
Journal of
Linear and Topological Algebra
Vol. 07, No. 01, 2018, 53- 62

Symbolic computation of the Duggal transform

D. Pappasa,∗, V. N. Katsikisb, I. P. Stanimirovićc

aDepartment of Statistics, University of Economics and Business
76 Patission Str, 10434, Athens, Greece.

bDepartment of Economics, Division of Mathematics and Informatics, University of Athens
Athens, Greece

cDepartment of Computer Science, Faculty of Science and Mathematics, University of Nǐs
Vǐsegradska 33, 18000 Nǐs, Serbia.

Received 9 November 2017; Revised 9 January 2018; Accepted 10 January 2018.

Communicated by Ghasem Soleimani Rad

Abstract. Following the results of [6], regarding the Aluthge transform of polynomial ma-
trices, the symbolic computation of the Duggal transform of a polynomial matrix A is de-
veloped in this paper, using the polar decomposition and the singular value decomposition
of A. Thereat, the polynomial singular value decomposition method is utilized, which is an
iterative algorithm with numerical characteristics. The introduced algorithm is proven and
illustrated in numerical examples. We also represent symbolically the Duggal transform of
rank-one matrices using cross products of vectors and show that the Duggal transform of such
matrices can be given explicitly by a closed formula and is equal to its Aluthge transform.

c⃝ 2018 IAUCTB. All rights reserved.

Keywords: Duggal transform, symbolic computation, polar decomposition, PSVD
algorithm, polynomial matrices, rank 1 matrices.

2010 AMS Subject Classification: 15A60, 15A69, 15A23.

1. Introduction

Two transforms of operators and matrices that have been studied over the recent years
are the Duggal and the Aluthge transforms. Especially, the Aluthge transform has been
extensively studied. In [2], Foias, Jung, Ko and Pearcy introduced the concept of the

∗Corresponding author.
E-mail address: dpappas@aueb.gr (D. Pappas); vaskatsikis@econ.uoa.gr (V. N. Katsikis)
ivan.stanimirovic@gmail.com (I. P. Stanimirović).

Print ISSN: 2252-0201 c⃝ 2018 IAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir

54 D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62.

Duggal transformation, and proved several analogous results for both the Aluthge and
Duggal transformations.

Definition 1.1 For an n × n (complex) matrix T with polar representation T = U |T |
where |T | = (T ∗T)

1

2 and U is unitary (or a partial isometry), let us consider its Duggal
transform defined by

T̂ = |T |U

This transform was first introduced in [2].
Let us also restate the definition of Aluthge transform from [1]:

Definition 1.2 For an n×n (complex) matrix T with the standard polar decomposition

T = U |T | where |T | = (T ∗T)
1

2 and U is a unitary matrix (or a partial isometry) satisfying
N (U) = N (T), the Aluthge transform of T is defined by

∆(T) = |T |
1

2U |T |
1

2

The partial isometry U in the polar representation is unique under the condition
N (U) = N (T). However the partial isometry U is not unique without the condition
N (U) = N (T). Especially, there exists a unitary matrix U such that T = U |T |.
Other known and important facts are the following:

N(U) = N(T) = N(|T |) = N(|T |
1

2), N(U∗) = N(T ∗), R(U) = R(T), U∗U = P

where P stands for the orthogonal projection on N (T)⊥.
Our basic motivation is the representation and the efficient symbolic computation of

the Duggal transform, as a sequel of [6] where a similar work has been presented for
the Aluthge transform. We will compute symbolically two specific types of matrices: the
polynomial matrices and rank-one matrices using cross products of vectors. The polar
decomposition as well as the singular value decomposition are often required to compute
the Duggal transform. Some algorithms for the SVD and the QR decomposition for
polynomial matrices are presented in [4, 5], and will be considered in the present paper.

2. The Duggal transform of a polynomial matrix

Let us propose a method for the symbolic computation of the Duggal transform of
a polynomial matrix, based on the polar decomposition. The algorithm is implemented
in the symbolic computational language MATHEMATICA and the corresponding codes
are given in the Appendix.
Consider the polar decomposition of T given by T = U |T | and its singular value decom-
position (SVD) T = WΣV . Then

U = WV, |T | = V ∗ΣV.

Calculating the SVD of a polynomial matrix A(x) is clearly a more complex problem
than formulating the same decomposition of a scalar matrix, as each element of A now
consists of a series of polynomial coefficients. In order to drive one element of the matrix
to zero, all coefficients of this element must be driven to zero and this can no longer be
achieved using only Givens rotations.

D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62. 55

Iterative nulling of coefficients in elements of a polynomial matrix is a general concept
in multiple polynomial decomposition algorithms (see [5]). The process of nulling of co-
efficients usually involves Polynomial Givens Rotations (PGRs). The Polynomial SVD
is then computed by iteratively performing consecutive PGRs on the given polynomial
matrix. However, the decompositions produced by the PSVD algorithm will be approxi-
mative, since as it is shown in [8], an accurate decomposition of a polynomial matrix is
practically not achievable.

McWhirter in [9] suggests another algorithm for computing a singular value decom-
position of a polynomial matrix, where a sequential best rotation (SBR2) method is
introduced. It considers generalized Kogbetliantz transformations and it is proven to
have better performance than other similar methods.

In every step of PSVD algorithm, there is an iterative sub-routine used to change the
coefficients in all polynomial elements allocated beneath the main diagonal of a particular
column in the matrix A(x) close to zero. The algorithm operates as a series of steps, where
at each step all coefficients associated with the polynomial elements positioned beneath
the diagonal of one column of the polynomial matrix A(x) are driven sufficiently small
[9].

In [4], a similar approach is implemented to that used when generating the parauni-
tary transformation matrix required within the SBR2 algorithm and so the paraunitary
polynomial matrix Q(z) is formulated as a series of elementary rotation matrices inter-
spersed with delay matrices. Thereat, an iterative algorithm for computing the singular
value decomposition of a polynomial matrix is provided in [4]. It is based on iterative
computations of the QR decomposition of the given matrix and its transformation to an
approximately diagonal polynomial matrix.

Theorem 2.1 The Duggal transform of a rational matrix T can be expressed as

T̂ = V ∗ΣVWV,

where T = WΣV ∗ is the SVD decomposition of T .

Proof. Proceeds from the product of the matrix

|T | = V ∗ΣV

and the matrix U which can be represented as U = WV . ■

Let us now derive the algorithm for computing the Duggal transform of a polynomial
matrix. Polynomial SVD of the input matrix T (x) is computed using the polynomial
eigenvalue decomposition explained in [5], where the SBR2 algorithm is being applied to

the matrix products T (x)T̃ (x) and T̃ (x)T (x), where T̃ (x) = T ∗(1/x), in order to generate
the paraunitary matrices V (x) and W (x) and the approximately diagonal matrix Σ(x).
The elements outside of the diagonal of the matrix Σ(x) could be driven smaller by
setting smaller convergence parameters when applying the SBR2 algorithm to the matrix
products T (x)T̃ (x) and T̃ (x)T (x).

Algorithm 2.1 Computing the polynomial matrix Duggal transform (PMDT)

[1] A polynomial matrix T (x) ∈ C(x)n×n
r of the normal rank r, the convergence pa-

rameter ϵ and the truncation parameter µ.
Compute the matrix

A1(x) = T (x)T ∗(1/x)

56 D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62.

Apply the SBR2 algorithm from [5] to A1(x) and parameters ϵ and µ to compute the
matrix V (x).

Compute the matrix

A2(x) = T ∗(1/x)T (x)

Apply the SBR2 algorithm from [5] to A2(x) and parameters ϵ and µ to compute the
matrix W (x).

Compute the diagonal matrix Σ(x) = V (x)T (x)V T (1/x).
Denote the entries of the polynomial matrices W , Σ and V , generated in Step 1 as

wi,j(x) =
wmax∑

k=wmin

wk,i,jx
k, i, j = 1, n,

Σi,i(x) =
σmax∑

k=σmin

σk,i,ix
k, i = 1, n,

vi,j(x) =
vmax∑

k=vmin

vk,i,jx
k, i, j = 1, n,

For i, j = 1, n perform Step 3.1 – Step 3.3.
3.1: Perform the following computation:

ut,i,j =
n∑

k=1

t∑
t1=−2vmax

vt1,i,jσt1,j,jv
∗
t−t1,k,j

,

−2vmax ⩽ t ⩽ −2vmin.

3.2: For k = 1, n perform the following computations:

δt,i,j,k =
n∑

l=1

t∑
t1=umin+vmin+wmin

t−t1∑
t2=umin+vmin+wmin

ut1,i,kwt−t1−t2,k,lv
∗
t2,j,l

,

umin + vmin + wmin ⩽ t ⩽ umax + vmax + wmax

3.3: Return the (i, j)-th entry of the Aluthge transform matrix ∆(T) as

umax+vmax+wmax∑
t=umin+vmin+wmin

(
n∑

k=1

δt,i,j,k

)
xt.

The convergence of PMDT algorithm can be obtained from the convergence of PSVD
algorithm presented in [5], and the complexity of PMDT is the same as the complexity
of PSVD algorithm.

Example 2.2 Consider the polynomial matrix T with the following polynomial elements:

T (x) =

 0.93− 0.08
x 0.17x+ 0.57 0.40

x − 0.05
−0.35− 0.09

x 0.19x+ 0.67 0.47
x − 0.34

−0.33− 0.12
x 0.87 − 0.26x 0.29 + 0.62

x

 .

D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62. 57

given in [6], with its SVD decomposition obtained from PSVD method, using µ = 10−5

and ε = 10−3. The matrices W,Σ, U from T = WΣU are

W =

−0.887 −0.461
x 0.006

0.277 −0.543
x −0.793

0.368 −0.702
x 0.610

 ,Σ ≈

−1.077 0 0
0 −1.539 0
0 0 0.555

 ,

V =

 0.982 0.182x −0.059
−0.116 0.811x 0.574
0.151 −0.556x 0.817


By performing Steps 3.1 and 3.2 of the Algorithm PMDT for i, j = 1, n, the Duggal

transform matrix has the following form:

T̂ =

 0.0295058x2 + 0.976302 0.183589x2 + 0.22979 0.209653x2 − 0.3396
0.131479x2 − 0.00704274 0.818081x2 − 0.257083 0.934225x2 + 0.225589
0.307877 − 0.0901385x2 −0.560854x2 − 0.299649 0.217986 − 0.64048x2



3. Rank one operators and matrices

In this section we will present the symbolic computation of the Duggal transform of
rank-one operators and matrices, using cross products of vectors. This notion comes from
operator theory and finite rank operators, and when applied in the finite dimensional
case, we get the set of rank one matrices. We will show that the Duggal transform of
such matrices can be given explicitly by a closed formula and is equal to its Aluthge
transform.

In the infinite dimensional case, an operator T ∈ B(H) , where H is a Hilbert space,
is called a finite rank operator if the dimension of its range is finite. The number n =
dimR(T) is called the rank of T and it is denoted by r(T). For every rank one operator
T there are vectors e, f ∈ H such that Tx = ⟨x, e⟩f , for every x ∈ H. Without loss of
generality, the vector e can be assumed to be a unit vector. The rank one operator T is
denoted by e ⊗ f . The adjoint T ∗ of T is the rank one operator T ∗ = f ⊗ e. When the
space is finite dimensional then these operators can be represented by matrices having
rank equal to one. For more on finite rank operators see [7].
In [6], we showed that the Aluthge transform of a rank one operator or matrix A is given
by the formula

∆(T) = ⟨x, e⟩⟨f, e⟩−→e .

We will now examine the same problems for the Duggal transform, T̂ . Without loss of
generality we may assume that one of the two vectors is a unit vector.

Theorem 3.1 Let T = e ⊗ f be a rank one operator on a Hilbert space H, where
∥ e ∥= 1. Then T̂ is also rank one and it holds that T̂ = ∆(T).

Proof. At first we need to find the form that the operator |T | = (T ∗T)
1

2 has. Since

T ∗Tx = T ∗((e⊗ f)x) = ⟨x, e⟩T ∗(f) = ⟨x, e⟩ ∥ f ∥2 e,

58 D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62.

we may deduce that to

|T |x = ⟨x, e⟩ ∥ f ∥ e,

for more details see [6].
Since U is a partial isometry having the same range as R(T) we have

Ux =
⟨x, e⟩
∥ f ∥

−→
f .

Therefore, the partial isometry on R(T ∗) is U∗ which can be found using the relation

⟨Ux, y⟩ = ⟨x,U∗y⟩ for all x, y ∈ H, to see that U∗x = ⟨x,f⟩
∥f∥

−→e .
We will also show that U∗U is the orthogonal projection on N (T)⊥ = R(T)∗.

U∗Ux = U∗ ⟨x, e⟩
∥ f ∥

−→
f =

⟨x, e⟩
∥ f ∥

U∗−→f =
⟨x, e⟩⟨f, f⟩

∥ f ∥2
−→e = ⟨x, e⟩−→e

which is the orthogonal projection on R(T)∗.

We will now find T̂ :

T̂ x = |T |Ux = |T | ⟨x, e⟩
∥ f ∥

−→
f =

⟨x, e⟩
∥ f ∥

|T |
−→
f =

⟨x, e⟩
∥ f ∥

∥ f ∥ ⟨f, e⟩−→e = ⟨x, e⟩⟨f, e⟩−→e = ∆(T)x.

■

Example 3.2 Let −→e =

 6
7
−2

7
3
7

 be a unit vector and
−→
f =

 7
2
−1

.
Then,

T =

 6 12
7 −6

7
−2 −4

7
2
7

3 6
7 −3

7


In addition, using the definition of the Duggal transform, we have that

T = U |T | =

 0.8165 0.2333 −0.1166
−0.2722 −0.0778 0.0389
0.4082 0.1166 −0.0583

 6.6681 1.9052 −0.9526
1.9052 0.5443 −0.2722
−0.9526 −0.2722 0.1361


and so,

T̂ = |T |U =

 4.5370 1.2963 −0.6481
1.2963 0.3704 −0.1852
−0.6481 −0.1852 0.0926

 = ∆(T)

as expected.
For the computation of ∆(T) we used the definition of the Aluthge transform.

D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62. 59

Remark 1 Since in the relation T̂ = ∆(T)x = ⟨x, e⟩⟨f, e⟩−→e the inner product ⟨f, e⟩
depends only on the choice of the two vectors we can say that T̂ = ∆(T)x = ⟨f, e⟩P
where P stands for the orthogonal projection on N (T)⊥.

4. Conclusion

We have dealt with the symbolic computation of the Duggal transform of dual class
of matrices - polynomial matrices and matrices of rank equal to one. For the class of
polynomial matrices, the algorithm based on singular value decomposition of polynomial
matrices was developed. The proposed procedure can be useful for large sparse matrices
as well, since it is essentially an iterative method, and it is good idea to take benefit from
the elements being zeros or nearly-zeros in a matrix and their positions in the matrix. The
notion of exploring the sparsity patterns within the input matrix can be also combined
with the proposed procedure.

In the case of rank one matrices we proved that the Duggal transform coincides with
their Aluthge transform.

A future research may involve the expansion of this work for rational matrices and
matrices of rank equal to 2 or higher. Further exploration of possible applications of the
proposed method to large sparse matrices can be investigated in terms of determining
sparsity patterns and positions of approximate zeros in the matrix.

References

[1] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integ. Equ. Oper. Theory. 13 (1990), 307-315.
[2] C. Foias, B. Jung, E. Ko, C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal

transforms. Pacific J. Math. 209 (2) (2003), 249-259.
[3] J. Foster, J. Chambers, J. McWhirter, A novel algorithm for calculating the QR decomposition of a polynomial

matrix, IEEE Acoustics, Speech and Signal Processing, ICICS, 2009.
[4] J. Foster, J. McWhirter, M. Davies, An algorithm for calculating the QR and singular value decompositions

of polynomial matrices, IEEE Transactions on Signal Processing. 58 (3) (2009), 1263-1274.
[5] J. Foster, Algorithms and techniques for polynomial matrix decompositions, Ph.D. dissertation, School Eng,

Cardiff Univ, U.K., 2008.
[6] D. Pappas, V. N. Katsikis, I. P. Stanimirović, Symbolic computation of the Aluthge transform. Mediterr. J.

Math. (2017), doi:10.1007/s00009-017-0862-5.
[7] J. Ringrose, Compact non self adjoint operators, Van Nostrand London, 1971.
[8] R. Wirski, K. Wawryn, Decomposition of rational matrix functions, Information. Communications and Signal

Processing, ICICS, 2009.
[9] J. G. McWhirter, An algorithm for polynomial matrix SVD based on generalized Kogbetliantz transforma-

tions, Proceedings of EUSIPCO, 2010.

Appendix

The implementation of PSVD algorithm using the PQRD-BS algorithm presented in
[3] is provided. The complexity of PMDT is equal to the complexity of PSVD algorithm.
Notice that PQRD algorithm is performed through executing a sequence of polynomial
Givens rotations in order to modify an input matrix to a matrix which is upper-triangular.
Thus, it represents a generalization of the baseline Givens technique for calculating the
QR decomposition of a constant numerical matrix.

PQRDBS[A_List, eps_, mu_, MaxIter_] := Module[{Q, R, QBest, RBest,

p = Length[A], q = Length[A[[1]]], i, ajkt, t, j1, k1, j, k,

A1 = A, aij, g, gbest},

60 D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62.

Q = IdentityMatrix[p];

QBest = Q; RBest = A;

gbest = 100; g = 100;

For[i = 0, (g > eps) && (i < MaxIter), i++,

j = 2; k = 1; t = 1; ajkt = 0;

For[m = 2, m <= p, m++,

For[n = 1, n <= Min[m - 1, q], n++,

coef = CoefficientList[Numerator[Together[A1[[m, n]]]], x];

For[ind = 1, ind <= Length[coef], ind++,

If[Abs[coef[[ind]]] > Abs[ajkt],

j = m; k = n; t = ind;

ajkt = coef[[ind]];

];];

]];

t = t - Exponent[Denominator[A1[[j, k]]], x] - 1;

g = Abs[ajkt];

If[g < gbest,

gbest = g; QBest = Q; RBest = A1;

];

If[g > eps,

G = IdentityMatrix[p];

If[Abs[Coefficient[A1[[k, k]], x, 0]] != 0,

teta = ArcTan[Abs[Coefficient[A1[[j, k]], x, t]]/

Abs[Coefficient[A1[[k, k]], x, 0]]], teta = PI/2];

fi = -Arg[Coefficient[A1[[j, k]], x, t]];

alfa = -Arg[Coefficient[A1[[k, k]], x, 0]];

G[[j, j]] = Cos[teta]*E^(I*alfa);

G[[j, k]] = Sin[teta]*E^(I*fi);

G[[k, j]] = -Sin[teta]*E^(-I*fi);

G[[k, k]] = Cos[teta]*E^(-I*alfa);

B = IdentityMatrix[p];

B[[j, j]] = x^(-t);

A1 = N[Simplify[G.B.A1]]; Q = N[Simplify[G.B.Q]];

For[i1 = 1, i1 <= p, i1++,

For[i2 = 1, i2 <= q, i2++,

aij = 0;

For[j1 = -10, j1 <= 10, j1++,

If[N[Abs[Coefficient[A1[[i1, i2]], x, j1]]] > 0.001,

aij += x^j1*Coefficient[A1[[i1, i2]], x, j1]];

];

A1[[i1, i2]] = aij;

];

];

For[i1 = 1, i1 <= p, i1++,

For[i2 = 1, i2 <= p, i2++,

aij = 0;

For[j1 = -10, j1 <= 10, j1++,

If[N[Abs[Coefficient[Q[[i1, i2]], x, j1]]] > 0.001,

aij += x^j1*Coefficient[Q[[i1, i2]], x, j1]];

D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62. 61

];

Q[[i1, i2]] = aij;

];];];

];

Return[{QBest, RBest}];

];

PSVD algorithm is performed through a sequence of QR decompositions calculations
in order to modify the polynomial matrix into a diagonal matrix. An embedded try-
error procedure is performed to determine appropriate values for the stop parameter and
truncation parameter that lead to a nearly diagonal matrix with coefficients off the main
diagonal are nearly equal to zero.

PSVDbyPQRD[A_List, eps_, mu_, MaxIter_] := Module[{U1, Ap, App, Appp, V1,

R, p = Length[A], q = Length[A[[1]]], i, j, k, A1 = A, aij, n, g,

gmin, ajk, ajk1, coef, coef1, br, mm, jj, m, U, V, Ubest, Vbest,

SBest, nase, cuvam, sum, naset},

U = IdentityMatrix[p];

V = IdentityMatrix[q];

Ubest = U; Vbest = V; SBest = A;

g = 100; gmin = 100;

For[i = 0, (g > eps) && (i < MaxIter), i++,

g = 0;

For[j = 1, j <= p, j++,

For[k = 1, k <= q, k++,

If[k != j,

ajk = Together[A1[[j, k]]];

coef = CoefficientList[Numerator[ajk], x];

br = 1;

For[ind = 2, ind <= Length[coef], ind++,

If[Abs[coef[[ind]]] > Abs[coef[[br]]], br = ind];

];

t = br - Exponent[Denominator[ajk], x] - 1;

g = Max[g, Abs[Coefficient[A1[[j, k]], x, t]]];

]];

];

If[g < gmin,

Ubest = U; Vbest = V; SBest = A1; gmin = g;

Print["U=", U // MatrixForm, "S=", A1 // MatrixForm, "V=",

V // MatrixForm];

];

If[g > eps,

{U1, Ap} = PQRDBS[A1, eps, 0.01, 400];

Ap += Simplify[U1.A1 - Ap];

App = (Transpose[Ap] /. x -> x^-1);

U = U1.U;

{V1, Appp} = PQRDBS[App, eps, 0.01, 400];

Appp += Simplify[V1.App - Appp];

V = V1.V;

A1 = (Transpose[Appp] /. x -> x^-1);

62 D. Pappas et al. / J. Linear. Topological. Algebra. 07(01) (2018) 53-62.

For[i1 = 1, i1 <= p, i1++,

For[i2 = 1, i2 <= q, i2++,

aij = 0;

For[j1 = -5, j1 <= 5, j1++,

If[N[Abs[Coefficient[A1[[i1, i2]], x, j1]]] > 0.001,

aij += x^j1*Coefficient[A1[[i1, i2]], x, j1]];

];

A1[[i1, i2]] = aij;

];];

For[i1 = 1, i1 <= p, i1++,

For[i2 = 1, i2 <= p, i2++,

aij = 0;

For[j1 = -5, j1 <= 5, j1++,

If[N[Abs[Coefficient[U[[i1, i2]], x, j1]]] > 0.001,

aij += x^j1*Coefficient[U[[i1, i2]], x, j1]];

];

U[[i1, i2]] = aij;

];];

For[i1 = 1, i1 <= q, i1++,

For[i2 = 1, i2 <= q, i2++,

aij = 0;

For[j1 = -5, j1 <= 5, j1++,

If[N[Abs[Coefficient[V[[i1, i2]], x, j1]]] > 0.001,

aij += x^j1*Coefficient[V[[i1, i2]], x, j1]];

];

V[[i1, i2]] = aij;

];];

];

];

Return[{Ubest, SBest, Vbest}];

];

