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Abstract. We study algebraic properties of categories of Merotopic, Nearness, and Filter
Algebras. We show that the category of filter torsion free abelian groups is an epireflective
subcategory of the category of filter abelian groups. The forgetful functor from the category
of filter rings to filter monoids is essentially algebraic and the forgetful functor from the
category of filter groups to the category of filters has a left adjoint.
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1. Introduction

We first describe three categories which contain Top, the category of topological spaces
(sometimes with a separation axiom). They are Mer, the category of the merotopic
spaces of Katetov [8], Near, the category of nearness spaces of Herrlich [4], and Fil,
the category of filter spaces of Katetov [8].

Let X be a set and P2(X) be the set whose members are all collections of subsets of
X. For any member A of P2(X), we write

secA := {B ⊆ X : A ∩B ̸= ϕ for all A ∈ A}
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and

stackXA := {E ⊆ X : A ⊆ E for some member A of A}.

A member A of P2(X) is called a filter iff X ∈ A, ϕ /∈ A, intersection of any two sets
in A is in A, and all supersets of members of A are in A.

For members A and B of P2(X), the join of A and B, denoted by the symbol A∨ B,
is the collection of all subsets of X of the form A∪B, where A ∈ A and B ∈ B, and the
meet of A and B, denoted by A∧B, is the collection of all subsets of the form A∩B with
A and B belonging to A and B respectively. We say A refines B iff for each member
A of A there exists a member B of B containing A. A corefines B iff for each A ∈ A
corresponds a set B ∈ B contained in A.

A pair (X, ξ) of a set X and a subset ξ of P2(X) is said to be a prenearness space iff
ξ is a nonempty proper subset of P2(X) containing all members of P2(X) with nonempty
intersection and all corefinements of each of its members.

The prenearness space (X, ξ) is called a merotopic space iff ξ containing the join of
two members of P2(X) means one of them belongs to ξ, in other words, for any A and
B in P2(X) whose join A ∨ B is an element of ξ, either A or B is already in ξ.

The merotopic space (X, ξ) is called a nearness space iff ξ contains all members A
in P2(X) with the property that the associated closure collection

clξA := {clξA : A ∈ A}

belongs to ξ, where

clξA := {x ∈ X : {A, {x}} ∈ ξ}.

If (X, ξ) and (Y, η) are two merotopic, prenearness, or nearness spaces, then a mapping
f : X −→ Y is called uniformly continuous iff f [A] := {f(A) : A ∈ A} is a member
of η for each A ∈ ξ.

P − Near, Mer, and Near are the categories with objects which are prenear-
ness, merotopic, and nearness spaces respectively with uniformly continuous mappings
as morphisms. Mer is a bicoreflective full subcategory of P − Near and Near is a
bireflective full subcategory of Mer (see [5]).

If X denotes any one of these categories, any X-object is simply denoted by X if the
X-structure ξ on X is understood. Moreover, a collection A of subsets of X is said to be

(1) near in X provided A is a member of ξ,
(2) micromeric in X provided the collection secA is near in X,
(3) far in X provided A is not near in X,
(4) uniform cover of X provided the collection {X\A : A ∈ A} is far in X.
A is called a stack on X iff A = stackXA. The structure of a merotopic space is

determined by the set of merotopic stacks because a collection is micromeric iff its stack
in X is micromeric.

A filter on X is said to be a Cauchy filter iff it is micromeric on X. X is called a
filter-merotopic (or just a filter) space iff every micromeric stack contains a Cauchy
filter. The full subcategory of Mer whose objects are all filter spaces will be denoted by
Fil. This category Fil is cartesian closed (see [9]) and is bicoreflective and hereditary
in Mer.



Vijaya L. Gompa / J. Linear. Topological. Algebra. 05(02) (2016) 111-118. 113

A family Ω = (nj)j∈J of natural numbers indexed by some set J is called a type. The
index set J is called the order of Ω. In the following, we let a type Ω = (nj)j∈J be fixed.
A pair (|A|, (ωj)j∈J) of a set |A| and a family ωj : |A|nj −→ |A| (j ∈ J) of mappings is
called an Ω-algebra (see, for example, [2]). For the sake of simplicity, we write A instead
of the pair (|A| , (ωj)j∈J) and ωj,A for the nj-ary operation ωj on A. If the Ω-algebra A
is clear from the context, we drop the suffix A in denoting its nj-ary (j ∈ J) operation.
If A and B are Ω-algebras, then a mapping f : |A| −→ |B| is said to be an Ω-morphism
f : A −→ B iff for each j ∈ J , f ◦ ωj,A = ωj,B ◦ fn where n = nj and fn : |A|n −→ |B|n
is the mapping with the obvious definition (a1, . . . , an) −→ (fa1, . . . , fan).

The symbol Alg(Ω) denotes the category whose objects are Ω-algebras and whose
morphisms are Ω-morphisms.

Let X be a construct with finite concrete powers and A be a subcategory of Alg(Ω).
By a paired object (from X and A) is meant an ordered pair (X,A) where X and A
are objects in X and A respectively with the same underlying set such that, for each
j ∈ J , the n(= nj)-ary operation ωj,A : |A|n −→ |A| on A is an X-morphism

ωj,A : Xn −→ X.

In this case, we write ωj,X for the X-morphism from Xn to X whose underlying function
is ωj,A. If (X,A) and (X ′, A′) are two paired objects (from X and A), then an X-
morphism f : X −→ X ′ that is also an A-morphism f : A −→ A′ is called a paired
morphism (from X and A) and is denoted by f : (X,A) −→ (X ′, A′). The category of
all paired objects (from X and A) together with paired morphisms (from X and A) is
called the paired category (from X and A). We denote this category by X⋄A.

In this work, we assume that all subcategories are isomorphism closed. The fact that
the most of the natural subcategories fall into this class justifies our assumption. Unless
otherwise stated, X and Y denote arbitrary constructs with finite concrete powers, and
A represents any subcategory of Alg(Ω). We write |X| for the underlying set of an
object X in a construct. For the sake of simplicity, we will denote an object (X,A) in
the paired category X⋄A (from X and A) either by X or by A. We will use a similar
identification for morphisms in the paired category.

2. Essentially algebraic and algebraic subcategories

We explore algebraic properties of paired categories with the following lemma whose
proof can be found in [3].

Lemma 2.1 Suppose that X is monotopological, A is a subcategory of Alg(Ω′),B is
an essentially algebraic subcategory of Alg(Ω), and H : B −→ A is a concrete functor
such that the association

H̃(X,B) := (X,HB)

for any X⋄B-object (X,B) and H̃f := (f,Hf) for any paired morphism

f : (X,B) −→ (X ′, B′),

is a concrete functor H̃ : X⋄B −→ X⋄A in the commutative square diagram
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B A-
H

X⋄B X⋄A-H̃

?

T

?

T ′

,

where T and T ′ are forgetful functors.
Then the following hold.
(a) If H has a left adjoint, then H̃ also has a left adjoint and H̃ is (generating,

monosource) - factorizable.
(b) If H reflects isomorphisms, then H̃ reflects isomorphisms.
(c) If H is essentially algebraic, then H̃ is essentially algebraic.

Proposition 2.2 If X is any one of the categories Mer, P − Near, Near, or Fil,
then the forgetful functors X⋄Rng−→ X⋄Ab and X⋄Rng−→ X⋄Mon (Rng, Ab, and
Mon are the categories of rings, abelian groups, or monoids repectively) are essentially
algebraic.

Proof. Since the forgetful functors Rng −→ Ab and Rng −→ Mon are essentially
algebraic (see [1, 23.18]), the associated forgetful functors are essentially algebraic by
Lemma 2.1 (part (c)). ■

Lemma 2.3 Suppose that X is monotopological, A is a subcategory of Alg(Ω′), and
B is an essentially algebraic subcategory of Alg(Ω).

(1) If B is also a reflective subcategory of A, then X⋄B is a reflective subcategory of
X⋄A.

(2) If B is also an epireflective subcategory of A, then X⋄B is an epireflective sub-
category of X⋄A.

Proof. The inclusion map H : B −→ A is essentially algebraic, and hence H̃, defined
as in Lemma 2.1, is essentially algebraic (by Lemma 2.1). Thus X⋄B is a reflective
subcategory of X⋄A.

For the second part, if B is also an epireflective subcategory of A, then H : B −→ A
has a left adjoint, and hence H̃ has left adjoint (by Lemma 2.1), which in turn implies
that X⋄B is an epireflective subcategory of X⋄A.

■

Proposition 2.4 Suppose thatX is any one of the categoriesMer, P − Near,Near,
or Fil. Then

(a) X⋄Ab is an epireflective subcategory of X⋄Grp, where Grp is the category of
groups.

(b) If B is the category TfAb of Torsion free abelian groups or the category Abn of
abelian groups annihilated by a fixed integer n, then X⋄B is an epireflective subcategory
of X⋄Ab.

and
(c) X⋄B is an epireflective subcategory of X⋄Alg(Ω) where B is any SP-class of

Ω-algebras.

Proof. This proposition is a consequence of the second part of Lemma 2.3 because Ab
is an epireflective subcategory of Grp; TfAb and Abn are epireflective subcategories of
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Ab (see [6, 26.2 (2) (b)]); and any SP-class of Ω-algebras is an epireflective subcategory
of Alg(Ω) ([7]). ■

The following lemma, whose proof can be found in [3], shows that algebraic subcate-
gories of Alg(Ω) can be paired with well-fibred topological categories to yield algebraic
subcategories of paired categories.

Lemma 2.5 Suppose that X is a well-fibred topological category with finitely produc-
tive quotients, A is a subcategory of Alg(Ω′), B is an algebraic subcategory of Alg(Ω),
and H : B −→ A is a concretely algebraic functor that induces a concrete functor
H̃ : X⋄B −→ X⋄A as defined in the commutative square diagram in Lemma 2.1. Then
H̃ is algebraic.

Proposition 2.6 The functors Mer⋄Rng−→ Mer⋄Ab and Mer⋄V ec−→ Mer⋄Ab
are algebraic, where V ec is the category of vector spaces.

Proof. Since the forgetful functors Rng−→ Ab and V ec−→ Ab are algebraic [6, 32.20],
it follows from Lemma 2.5 that H̃, described in the commutative diagram in Lemma 2.1,
has left adjoint, where B is Rng or V ec. ■

Lemma 2.7 If Y is a coreflective subcategory of X and the pair (X,A) is an object in
X⋄A such that X is an object in Y then (X,A) is also an object in Y⋄A.

Proof. We need to prove that each algebraic operation on A is a Y -morphism. Let j ∈ J
and n = nj . To avoid ambiguity, let us use the symbol Y to indicate X regarded as a
Y -object and write Y n and Xn for the products of X to itself n times in the categories Y
and X respectively. Since Y is coreflective in X, the Y -product Y n is the Y -coreflection
of the X-product Xn. Therefore, any X-morphism Xn −→ X is also a Y -morphism

Y n −→ Y.

In particular, the nj-ary operation on A being an X-morphism ωj,X : Xn −→ X is indeed
a Y -morphism ωj,Y : Y n −→ Y . ■

Proposition 2.8 Let A be a subcategory of Alg(Ω). A merotopic space which is an
object of P − Near⋄A is also an object of Mer⋄A.

Proof. The result follows from Lemma 2.7, because Mer is a bicoreflective subcategory
of P − Near. ■

Lemma 2.9 If Y is a subcategory of X such that concrete powers in Y agree with
concrete powers in X then Y⋄A is a subcategory of X⋄A.

In particular, if Y is an epireflective subcategory of X, then Y⋄A is a subcategory of
X⋄A.

Proof. Let (Y,A) be any object in Y⋄A. For each j ∈ J , the nj-th product Y nj of Y in
the category Y is the same as the nj-th product of Y in the category X and the nj-ary
operation ωj,Y : Y nj −→ Y , being a morphism in Y , must be a morphism in X. Thus
(Y,A) is also an X⋄A-object. Obviously Y⋄A-morphisms are also morphisms in X⋄A.

If Y is an epireflective subcategory of X, then the products in Y do agree with those
in X so that Y⋄A is a subcategory of X⋄A by what was proved above. ■

Proposition 2.10 Let A be a subcategory of Alg(Ω). A nearness space is an object of
Near⋄A iff it is an object of Mer⋄A.

In particular, Near⋄A is a subcategory of Mer⋄A.
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Proof. A near Ω-algebra is a merotopic Ω-algebra by Lemma 2.9 because Near is a
bireflective subcategory of Mer. The converse is trivial since the products in Near
agree with the products in Mer. ■

Let A be a subcategory of Alg(Ω) and X be any one of the categories P − Near,
Mer, or Near. If X is an A-object, (Xi)i∈I is a family of X⋄A-objects and

fi : X −→ Xi

is an A-homomorphism for each i ∈ I, then the initial structure with respect to (fi)i∈I in
X makes X an X⋄A-object. A subspace of an X⋄A-object which is also a sub-A-object
is itself an X⋄A-object. Thus we can say that a sub-X⋄A-object of an X⋄A-object is
a subspace of an X-space which is also a sub-A-object. For instance, a submerotopic
group Y of a merotopic group X is a merotopic subspace of X which is a subgroup of
X. If concrete products exist in A and if (Xi)i∈I is a family of X⋄A-objects, then the
cartesian product ΠXi is also an X⋄A-object with the initial X-structure with respect
to the natural projections.

The initial X-structures in P − Near and Mer are different, while those in Near
coincide with the construction in Mer.

Let X be a set, ((Xi, ξi))i∈I be a family of X-spaces and fi : X −→ Xi be a map for
each i ∈ I. Define

ξ := {A ∈ P 2(X) : fi[A] ∈ ξi for all i ∈ I}.

Then ξ is a prenearness structure on X, initial with respect to the family
(fi : X −→ Xi)i∈I . If each Xi is a merotopic (or nearness) space, then the merotopic
reflection of ξ, defined as the collection of all members A of P2(ΠXi) such that there is
no finite join of elements in P2(ΠXi)\ξ which corefines A, is the merotopic (or nearness,
respectively) structure on X, that is initial with respect to the family (fi : X −→ Xi)i∈I .

We say that final epi sinks are finitely productive in X iff the product

(fi × gk : Xi × Yk −→ X × Y,X × Y )i∈I,k∈K

of any two final epi sinks (fi : Xi −→ X,X)i∈I and (gk : Yk −→ Y, Y )k∈K in X is final
in X.

Lemma 2.11 Suppose that final epi sinks are finitely productive in X, A is anA-object,
(Xi)i∈I is a family of X-objects, and

(fi :| Xi |−→ | A |)i∈I

is a class of functions Ω-admissible to A. If X is an X-object with the same underlying
set as A such that (fi : Xi −→ X,X)i∈I is a final epi sink in X, then (X,A) is an
X⋄A-object.

Proof. Since X has the final structure with respect to fi : Xi −→ X, for any positive
integer n, Xn has the final structure with respect to fi1 × . . . × fin , i1 ∈ I, .., in ∈ I,
by hypothesis. Let j ∈ J and n = nj . We have to show that ωj,A is an X-morphism.
However, ωj,A ◦ (fi1 × . . . × fin), i1 ∈ I, . . . , in ∈ I, being one of the f ′

is as (fi) is Ω-
admissible to A, is an X-morphism. Consequently, the nj-ary operation ωj,A on A is an



Vijaya L. Gompa / J. Linear. Topological. Algebra. 05(02) (2016) 111-118. 117

X-morphism

ωj,X : Xn −→ X.

This being true for each j ∈ J , (X,A) is an X⋄A-object. ■

Proposition 2.12 Let A be a subcategory of Alg(Ω). Suppose that (Xi)i∈I is a family
of Fil⋄A-objects, X is an A-object, and fi : Xi −→ X is a function for each i ∈I. If (fi)
is Ω-admissible to X (that is, for each j ∈ J, n = nj , i1, . . . , in ∈ I there exists j ∈ I such
that ωj,A ◦ (fi1 × . . . × fin) = fj), then X becomes a Fil⋄A-object with the final filter
structure with respect to (fi)i∈I .

The quotient of a Fil⋄A-object is nothing but the quotient of the corresponding filter
space.

Proof. Note that final epi sinks in the category Fil are finitely productive (see [8]).
Since X has the final structure with respect to fi : Xi −→ X, for any positive integer n,
Xn has the final structure with respect to fi1 × . . .× fin , i1 ∈ I, .., in ∈ I, by hypothesis.
Let j ∈ J and n = nj . We have to show that ωj,A is a Fil-morphism. However,

ωj,A ◦ (fi1 × . . .× fin), i1 ∈ I, . . . , in ∈ I,

being one of the f ′
is as (fi) is Ω-admissible to A, is a Fil-morphism. Consequently, the

nj-ary operation ωj,A on A is a Fil-morphism ωj,X : Xn −→ X. This being true for each
j ∈ J , (X,A) is a Fil⋄A-object.

To prove the second part, assume that (X,A) is a Fil⋄A-object, f : A −→ A′ is an
A-morphism, and f : X −→ X ′ is a quotient map in Fil. We show that (X ′, A′) is a
Fil⋄A-object.

Let j ∈ J , n = nj and ω = ωj,A, ω′ = ωj,A′ be n-ary operations on A and A′

respectively. Since Fil has finitely productive quotients, X ′n is a quotient of Xn with
respect to fn : Xn −→ X ′n. Thus ω′ is a Fil-morphism iff ω′ ◦ fn is a Fil-morphism.
However, because f is an Ω-homomorphism, we have the commutative diagram,

|X ′n| |X ′|-
f

|Xn| |X|-ω

?

fn

?

ω

,

which shows that ω′ ◦ fn, being equal to f ◦ω, is a Fil-morphism. This being true for
each j ∈ J , (X ′, A′) is a Fil⋄A-object.

It remains to show that f : (X,A) −→ (X ′, A′) is a quotient map in Fil⋄A. Let (X ′′, A′′)
be any object in Fil⋄A and g : |X ′| −→ |X ′′| be a function between the two sets such
that g ◦ f is a Fil⋄A-morphism. Then g is a Fil-morphism between X ′ and X ′′ because
g ◦ f is one such and f : X −→ X ′ is a quotient map in Fil. Similarly g is also an
Ω-homomorphism. Thus g : (X ′, A′) −→ (X ′′, A′′) is a Fil⋄A-morphism. ■

In [3], it is proved that, the forgetful functor U : X⋄A −→ X has a left adjoint
whenever X is cartesian closed topological category and A is algebraic. Therefore, The
forgetful functor U : Fil⋄Grp −→ Fil is algebraic. Here we give a constructive proof to
show that U has a left adjoint.
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Proposition 2.13 The forgetful functor U : Fil⋄Grp −→ Fil has a left adjoint.

Proof. Suppose that X is an arbitrary filter space. Let A be the free group generated
by X and u : X ↪−→ A be the inclusion map. For each n ∈ N and for any subset L of
Nn := {1, 2, . . . , n}, define hn,L : An −→ A by

hn,L(a1, . . . , an) := βχ
L
(1)(a1) . . . βχ

L
(n)(an),

where χ
L
is the characteristic function of L (i.e., χ

L
(r) = 1 if r ∈ L and χ

L
(r) = 0 if

r ̸∈ L), β0 :=idA, and β1 is the inversion on A. Equip A with the final structure in the
category Fil with respect to (hn,L ◦ un : Xn −→ A)n∈N,L⊆Nn

.
We now show that A is a filter group. Noting that

α ◦ (hn,L ◦ un × hm,K ◦ um) = hn+m,L∪(n+K) ◦ un+m

is uniformly continuous and that A×A has the final structure (because hn,L ◦ un’s form
an epi sink in Fil and Fil is cartesian closed) with respect to hn,L ◦ un × hm,K ◦ um

(n ∈ N, m ∈ N, L ⊆ Nn, K ⊆ Nm), we conclude that the multiplication α on A is
uniformly continuous. Since β1 ◦ (hn,L ◦ un) = (hn,L′ ◦ un) ◦ rn, where rn is the map from
Xn to Xn which assigns (xn, . . . , x1) to (x1, . . . , xn) and L′ is the complement of L in
Nn, β1 is uniformly continuous. Hence A is a filter group. Finally we show that (u,A) is
a universal map for X. Clearly u is uniformly continuous since u = h1,ϕ◦u. Let A′ be any
filter group and f : X −→ A′ be uniformly continuous. Since A is a free group on X,
there exists a unique group homomorphism f̄ : A −→ A′ which extends f , i.e., f̄ ◦ u =f.
It remains to show that f̄ is uniformly continuous. It is enough to show, for each n ∈ N
and for each subset L of Nn, that the composition f̄ ◦(hn,L ◦un) is uniformly continuous.
But f̄ ◦ (hn,L ◦ un) = hn,L ◦ fn and hn,L ◦ fn is obviously uniformly continuous. This
shows U has a left adjoint. ■
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