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Abstract. In this paper, we discuss about nonlinear pseudoparabolic equations with nonlocal
boundary conditions. An effective error estimation for this method has not yet been discussed.
The aim of this paper is to fill this gap.
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1. Introduction

The nonlinear problems are very important. All kinds of boundary value conditions
arise in the problems which make them more difficult to be solved. Nonlocal boundary
conditions arise naturally in various engineering models and physical phenomena. Pseu-
doparabolic equation with nonlocal boundary conditions is one of the nonlinear problems.
The precise statement of the problem is given as follows:

Let T"> 0 and

D:{@weR? a<x<ﬁ,0<t<T}
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Determine a function v : D — R such that

0 9 o) o ouY _ o)

i — os (@, 0)57) — g (alz, )57 = f(z,t,u. F)
u(z,0) = up(z)

u(a,t) = plt)

ff u(z,t)dr = E(t).

We shall assume:

Hi. 0<Cy<a<Cy, Cgé(;ngg, ‘gi’gc&l,f‘br au(l‘,t)GD.

Hy. There exists a positive constant L such that

‘f(J:?taplupQ) - f(xvt,(117Q2)| < L(|p1 _p2| + ‘ql - q2‘)7 (.T,t) € D.

For simplicity, we always take a = 0, § = 1. Equations (1) are the conditions for
determining solution of this, that is, the solution of (1). If we could construct a function
space, in which each function satisfies (1), then we can solve (1) in the function space.
In order to construct such a function space, we need homogenize the conditions. Put

u(x,0) = ug(z) — U(z,0) — up(x) + Up(x),
where
Uz, t) = (1—322 +22)E(t) + (1 — 2z)(u(t) — E(t)), Up(x) = U(z,0).

Then we can obtain

ou ou

- 0t 2 ~ .
% - %(a(x,t)%) - n%(a(%t)%) = g(l‘,t) + f(x,t,u, %)7
i(z,0) =0, @)
(a,t) =0,

Following we will always replace @ and f with v and f in 1, respectively.

In [2], the existence and uniqueness of the solution for problem (1) are proved. In [13],

It has been proved a very simple numerical algorithm for the approximations of problem
(1) based on the reproducing kernel space.
The rest of the paper is organized as follows. In the next section, the reproducing kernel
method for solving(1) is recalled. The error estimation is presented in Section 3. Nu-
merical examples are provided in Section 4. Finally, the concussion of the paper will be
dramn in Section 5.
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2. Reproducing kernel method
In this section, we discuss about reproducing kernel space and solving nonlinear pseu-
doparabolic equations with nonlocal boundary conditions in reproducing kernel space.

To solve (1), first we construct several reproducing kernel spaces.

Definition 2.1 The function space W3[0, 1] is defined by
1
w30,1] = {u| u” is absolutly continuous on [0,1], " € L?[0,1], u(0) = / u(z)dr = 0}.
0

Inner product and norm of W3[0, 1] are respectively defined by

2 1
< U,V Sy= Zu(l) (O)U(Z) (0) + / ’U,/” (x)’um

i=0 0

('T)dx7

Jullws=v<uu>ws,  uveW30,1],

W3[0, 1] is a reproducing kernel space and it’s reproducing kernel R, (x) can be obtained
by

Rya)={ @ + asrTagz® + - + aga® + %7 (3)
Y bl +b2$+b3$2—{—--' —|—b6$5+ %

We can obtain the coefficients a;, b; by using mathematica. For more details refer [13].

Definition 2.2 The function space W2[0, T} is defined by
W2[0,T] = {u(x)\u'(x)ls absolutly continuous in [0, 77,
u’(z) € L2[0,T],u(0) = O}.

The inner product and norm of W?2[0,T] are respectively defined by

1 T
<u,v >we= Y u(0)o?(0) + / u ()" (t)dt,
i=0 0

|| u ||W2: V< U, U >y,
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Definition 2.3 Let D = [0, 1] x [0, T'], then the reproducing kernel space W (D) is defined
by

3.,
W(D) = {u( )|88 % is completely continuous in D,

°u 9 !
e € I(D), u(0,1) _/O udac—O}.

The inner product and norm of W (D) is defined by
0% o 0% o
u(z,t),v(z, t) >w= Z/ [(%2 ekl t)at?a:civ(o’t)] dt
33’

P o P o
9 )Lt dudt,
+/ | aas o D g gt (@ e

and
[ullw=V<u,u>w.
In Equation (1), put
ou 0 ou 0? ou

(Lu)(xvt) = 9t %(a($,t)%) — nm(a(x,t)%)_

It is clear that L : W (D) — L?(D) is a bounded linear operator. Put ¢;(z,t) =
Ry ¢ (x,t) and o;(z,t) = L*@;(x,t), where R, 4 (7, ) is the reproducing kernel of W (D),

IL* is the adjoint operator of IL. The orthonormal system {¢;(z,t)}52, of W (D) can be
derived using Gram-Schmidt orthogonalization process of {;(z, t)}oil as follows,

t) = Z ﬁik¢k(x7 t)v (4)
k=1

where ;1 are orthogonal coefficients.
According to [13], we have the following theorems and lemmas:

Lemma 2.4 ;(z,t) € W(D).
Lemma 2.5 The function system {¢;(z,t)}:°; is a complete system in W (D).
Theorem 2.6 If u(x,t) is the solution of (1), then

o0

u(x,t) ZZ@MQ Tk, k) + ol i, 1),

i=1 k=1
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where

ap = f(zk, ty, u(zk, t), Opu(Tk, tr)|la=s,), k=1,2,...,

and

n ’L
up(z,t) Birlg(xr, tr) + cg|thi(z,1). (5)
i=1 k=1

Lemma 2.7 If u(x,t) € W (D), then there exists a constant ¢ such that

[u(e, )] < ¢ || ul@,t) [, [u® (@, O] < e |l u(@,t) |m,  1<k<m—1

Theorem 2.8 The approximate solution wuy(x,t) and it’s derivatives 0% uy (z,t) |
i =0,1,2 , 5 = 0,1 uniformly converge to exact solution u(x,t) and it’s derivatives
3;Jtrju(x,t) ,1=0,1,2, j = 0,1 respectively.

3. Error estimation

In this section, we give the error estimation for nonlinear pseudoparabolic equations with
nonlocal boundary conditions in reproducing kernel.

Theorem 3.1 Let uyn(x,t) be the approximate solution of (1) in space W (D) and u(z,t)
be the exact solution of( ) If0=z <z <---<zy=l,and 0=t <ta < - <
ty =T, and if a(x,t), f(x,t) € [0, 1], then

| w(z,t) — uy(z,t) |< dih, || u® (@, t) — ul (@,t) |< dih, 1< k<2

Proof. Note here that
Lun(z,t) = ZAszxt)
and

(Lun) (2, tn) = Az‘(Lini(.’IJ,t), on(z,t))

M-

=1

Az(@zjl(l‘> t)a L*Spn(x> t))

I
WE

1

.
Il

Ai(dhi(x,t), Yn(2, 1))

I
.MZ

s
Il
=
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Therefore,

N
ZB”J Luy)( x]) Z 1/% z,t) Zﬁn]w] (z,t))

7=1

Ai(dhi(x,t), dn(z, 1))

Il
Mz i

1

.
I

I
o
3

By induction, we have
Lun(xj,t;) = f(z),t5), j=1,2,---,N,
By replacement
Ry (z,t) = f(x,t) — Lun(z,t),

Obviously, Ry(z,t) = 0, j = 1,2,--- N for 0 = 27 < 29 < -+ < xy = 1, and
0=ty <--- <ty =T. Suppose that I(z,t) is a polynomial of degree 1 that interpolates
the function Ry(x,t). It is clear that I(z,t) = 0. Also, for ¢ € [t;, ti11] and Vo € [x;, Ti41]
we have

Ry (z,t) = Ry(x,t) — l(z,t) = 91

( —x) (2 — zip1)(t — t)(t = tit1), (6)

Hence, for &; € [z, xip1] X [t + 1, tiv1],

|02 B (€6,
32

|02 RN (& mi)|

Wt =chi, o= % :

|Rn(z,t)] <
Putting ¢ = maxi1<icn—1¢; and h = mazi1<;<n-1h;, we have

R t) |loo= Ry(z,t)| < ch™.
| R (1) || xe[ogggml Nz t)| <c

We have,

| Rav(,t) 1= v/ (Rn(@,t), Bn (2, 8)) = (R (,t), Ry (2, 1))

= |zip1—2| X [tip1—1i].
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0? OZ 0% o
[Z/ [ TR O,t)atQWRN(O,t)}dt

1 .
aJ
+ E RN l‘ 0
Jj=0

.
- RN 0w,

Ot

83 82 23 02 2
T 82 az
:[Z/O (52 ot v (0.1)] e
=0

+ H*RN(w 0|2

otJ
T 83 82 , %
// Oz 3(%2 (z,1)] d:vdt]
Obviously,
2 oo i ,
0% 0 -
v 9 - |
2/0 {8# aszN@’t)} dt < ¢2h -
2 4
H%RN(.T 0)||? < eh?, .
and
T 93 32 —1M-1 . 03 32 2
/0 /0 [a 38t2 o = zz; ]Z;/z / Ox3 8752 N (z,t)] dedt
= Liva
< e’ Z Z/ / dxdt
i=1 j=1
< éch® < cch?, 9

where cc is constant. In view of (7), (8) and (9), there axists a constant C such that

T 62 az
!thul—[z/ 52 g v (0,0)] i

Ry NS

T 83 82 9 %
/ / 83:3 2l (z,1)] dxdt
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Noting that
u<$7t) - UN(JI,t) - L_lRN(‘rat)u

there exists a constant d; such that

lu(z,t) — un (@, t)ls = IL7 Ry (2, O)ls <|| L7 [[I| Ry (2, t) 1< dih,

According to Lemma (2.7), it is easy to see that

Ju(w, ) — un (@, Oloe <dih,  Ju® (@,8) — ul(@,8)0 < i
]
4. Numerical example
Example We consider the following problem
%_%_%:f(m7tau7%)7 0<$<1,0<t<1,
u(z,0) = up(z), 0<z <1,
(10)
u(a, t) = p(t), 0<t<1,
12 u(a, tyde = E(t), 0<t<1,
where p(t) = 4 + cos2t, E(t) = 4 + cos2t + 8¢'sin®0.5, ug(z) = 5 + 4sinw,
f(z,t,p,q) = —2sin2t + 12¢'sinz — sinp — cosq. The true solution is
uw(x,t) = cos2t + 4(e'sinz + 1). By using Mathematica 5.0 and the presented

method in this paper, we calculate the approximate solution uy(z,t). Table 1 gives the
true solution, approximate solution and their relative errors.
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Table 1. The numerical result of example

(x,t) u(x,t) un(x,t) | Relative error
(%7 %) 5.4214 5.42426 | 0.000527649
(1%, %) 5.72739 5.72966 0.000396222
(%, %) 7.30674 7.30919 | 0.000335972
(%, %) 8.26405 8.26508 | 0.000124337
(13—0, %) 8.69865 8.6942 0.000512001
(%, 1) 8.69994 8.68389 | 0.00184534
(1, &) | 4.66935 4.67176 | 0.00051487
(4, 3) | 6.60157 6.60397 | 0.000363313
(%, %) 7.85664 7.85874 | 0.000267896
(2, Iy | 8.54095 8.53987 | 0.000125427
(3, 2) | 8.74809 8.73873 | 0.00106994
(1, 1) 12.7333 12.7289 0.000345507

Conclusion

In this paper, we discussed about nonlinear pseudoparabolic equatins with nonlocal
boundary conditions. An effective error estimation for this method has not yet been dis-
cussed. In this paper, we give the error estimation for nonlinear pseudoparabolic equatins
with nonlocal boundary conditions in reproducing kernel space.
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