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d’Urgell 187, 08036 Barcelona, Spain.
cCollege of Mathematics and Information Science, Guangxi University, Nanning, Guangxi,

530004, P.R. China.
dSchool of Mathematics and Computing Science, Guangxi Colleges and Universities Key

Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology,
Guilin, Guangxi, China, 541004.

Received 10 July 2016; Revised 11 September 2016; Accepted 20 September 2016.

Abstract. A systematic way is presented for the construction of multi-step iterative method
with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented
analysis shows that how to incorporate auxiliary function in a way that we can keep the order
of convergence and computational cost of Newton multi-step method. The auxiliary function
provides us the way to overcome the singularity and ill-conditioning of the Jacobian. The order
of convergence of proposed p-step iterative method is p + 1. Only one Jacobian inversion in
the form of LU-factorization is required for a single iteration of the iterative method and in
this way, it offers an efficient scheme. For the construction of our proposed iterative method,
we used a decomposition technique that naturally provides different iterative schemes. We
also computed the computational convergence order that confirms the claimed theoretical
order of convergence. The developed iterative scheme is applied to large scale problems, and
numerical results show that our iterative scheme is promising.
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1. Introduction

Nature is nonlinear, and that is why we find a large class of nonlinear problems in
different disciplines of science, engineering, and technology. Most of the nonlinear phe-
nomena are modeled in the form of nonlinear ordinary and partial differential equa-
tions. The discretization of nonlinear ordinary and partial differential equations pro-
vides the system of nonlinear equations. But many real-world scenarios can be modeled
in the form nonlinear algebraic system of equations. So constructing efficient iterative
algorithms for solving system of nonlinear equations is an effective area of research.
Let F(x) = [F1(x), F1(x), · · · , Fn(x)]

T = 000 be a system of nonlinear equations, where
x = [x1, x2, · · · , xn]T and 000 is a column vector of zeros of size n. When we talk about
to find simple zeros of system of nonlinear equations, the first classical iterative method
that comes into mind is the Newton-Raphson method [1, 2] that can be written as


x0 = initial guess

F′(xk)ϕϕϕ = F(xk)

xk+1 = xk −ϕϕϕ, k = 0, 1, 2 · · · .
(1)

The implementation of Newton method requires the non-singularity of Jacobian F′(·)
during iteration and, of course, the ill-conditioning of Jacobian also affects the conver-
gence.

Recently, to improve the order of convergence of Newton method[1, 2], Gutirrez[8] and
Sharma [20] proposed more robust and efficient methods. In reference [21], a new class
of order five method has been proposed. Recently, some researchers have reported higher
order class of multi-step iterative method[3–6] for solving system of nonlinear equations.
The multi-step iterative method has the benefit that they utilize the LU factorization
information of Jacobian and solve the involved system of linear equations repeatedly and
provides a high order of convergence with less number of function evaluations. However,
the proposed higher-order iterative methods are futile unless they have low computational
cost. Therefore, the aim of developing new algorithms is to achieve as high as possible
convergence order requiring as small as possible the evaluations of functions, derivatives
and matrix inversions. Our work is a generalization of [7] to higher dimensions, i.e.,
systems of nonlinear equations. In the next section, we will describe our approach in
more details.

The paper is organized as follows: Iterative methods for solving system of nonlinear
equations are proposed in Section 2. In Section 3, convergence analysis is given. Finally,
the results of numerical experiments of the proposed algorithm are reported in Section
4, and conclusions can get in Section 5.

2. Iterative methods

The main aim of this section is to give our method. To obtain high order iterative methods
for the system of nonlinear equations, we generalize [7]. Assume that γγγ is an initial guess
in the vicinity of a root of the system of nonlinear equations. Let G : Rn → Rn be an
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auxiliary function such that{
F(x)⊙G(x) = 000 or

Fi(x)Gi(x) = 0, i = 1, 2, · · · , n,
(2)

where ⊙ is the point-wise multiplication and G(x) = [G1(x), G2(x), · · · , Gn(x)]
T . We

assume that G(x) ̸= 000 at least for the roots of F(x) = 000. However, It is advisable that
G(x) ̸= 000 and det(G′(x)) ̸= 000 for all values of x With the help of a multi-dimensional
Taylor series, we can rewrite (2) as

Fi(γγγ)Gi(γγγ)+[∇Fi(γγγ)Gi(γγγ)+Fi(γγγ)∇Gi(γγγ)]
T (x−γγγ)+Hi(x) = 0, i = 1, 2, · · · , n, (3)

i.e. F1(γγγ)G1(γγγ)
...

Fn(γγγ)Gn(γγγ)

+

 [∇F1(γγγ)G1(γγγ) + F1(γγγ)∇G1(γγγ)]
T

...
[∇Fn(γγγ)Gn(γγγ) + Fn(γγγ)∇Gn(γγγ)]

T

(x− γγγ) +

 h1(x)
...

hn(x)

 =

0
...
0

. (4)

The above equation implies that{
[Hi(x)]

n
i=1 = −[Fi(γγγ)Gi(γγγ)]

n
i=1 −

[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

(x− γγγ) or

[Hi(x)]
n
i=1 = [Fi(x)Gi(γγγ)]

n
i=1 − [Fi(γγγ)Gi(γγγ)]

n
i=1 −

[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

(x− γγγ),

(5)
and

x = γγγ −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(γγγ)Gi(γγγ)]

n
i=1

−
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Hi(x)]

n
i=1.

(6)

For simplicity in the following discussion, we express (6) as

x = c+N(x). (7)

Where

c = γγγ −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(γγγ)Gi(γγγ)]

n
i=1, (8)

and

N(x) = −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Hi(x)]

n
i=1 (9)

is a nonlinear function.
In what follows, we adopt decomposition technique[23]. We look for a solution in the

form

x =

∞∑
i=0

xi. (10)
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At the same time, the nonlinear operator N can be decomposed as

N(x) = N(x0) +

∞∑
i=1

N

 i∑
j=0

xj

−N

 i−1∑
j=0

xj

. (11)

Combining (7), (10) and (11), we deduce

∞∑
i=0

xi = c+N(x0) +

∞∑
i=1

N

 i∑
j=0

xj

−N

 i−1∑
j=0

xj

. (12)

From the structure of (12), we assume the following iterative scheme

x0 = c,
x1 = N(x0),
x2 = N(x0 + x1)−N(x0),
...

xm+1 = N
(∑m

j=0 xj

)
−N

(∑m−1
j=0 xj

)
, m = 1, 2, · · · ,

(13)

Sum both sides of (13), we can obtain that

x1 + x2 + · · ·+ xm+1 = N(x0 + x1 + · · ·+ xm), m = 1, 2, · · · . (14)

From (10) and (13), there are

x = c+

∞∑
i=1

xi. (15)

By [7], we know that series
∑∞

i=0 xi converges absolutely and uniformly to a unique
solution of Eq. (??). Using (8) and (13), we can easily deduce that

x0 = c = γγγ −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(γγγ)Gi(γγγ)]

n
i=1. (16)

Similar to [7], by (5), (9) and (13), we observe that

[Hi(x0)]
n
i=1 = [Fi(x0)Gi(γγγ)]

n
i=1, (17)

and

x1 = N(x0) = −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(x0)Gi(γγγ)]

n
i=1. (18)

Let

wm = x0 + x1 + · · ·+ xm. (19)
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We note that x is approximated by wm, and

x = lim
m→∞

wm. (20)

For m = 0, the approximation becomes

x ≈ w0 = x0 = γγγ −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(γγγ)Gi(γγγ)]

n
i=1, (21)

which suggests that we can use the following one-step iterative method to solve system
of nonlinear equations. The idea of Algorithm 2.1 comes from reference [23].

Algorithm 2.1

Given x0(which can be computed by (21)), we can get the approximate solution xk+1 by
the following way[

[∇Fi(xk)Gi(xk) + Fi(xk)∇Gi(xk)]
T
]n
i=1

(xk+1 − xk) = −[Fi(xk)Gi(xk)]
n
i=1,

for all k = 0, 1, 2, · · · . For m = 1, the approximation becomes

x ≈ W1 = x0 + x1 = γγγ −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(γγγ)Gi(γγγ)]

n
i=1

−
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(x0)Gi(γγγ)]

n
i=1.

(22)

By (22), we can deduce the following two-step iterative method.

Algorithm 2.2

For a given x0, the approximate solution xk+1 can be calculated by solving the following
two equations:[

[∇Fi(xk)Gi(xk) + Fi(xk)∇Gi(xk)]
T
]n
i=1

(yk − xk) = −[Fi(xk)Gi(xk)]
n
i=1,

[
[∇Fi(xk)Gi(xk) + Fi(xk)∇Gi(xk)]

T
]n
i=1

(xk+1 − yk) = −[Fi(yk)Gi(xk)]
n
i=1,

for all k = 0, 1, 2, · · · . Similar to the previous cases, for m = 2, the approximation
becomes

x ≈ W2 = x0 + x1 + x2 = γγγ −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(γγγ)Gi(γγγ)]

n
i=1

−
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Hi(x0 + x1)]

n
i=1

= γγγ −
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[Fi(γγγ)Gi(γγγ)]

n
i=1

−
[
[∇Fi(γγγ)Gi(γγγ) + Fi(γγγ)∇Gi(γγγ)]

T
]n
i=1

−1
[(Fi(x0 + x1) + Fi(x0))Gi(γγγ)]

n
i=1.

(23)
Thus, we can easily establish the following three-step iterative method.
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Algorithm 2.3

For a given x0 compute the approximate solution xk+1 from

[
[∇Fi(xk)Gi(xk) + Fi(xk)∇Gi(xk)]

T
]n
i=1

(yk − xk) = −[Fi(xk)Gi(xk)]
n
i=1[

[∇Fi(xk)Gi(xk) + Fi(xk)∇Gi(xk)]
T
]n
i=1

(zk − yk) = −[Fi(yk)Gi(xk)]
n
i=1[

[∇Fi(xk)Gi(xk) + Fi(xk)∇Gi(xk)]
T
]n
i=1

(xk+1 − zk) = −[Fi(xk) Gi(xk)]
n
i=1,

for all k = 0, 1, 2, · · · .

3. Convergence analysis

The convergence proofs of multi-step iterative with frozen Jacobian can be find in [3, 25].
In the following section, we will only show that, our prosed multi-step iterative schemes
can be written in frozen Jacobian form. Once we have shown, we enjoy the convergence
proofs from [3, 25]. We define a new function Q(θθθ,x) with help of an auxiliary function
G(θθθ), such that Q(θθθ,x) = diag (G(θθθ))F(x), where diag(·) is the diagonal matrix. The
first order Fréchet derivative of Q(x,x) can be computed as

Q′(x,x) = diag (G(x))F′(x) + diag (F(x)) G′(x)

= diag (G(x))
(
F′(x) + diag (G(x))−1 diag (F(xk)) G

′(x)
)
.

(24)

Using Newton method to solve Q(x,x) = 0, we state

xk+1 = xk −Q′(xk,xk)
−1Q(xk,xk)

= xk −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(xk)
))−1

(diag (G(xk)))
−1 Q(xk,xk).

(25)

Since (diag (G(x)))−1 Q(x,x) = (diag (G(x)))−1 diag(G(x))F(x) = F(x), (25) can be
written as

xk+1 = xk −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(xk). (26)

The convergence order of Newton method is at least two, hence we conclude that the
convergence order of (26) is at least two. The convergence order of frozen Jacobian
schemes (27) and (28) are three and four respectively (see [25]).

yk = xk −Q(xk,xk)
−1Q(xk,xk)

xk+1 = yk −Q(xk,xk)
−1Q(xk,yk).

(27)
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yk = xk −Q(xk,xk)
−1Q(xk,xk)

zk = yk −Q(xk,xk)
−1Q(xk,yk)

xk+1 = yk −Q(xk,xk)
−1Q(xk, zk).

(28)

The simplified form of (27) and (28) are in order

yk = xk −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(xk)

xk+1 = yk −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(yk).

(29)

yk = xk −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(xk)

zk = yk −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(yk)

xk+1 = zk −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(zk).

(30)

Similar to (30), we can get an p-step frozen Jacobian scheme (31) with p+1 convergence
order as follows:

y1,k = xk −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(xk)

y2,k = y1,k −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(y1,k)

y3,k = y2,k −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(y2,k)

...

xk+1 = yp−1,k −
((

F′(xk) + diag (G(xk))
−1 diag (F(xk)) G

′(x)
))−1

F(yp−1,k).

(31)

Choice of G(·) is free, However, G(·) and determinant of its first order Fréchet deriva-
tive do not vanish during the course of iterative process. We can choose G(x) =
exp(−ααα ⊙ x), where ααα = [α1, α2, · · · , αn]

T . The Fréchet derivative of G(x) is G′(x) =
−diag(ααα) diag (G(x)) , and (26) can be written as

xk+1 = xk −
((

F′(xk)− diag (G(xk))
−1 diag (G(xk)) diag(ααα) diag (F(xk))

))−1
F(xk)

xk+1 = xk −
((
F′(xk)− diag (ααα⊙ F(xk))

))−1
F(xk).

(32)

Notice that the iterative schemes (29) and (30) correspond to Algorithm 2.2 and Algo-
rithm 2.3.
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4. Computational cost

The single iteration of p-step frozen Jacobian can be written as

x0 = initial guess

A = F′(x0) + diag (G(x0))
−1 diag (F(x0)) G

′(x0)

for k = 1, p

Aϕϕϕ = F(xk−1)

xk = xk−1 −ϕϕϕ

end

x0 = xp.

(33)

If we choose G(·) in way that the Jacobian of G(·) becomes diagonal matrix then
diag (G(x0))

−1 diag (F(x0)) G
′(x0) can be written as

diag (G(x0))
−1 diag (F(x0)) G

′(x0) = diag
([
Fi(x0)/Gi(x0)G

′
ii(x0)

]n
i=1

)
.

When G′(·) is a diagonal matrix, the computational cost of (33) is given in Table 1.

Number of steps p
Number of function evaluations p+ 2

Number of function evaluations (when diag(G(x0))
−1 G′(x0) is constant vector) p

Number of Jacobian evaluations 1
Number of LU factors 1
Number of solutions of lower and upper triangular systems p
Number of vector-vector point-wise multiplications 1
Number of vector-vector point-wise divisions 1

Table 1. Computational cost of multi-step iterative method (33) per iteration when G′(·) is a diagonal matrix.

Notice that we can write the Newton p-step iterative method as

x0 = initial guess

A = F′(x0)

for k = 1, p

Aϕϕϕ = F(xk−1)

xk = xk−1 −ϕϕϕ

end

x0 = xp.

(34)

5. Numerical experiments

In all numerical simulations, we use the following definition of computational convergence
order

COC =
log (||F(xk+1)||∞/||F(xk)||∞)

log (||F(xk)||∞/||F(xk−1)||∞)
. (35)
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The only difference between Newton frozen Jacobian multi-step iterative method (34)
and our newly proposed multi-step iterative method (33) is the introduction of an ad-
ditive factor diag (G(x0))

−1 diag (F(x0)) G
′(x0) in the Jacobian F′(x) of target system

of nonlinear equations. The main purpose of numerical testing is to check that what is
the effect of newly introduced term in the usual Jacobian. So, we make comparison be-
tween Newton frozen Jacobian multi-step iterative method (34) and multi-step iterative
method (33). In all numerical simulation we choose G(·) in way that the Jacobian G′(·)
becomes a diagonal matrix. If the Jacobian of the auxiliary function G(·) is a diagonal
matrix then the computational cost of (33) and (34) is almost same. It means that for
same number of iterations and multi-steps, the simulation time for both methods is not
significantly different. As the selection of auxiliary function G(·)(̸= 000) is open, we have
made numerical experiments for different choices of G(·). Xinyuan wu [26] has already
reported G(x) = exp (ααα⊙ x).

Problem 1

We consider the follow problem that has singular Jacobian at its root

Fi(x) = xi xi+1, i ∈ {1, 2, · · · , n− 1}

Fn(x) = xn x1.
(36)

The Jacobian of (36) is

F ′
i,j = δi,j xi+1 + δi+1,j xi, i ∈ {1, 2, · · · , n− 1}

F ′
n,1 = xn

F ′
n,n = x1.

(37)

Clearly the root of (36) is zeros vector of size n. We can not implement Newton method
for solving (36) because at the root Jacobian becomes singular. But we can solve problem
(36) with our proposed iterative method (33). Table (2) shows that our proposed iterative
method is convergence even we have singular Jacobian at the root. When the constant
value of parameter alpha tends to −1, we enjoy fast reduction in the infinity norm of
error.

iter ||xk − 000||∞ ||xk − 000||∞
αi = 0.1 αi = −0.999999

1 5.24e-1 1e-6
5 3.44e-2 6.25e-8
10 1.08e-4 1.95e-9
15 3.37e-5 6.10e-11
20 1.05e-6 1.91e-12
25 3.29e-8 5.96e-14
27 8.22e-9 1.49e-14

Table 2. Problem 1: Number of steps = 1, Size of the problem = 4, Gi = exp(−αi xi), Initial guess: xi = 1
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Problem 2

The second problem involved trigonometry functions.

Fi(x) = 2
(
n+ i (1− cosxj)− sinxj −

n∑
j=1

cosxj

)
(2 sinxj − cosxj), 1 ⩽ i ⩽ n. (38)

In this problem, we reported different expression for G(·) and computed the infinity
norm of F(·) for each iteration. Table 3 shows that in all choices of G(·), the achieved
accuracy of iterative method (33) is better than that of (34). The best achieved accuracy
of (33) for problem 2 is 5.93 × 10−5698 and Gi(x) = −

(
1 + x3i

)
. It means G(x) do not

have single choice of exp (ααα⊙ x) as it was reported in [26]. The only key point in the
selection of auxiliary function is that it should not be zeros during iteration. In the all
cases, we choose three number of steps for both multi-step iterative methods. Hence,
the theoretical order of convergence for both methods is at least four. The computed
computational convergence order confirms the theoretical claim.

Definition of G(·) Gi = −
(
1 + x4i

)
Gi = −

(
1 + x3i

)
Gi = exp (−xi)

Methods (33) (33) (33) (34)
Norm of residue ||F(xk)||∞ ||F(xk)||∞ ||F(xk)||∞ ||F(xk)||∞
Iter 1 8.57e+1 5.77e+1 6.1e+1 9.46e+1

2 2.38e+0 3.79e+0 3.42e+1 6.58e+1
3 4.41e-2 1.03e-4 5.72e+0 5.73e+1
4 5.30e-9 3.32e-21 4.26e-3 5.99e-1
5 1.14e-36 3.96e-88 1.33e-15 4.38e-9
6 2.46e-147 2.92e-355 1.54e-65 1.27e-41
7 5.29e–590 8.45e-1424 2.82e-265 8.96e-172
8 1.14e-2360 red5.93e-5698 3.13e-1064 2.23e-692

COC 4 4 4 4

Table 3. Problem 2: Number of steps = 3, Size of the problem = 10, Initial guess: xi =
101
100n

Problem 3

The third problem consists system of nonlinear equations that admits 111 = [1, 1, · · · , 1]T
as a solution.

Fi(x) = x2i xi+1 − 1, i = 1, 2, 3, · · · , n− 1,

Fn(x) = x250 x1 − 1 (39)

In all selection ofG(·), we obtained better accuracy in the solution compare to (34). Table
4 tells that the highest achieved accuracy is against the selection of Gi = exp (−2xi).
Interestingly, for problem 3, we have a higher order of convergence than six for different
values of parameter ααα. The number of steps for both multi-step iterative methods in
the present case is five, and hence the theoretical convergence order is at least six. The
computational order of convergence of our proposed iterative method become eleven, and
we achieve high order accuracy in numerical solution.
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Definition of G(·) Gi = exp (−0.5xi) Gi = exp (−xi) Gi = exp (−2xi)
Methods (33) (33) (33) (34)
Norm of residue ||F(xk)||∞ ||F(xk)||∞ ||F(xk)||∞ ||F(xk)||∞
Iter 1 8.50e-3 1.43e-3 3.49e-2 3.36e-2

2 3.80e-15 5.69e-24 1.0e-22 8.19e-11
3 3.11e-89 8.84e-167 1.19e-236 1.98e-62
4 9.46e-534 1.92e-1166 7.33e-2601 3.97e-372
5 7.49e-3201 4.43e-8164 red3.72e-28607 2.56e-2230

COC 6 7 11 6

Table 4. Problem 3: Number of steps = 5, Size of the problem = 100, Initial guess: xi = 1.5

Problem 4

In problem 4, we solve Broyden Tridiagonal function

F1(x) = (3− 0.5x1)x1 − 2x2 + 1

Fn(x) = (3− 0.5xn)xn − xn−1 + 1

Fi(x) = (3− 0.5xi)xi − xi−1 + 2xi+1 + 1, i = 2, 3, · · · , n− 1.

(40)

The number of steps is two for both multi-step iterative methods, and it means that the
theoretical order of convergence is three. Again the performance of our proposed iterative
method is better to compare to that of (34). Table 5 shows the successive error reduction
in the solution of problem 4.

Definition of G(·) Gi = exp (0.1xi) Gi = exp (0.01xi) Gi = 1 + 0.1 (cos(xi))
2

Methods (33) (33) (33) (34)
Norm of residue ||F(xk)||∞ ||F(xk)||∞ ||F(xk)||∞ ||F(xk)||∞
Iter 1 1.13e-2 3.38e-2 1.35e-2 4.41e-2

2 2.91e-9 1.76e-7 6.71e-9 2.56e-7
3 7.13e-29 2.34e-23 1.20e-27 6.30e-23
4 1.11e-87 9.90e-71 7.06e-84 2.11e-69
5 red4.31e-264 7.30e-213 1.46e-252 7.65e-209

COC 3 3 3 3

Table 5. Problem 4: Number of steps = 5, Size of the problem = 200, Initial guess: xi = −1

6. Conclusion

The proposed frozen Jacobian multi-step iterative method is obtained via the generaliza-
tion of article [7]. The classical Newton frozen Jacobian p-step iterative method [3, 25]
has convergence order at least p + 1. We introduce an additive term in the frozen Ja-
cobian in a way that we keep the computational cost and convergence order of Newton
multi-step iterative method. The inclusion of auxiliary function benefits us in two ways,
first remove the issue of Jacobian singularity and second provides a fast reduction in
the solution error. We have shown that the different choices of the auxiliary function
can provide us better accuracy and in some cases, we attain a very high order of con-
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vergence. The claimed theoretical order of convergences is confirmed by computing the
computational order of convergences.
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