 16. By Theorem 2.5,
G =T7Ks5, Ko U2Kg and 4K U Kg. This completes the proof. [ |

Conjecture:

The commuting graph of non-commutative rings with unity of order p™ is not a connected
graph.
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