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Abstract. Neutrosophy is a new branch of philosophy that studies the origin, nature, and
scope of neutralities, as well as their interactions with different ideational spectra. Aim of
this article is to find the maximum and minimum solution of the fuzzy neutrosophic soft
relational equations xA = b and Ax = b, where x and b are fuzzy neutrosophic soft vectors
and A is a fuzzy neutrosophic soft matrix. Whenever A is singular we can not find A−1.
In that case we can use generalized inverse (g-inverse) to get the solution of the above said
relational equations. Further, using this concept maximum and minimum g-inverse of fuzzy
neutrosophic soft matrix are obtained.
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1. Introduction

Most of our real life problems in medical science, engineering, management, environ-
ment and social sciences often involve data which are not necessarily crisp, precise and
deterministic in character due to various uncertainties associated with these problems.
Such uncertainties are usually being handled with the help of the topics like probability,
fuzzy sets, interval mathematics and rough sets etc. Intuitionistic fuzzy sets introduced
by Atanassov [3] is appropriate for such a situation. The intuitionistic fuzzy sets can only
handle the incomplete information considering both the truth membership and falsity
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membership. It does not handle the indeterminate and inconsistent information which
exists in belief system. Florentin Smarandache [5] introduced the concept of neutrosophic
set which is a mathematical tool for handling problems involving imprecise, indetermi-
nacy and inconsistent data. The neutrosophic components T,I, F which represents the
membership, indeterminancy, and non-membership values respectively, where ]−0, 1+[ is
the non-standard unit interval, and thus one defines the neutrosophic set.

For example the Schrodinger’s cat theory says that the quantum state of a photon can
basically be in more than one place at the same time, which translated to the neutro-
sophic set which means an element (quantum state) belongs and does not belong to a
set (one place) at the same time; or an element (quantum state) belongs to two different
sets(two different places) in the same time. Diletheism is the view that some statements
can be both true and false simultaneously. More precisely, it is belief that there can be
true statement whose negation is also true. Such statement are called true contradiction,
diletheia or nondualism. ”All statements are true” is a false statement. The above ex-
ample of true contradictions that dialetheists accept. Neutrosophic set, like dialetheism,
can describe paradoxist elements, Neutrosophic set (paradoxist element)=(1,1,1), while
intuitionistic fuzzy logic can not describe a paradox because the sum of components
should be 1 in intuitionistic fuzzy set.

In neutrosophic set there is no restriction on T,I,F other than they are subsets of
]−0, 1+[, thus

−0 ⩽ infT + infI + infF ⩽ supT + supI + supF ⩽ 3+

Neutrosophic sets and logic are the foundations for many theories which are more gen-
eral than their classical counterparts in fuzzy, intuitionistic fuzzy, paraconsistent set,
dialetheist set, paradoxist set and tautological set.

In 1999, Molodtsov [11] initiated the novel concept of soft set theory which is a com-
pletely new approach for modeling vagueness and uncertainty. In [9] Maji et al., initiated
the concept of fuzzy soft sets with some properties regarding fuzzy soft union, intersec-
tion, complement of fuzzy soft set. Moreover in [10, 13] Maji et al., extended soft sets to
intuitionistic fuzzy soft sets and neutrosophic soft sets.

One of the important theory of Mathematics which has a vast application in Science
and Engineering is the theory of matrices. Let A be a square matrix of full rank. Then,
there exists a matrix X such that AX = XA = I. This X is called the inverse of A
and is denoted by A−1. Suppose A is not a matrix of full rank or it is a rectangular
matrix, in such a case inverse does not exists. In recent years needs have been felt in
numerous areas of applied Mathematics for some kind of partial inverse of a matrix which
is singular or even rectangular, such inverse are called generalized inverse. Solving fuzzy
matrix equation of the type xA = b where

x = (x11, x12, x1m),

b = (b11, b12, b1n)

and A is a fuzzy matrix of order m×n is of great interest in various fields. We say xA = b
is computable, if there exists a solution for xA = b and in this case we write

max
j

min(x1j , ajk) = b1k ∀ j ∈ Im, k ∈ In,

where In is an index set, i = 1, 2, ..., n and Ω1(A, b) represents the set of all solutions of
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xA = b.
The authors extend this concept into fuzzy neutrosophic soft matrix. The fuzzy neu-

trosophic soft matrix equation is of the form xA = b · · · (1) where,

x = ⟨xT11, xI11, xF11⟩ · · · ⟨xT1m, xI1m, xF1m⟩

b = ⟨bT11, bI11, bF11⟩ · · · ⟨bT1n, bI1n, bF1n⟩,

and A is a fuzzy neutrosophic soft matrix of order m × n. The equation xA = b is
computable if there exist a solution for xA = b and in this case we write

max
j

min⟨xT1j , xI1j , xF1j⟩.⟨aTjk, aIjk, aFjk⟩ = ⟨bT1k, bI1k, bF1k⟩ ∀ j ∈ Im, k ∈ In.

Denote Ω1(A, b) = {x|xA = b} represents the set of all solutions of xA = b. Several
authors [4, 8, 14] have studied about the maximum solution x̂ and the minimum solution
of xA = b for fuzzy matrix as well as IFMs (Intuitionistic fuzzy matrix).

Li Jian-Xin [8] and Katarina Cechlarova [7] discussed the solvability of maxmin fuzzy
equation xA = b and Ax = b. In both the cases the maximum solution is unique and
the minimum solution need not be unique. Let Ω2(A, b) be the set of all solutions for
Ax = b. Murugadas [12] introduced a method to find maximum g-inverse as well as
minimum g-inverse of fuzzy matrix and intuitionistic fuzzy matrix. Let us restrict our
further discussion in this section to fuzzy neutrosophic soft matrix equation of the form
Ax = b with x = [⟨xTi1, xIi1, xFi1⟩ | i ∈ In], b = [⟨bTk1, bIk1, bFk1⟩ | k ∈ Im] where A is a fuzzy
neutrosophic soft matrix of order mn

Irfan Deli [6] introduced the new concept of npn-soft sets theory. Tanushree Mitra
Basu and Shyamal Kumar Mondal[17] used neutrosophic soft matrix in group decision
making problems. Said Broumi et al., [15] introduced generalized interval neutrosophic
soft set.

In this paper the authors extend the idea of finding g-inverse to FNSM. And also finds
the maximum and minimum solution of the relational equation xA = b when A is a
FNSM. Further this concept has been extended in finding g-inverse of FNSM.

2. Preliminaries

In this section, some relevant basic definitions about fuzzy neutrosophic soft matrices
are provided.

Definition 2.1 [16]A neutrosophic set A on the universe of discourse X is defined as

A = {⟨x, TA(x), IA(x), FA(x)⟩ | x ∈ X} ,

where T, I, F : X → ]−0, 1+[ and

−0 ⩽ TA(x) + IA(x) + FA(x) ⩽ 3+. (1)

From philosophical point of view the neutrosophic set takes the value from real standard
or non-standard subsets of ]−0, 1+[ . But in real life application especially in scientific and
Engineering problems it is difficult to use neutrosophic set with value from real standard
or non-standard subset of ]−0, 1+[ . Hence we consider the neutrosophic set which takes
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the value from the subset of [0, 1]. Therefore we can rewrite the equation (1) as

0 ⩽ TA(x) + IA(x) + FA(x) ⩽ 3.

In short an element ã in the neutrosophic set A, can be written as

ã = ⟨aT , aI , aF ⟩,

where aT denotes degree of truth, aI denotes degree of indeterminacy, aF denotes degree
of falsity such that 0 ⩽ aT + aI + aF ⩽ 3.

Example 2.2 Assume that the universe of discourse X = {x1, x2, x3}, where x1, x2, and
x3 characterize the quality, relaibility, and the price of the objects. It may be further
assumed that the values of {x1, x2, x3} are in [0, 1] and they are obtained from some
investigations of some experts. The experts may impose their opinion in three components
viz; the degree of goodness, the degree of indeterminacy and the degree of poorness to
explain the characteristics of the objects. Suppose A is a Neutrosophic Set (NS) of X,
such that A = {⟨x1, 0.4, 0.5, 0.3⟩, ⟨x2, 0.7, 0.2, 0.4⟩, ⟨x3, 0.8, 0.3, 0.4⟩}, where for x1 the
degree of goodness of quality is 0.4 , degree of indeterminacy of quality is 0.5 and degree
of falsity of quality is 0.3 etc,.

Definition 2.3 [11] Let U be an initial universe set and E be a set of parameters. Let
P(U) denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair (F,A) is
called a soft set over U, where F is a mapping given by F : A → P (U).

Definition 2.4 [1] Let U be an initial universe set and E be a set of parameters.
Consider a non empty set A, A ⊂ E. Let P (U) denotes the set of all fuzzy neutrosophic
sets of U . The collection (F,A) is termed to be the Fuzzy Neutrosophic Soft Set (FNSS)
over U, where F is a mapping given by F : A → P (U). Hereafter we simply consider A
as FNSS over U instead of (F,A).

Definition 2.5 [2] Let U = {c1, c2, ...cm} be the universal set and E be the set of
parameters given by E = {e1, e2, ...en}. Let A ⊆ E . A pair (F,A) be a FNSS over U .
Then the subset of U×E is defined by RA = {(u, e); e ∈ A, u ∈ FA(e)} which is called a
relation form of (FA, E). The membership function, indeterminacy membership function
and non membership function are written by TRA

: U × E → [0, 1], IRA
: U × E → [0, 1]

and FRA
: U ×E → [0, 1] where TRA

(u, e) ∈ [0, 1], IRA
(u, e) ∈ [0, 1] and FRA

(u, e) ∈ [0, 1]
are the membership value, indeterminacy value and non membership value respectively
of u ∈ U for each e ∈ E. If [(Tij , Iij , Fij)] = [(Tij(ui, ej), Iij(ui, ej), Fij(ui, ej)] we define
a matrix

[⟨Tij , Iij , Fij⟩]m×n =


⟨T11, I11, F11⟩ ⟨T12, I12, F12⟩ · · · ⟨T1n, I1n, F1n⟩
⟨T21, I21, F21⟩ ⟨T22, I22, F22⟩ · · · ⟨T2n, I2n, F2n⟩

...
...

...
⟨Tm1, Im1, Fm1⟩ ⟨Tm2, Im2, Fm2⟩ · · · ⟨Tmn, Imn, Fmn⟩


which is called an m× n FNSM of the FNSS (FA, E) over U.

Definition 2.6 Let U = {c1, c2...cm} be the universal set and E be the set of parameters
given by E = {e1, e2, ...en}. Let A ⊆ E. A pair (F,A) be a fuzzy neutrosophic soft
set. Then fuzzy neutrosophic soft set (F,A) in a matrix form as Am×n = (aij)m×n or
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A = (aij), i = 1, 2, ...m, j = 1, 2, ...n where

(aij) =

{
(T (ci, ej), I(ci, ej), F (ci, ej)) if ej ∈ A

⟨0, 0, 1⟩ if ej /∈ A

where Tj(ci) represents the membership of ci, Ij(ci) represents the indeterminacy of ci
and Fj(ci) represents the non-membership of ci in the FNSS (F,A). If we replace the
identity element ⟨0, 0, 1⟩ by ⟨0, 1, 1⟩ in the above form we get FNSM of type-II.

FNSM of Type-I [18]
Let Nmn denotes FNSM of order m× n and Nn denotes FNSM of order n× n.

Definition 2.7 Let A = (
⟨
aTij , a

I
ij , a

F
ij

⟩
), B = (

⟨
bTij , b

I
ij , b

F
ij

⟩
) ∈ Nm×n the component-

wise addition and componentwise multiplication is defined as

A⊕B =
(
sup{aTij , bTij}, sup{aIij , bIij}, inf{aFij , bFij}

)
,

A⊙B =
(
inf{aTij , bTij}, inf{aIij , bIij}, sup{aFij , bFij}

)
.

Definition 2.8 Let A ∈ Nmn, B ∈ Nnp, the composition of A and B is defined as

A ◦B =

(
n∑

k=1

(aTik ∧ bTkj),

n∑
k=1

(aIik ∧ bIkj),

n∏
k=1

(aFik ∨ bFkj)

)

equivalently we can write the same as

A ◦B =

(
n∨

k=1

(aTik ∧ bTkj),

n∨
k=1

(aIik ∧ bIkj),

n∧
k=1

(aFik ∨ bFkj)

)
.

The product A ◦ B is defined if and only if the number of columns of A is same as the
number of rows of B. A and B are said to be conformable for multiplication. We shall
use AB instead of A ◦B.

FNSM of Type-II[18]

Definition 2.9 Let A = (⟨aTij , aIij , aFij⟩), B = (⟨bTij , bIij , bFij⟩) ∈ Nm×n, the component wise
addition and component wise multiplication is defined as

A⊕B =
(⟨

sup{aTij , bTij}, inf{aIij , bIij}, inf{aFij , bFij}
⟩)

,

A⊙B =
(⟨

inf{aTij , bTij}, sup{aIij , bIij}, sup{aFij , bFij}
⟩)

.

Analogous to FNSM of type-I, we can define FNSM of type -II in the following way

Definition 2.10 Let

A = (⟨aTij , aIij , aFij⟩) = (aij) ∈ Nm×n and B = (⟨bTij , bIij , bFij⟩) = (bij) ∈ Fn×p,
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the product of A and B is defined as

A ∗B =

(
n∑

k=1

⟨
aTik ∧ bTkj

⟩
,

n∏
k=1

⟨
aIik ∨ bIkj

⟩
,

n∏
k=1

⟨
aFik ∨ bFkj

⟩)

equivalently we can write the same as

A ∗B =

(
n∨

k=1

⟨
aTik ∧ bTkj

⟩
,

n∧
k=1

⟨
aIik ∨ bIkj

⟩
,

n∧
k=1

⟨
aFik ∨ bFkj

⟩)
.

the product A ∗ B is defined if and only if the number of columns of A is same as the
number of rows of B. A and B are said to be conformable for multiplication.

3. Main results

Definition 3.1 A ∈ Nm×n is said to be regular if there exists X ∈ Nn×m such that
AXA = A.

Definition 3.2 If A andX are two FNSM of orderm×n satisfies the relation AXA = A,
then X is called a generalized inverse (g-inverse) of A which is denoted by A−. The g-
inverse of an FNSM is not necessarily unique. We denote the set of all g-inverse by
A{1}.

Definition 3.3 Any element x̂ ∈ Ω1(A, b) is called a maximal solution if

∀ x ∈ Ω1(A, b), x ⩾ x̂ ⇒ x = x̂.

That is elements x, x̂ are component wise equal.

Definition 3.4 Any element x̌ ∈ Ω1(A, b) is called a minimal solution if

∀ x ∈ Ω1(A, b), x ⩽ x̌ ⇒ x = x̌.

That is elements x, x̌ are component wise equal.

Lemma 3.5 Let xA = b be as defined in equation (1). If

⟨max
j

aTjk,max
j

aIjk,min
j

aFjk⟩ < ⟨bT1k, bI1k, bF1k⟩,

for some k ∈ In, then Ω1(A, b) = ϕ.

Proof. If ⟨max
j

aTjk,max
j

aIjk,min
j

aFjk⟩ < ⟨bT1k, bI1k, bF1k⟩ for some k, then

min{⟨xT1j , xI1j , xF1j⟩, ⟨aTjk, aIjk, aFjk⟩} ⩽ ⟨aTjk, aIjk, aFjk⟩

⩽ ⟨max
j

aTjk,max
j

aIjk,min
j

aFjk⟩

< ⟨bT1k, bI1k, bF1k⟩.
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Hence

max
j

min
{
⟨xT1j , xI1j , xF1j⟩, ⟨aTjk, aIjk, aFjk⟩

}
< ⟨bT1k, bI1k, bF1k⟩.

Therefore, no values of x satisfy the equation xA = b. Hence Ω(A, b) = ϕ. ■

Theorem 3.6 For the equation xA = b, Ω1(A, b) ̸= φ if and only if

x̂ = [⟨x̂T1j , x̂I1j , x̂F1j⟩|j ∈ Im]

defined as

⟨x̂T1j , x̂I1j , x̂F1j⟩ = ⟨minσ(aTjk, b
T
1k),minσ

′
(aIjk, b

I
1k),maxσ

′′
(aFjk, b

F
1k)⟩,

where

σ(aTjk, b
T
1k) =

{
bT1k if aTjk > bT1k
1 otherwise

σ′(aIjk, b
I
jk) =

{
bI1k if aIjk > bI1k
1 otherwise

σ′′(aFjk, b
F
1k) =

{
bF1k if aFjk < bF1k
0 otherwise

is the maximum solution of xA = b.

Proof. If Ω1(A, b) ̸= ϕ, then x̂ is a solution of xA = b. For if x̂ is not a solution, then
x̂A ̸= b and therefore

max
j

min⟨x̂T1j , x̂I1j , x̂F1j⟩⟨aTjk, aIjk, aFjk⟩ ̸= ⟨bT1k0
, bI1k0

, bF1k0
⟩

for atleast one k0 ∈ In. By the Definition of ⟨x̂T1j , x̂I1j , x̂F1j⟩,

⟨x̂T1j , x̂I1j , x̂F1j⟩ ⩽ ⟨bT1k, bI1k, bF1k⟩

for each k and so ⟨x̂T1j , x̂I1j , x̂F1j⟩ ⩽ ⟨bT1k0
, bI1k0

, bF1k0
⟩. Therefore,

⟨x̂T1j , x̂I1j , x̂F1j⟩⟨aTjk, aIjk, aFjk⟩ < ⟨bT1k0
, bI1k0

, bF1k0
⟩

⟨max
j

aTjk,max
j

aIjk,min
j

aFjk⟩ < ⟨bT1k0
, bI1k0

, bF1k0
⟩,

for some k0 by our assumption. Hence by Lemma 3.5 Ω1(A, b) = ϕ, which is a contradic-
tion. Hence x̂ is a solution. Let us prove that x̂ is the maximum one. If possible let us
assume that ŷ is another solution such that ŷ ⩾ x̂ that is

⟨yT1j0 , y
I
1j0 , y

F
1j0⟩ > ⟨x̂T1j0 , x̂

I
1j0 , x̂

F
1j0⟩
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for at least one j0. Therefore, by the definition of ⟨x̂T1j0 , x̂
I
1j0

, x̂F1j0⟩,

⟨yT1j0 , y
I
1j0 , y

F
1j0⟩ > ⟨minσ(aTj0k, b

T
1k),minσ

′
(aIj0k, b

I
1k),maxσ

′′
(aFj0k, b

F
1k)⟩.

Since Ω(A, b) ̸= ϕ, by the Lemma 3.5 ⟨max
j

aTjk,max
j

aIjk,min
j

aFjk⟩ ⩾ ⟨bT1k0
, bI1k0

, bF1k0
⟩ for

each k0. Hence

⟨bT1k0
, bI1k0

, bF1k0
⟩ ̸= ⟨max

j
min(yTj , a

T
jk0

),max
j

min(yIj , a
I
jk0

),min
j

max(yFj , a
F
jk0

)⟩

which is a contradiction to our assumption that y ∈ Ω1(A, b). Therefore x̂ is the maximum
solution. The converse part is trivial. If the relational equation is the form Ax = b · · · (2)
where A is an fuzzy neutrosophic soft matrix of order m× n,

x = (⟨xT11, xI11, xF11⟩, ..., ⟨xT1n, xI1n, xF1n⟩)T ,

b = (⟨bT11, bI11, bF11⟩, ..., ⟨bT1m, bI1m, bF1m⟩)T

we can prove the following Lemma and Theorem in similar fashion. Let Ω2(A, b) be the
set all solution of the relational equation Ax = b. ■

Definition 3.7 Any element x̂ ∈ Ω2(A, b) is called a maximal solution if

∀ x ∈ Ω2(A, b), x ⩾ x̂ ⇒ x = x̂.

That is elements x, x̂ are component wise equal.

Definition 3.8 Any element x̌ ∈ Ω2(A, b) is called a minimal solution if

∀ x ∈ Ω2(A, b), x ⩽ x̌ ⇒ x = x̌.

That is elements x, x̌ are component wise equal.

Lemma 3.9 Let Ax = b as defined in (2). If

⟨max
i

aTki,max
i

aIki,min
i

aFki⟩ < ⟨bTk1, bIk1, bFk1⟩,

for some k ∈ Im, then Ω2(A, b) = ϕ.

Theorem 3.10 For the equation Ax = b, Ω2(A, b) ̸= ϕ if only if

x̂ = [⟨x̂Tj1, x̂Ij1, x̂Fj1⟩|j ∈ In]

defined as

⟨x̂Tj1, x̂Ij1, x̂Fj1⟩ = ⟨minσ(aTki, b
T
k1),minσ′(aIki, b

I
k1),maxσ′′(aFki, b

F
k1)⟩,
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where

σ(aTki, b
T
k1) =

{
bTk1 if aTki > bTk1
1 otherwise

σ′(aIki, b
I
k1) =

{
bIk1 if aIki > bIk1
1 otherwise

σ′′(aFki, b
F
k1) =

{
bF1k if aFki < bFk1
0 otherwise

is the maximum solution of Ax = b.

Example 3.11 Let

A =

[
⟨0.5 0.6 0.2⟩ ⟨0.7, 0.5, 0.1⟩
⟨0.2 0.3 0.5⟩ ⟨0.6, 0.4, 0⟩

]
and b = [⟨0.2, 0.3, 0.5⟩ ⟨0.5, 0.3, 0.1⟩].

Then we can find x̂ = [⟨x̂T11, x̂I11, x̂F11⟩, ⟨x̂T12, x̂I12, x̂F12⟩] in xA = b

⟨x̂T11, x̂I11, x̂F11⟩ = ⟨min
k

σ(aT1k, b
T
1k),min

k
σ

′
(aI1k, b

I
1k),max

k
σ

′′
(aF1k, b

F
1k)⟩

= ⟨min
k

(0.2, 0.5),min
k

(0.3, 0.3),max
k

(0.5, 0)⟩

= ⟨0.2, 0.3, 0.5⟩

⟨x̂T12, x̂I12, x̂F12⟩ = ⟨min
k

σ(aT2k, b
T
1k),min

k
σ

′
(aI2k, b

I
1k),max

k
σ

′′
(aF2k, b

F
1k)⟩

= ⟨min
k

(1, 0.5),min
k

(1, 0.3),max
k

(0, 0.1)⟩

= ⟨0.5, 0.3, 0.1⟩

Then clearly

(⟨0.2, 0.3, 0.5⟩⟨0.5, 0.3, 0.1⟩)
[
⟨0.5 0.6 0.2⟩⟨0.7, 0.5, 0.1⟩
⟨0.2 0.3 0.5⟩⟨0.6, 0.4, 0⟩

]
= (⟨0.2, 0.3, 0.5⟩ ⟨0.5, 0.3, 0.1⟩)

To get the minimal solution of xA = b we follow the procedure as followed for fuzzy
neutrosophic soft matrix equation.

Step 1 Determine the sets

Jk(x̂) =
{
j ∈ Im | min(⟨x̂T1j , x̂I1j , x̂F1j⟩, ⟨aTjk, aIjk, aFjk⟩) = bT1k

}
,

for all k ∈ In. Construct their cartesian product J(x̂) = J1(x̂)× J2(x̂)× ...× Jn(x̂).

Step 2 Denote the elements of J(x̂), by β = [βk/k ∈ In]. For each β ∈ J(x̂) and each
j ∈ Im, determine the set

k(β, j) =
{
k ∈ Im | βk = j

}
.
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Step 3 For each β ∈ J(x̂) generate the n-tuple

g(β) =
{
gj(β) | j ∈ Im

}
,

where

gj(β) =

{
max
k(β,j)

⟨bT1k, bI1k, bF1k⟩ k(β, j) ̸= 0

⟨0, 0, 1⟩ otherwise

Step 4 From all the n-tuples g(β) generated in step.3, select only the minimal one by
pairwise comparison. The resulting set of n-tuples is the minimal solution of the reduced
form of equation xA = b.

Example 3.12 Let us find the minimal solution to the linear equation given in Example
3.11 using the maximal solution x̂
Step 1 To determine Jk(x̂) for k = 1, 2.

J1(x̂) = {j = 1, 2|min(⟨xT1j , xI1j , xF1j⟩, ⟨aTjk, aIjk, aFjk⟩) = ⟨bT1k, bI1k, bF1k⟩}

= {min{⟨0.2, 0.3, 0.5⟩⟨0.5, 0.6, 0.2⟩},min{⟨0.5, 0.3, 0.1⟩⟨0.2, 0.3, 0.5⟩}}

= ⟨0.2, 0.3, 0.5⟩ = {1, 2}

J2(x̂) = {min{⟨0.2, 0.3, 0.5⟩⟨0.7, 0.5, 0.1⟩},min{⟨0.5, 0.3, 0.1⟩⟨0.6, 0.4, 0⟩}}

= ⟨0.5, 0.3, 0.1⟩

= {2}

Therefore

Jk(x̂) = J1(x̂)× J2(x̂) = {1, 2} × {2} = {(1, 2, (2, 2))} = β

Step 2 To determine the sets K(β, j) for each β = Jk(x̂) and for each j = 1, 2.
For β = (1, 2)

K(β, 1) = {k = 1, 2|βk = 1} = {1}

K(β, 2) = {k = 1, 2|βk = 2} = {2}

For β = (2, 2)

K(β, 1) = {k = 1, 2|βk = 1} = {φ}

K(β, 2) = {k = 1, 2|βk = 2} = {1, 2}

Thus the sets K(β, j) for each β ∈ J(x̂) and j = 1, 2 are listed in the following table.

K{β, j} 1 K
(1, 2) {1} {2}
(2, 2) {ϕ} {1, 2}
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Step 3 For each β ∈ J(x̂) we generate the tuples g(β)
For β = (1, 2)

g1(β) =

{
max

k∈k(β,1)
⟨0.2, 0.3, 0.5⟩ k(β, 1) ̸= ϕ

⟨0, 0, 1⟩ otherwise
= ⟨0.2, 0.3, 0.5⟩

g2(β) = ⟨0.5, 0.3, 0.1⟩.

For β = (2, 2)

g1(β) = ⟨0, 0, 1⟩

g2(β) = ⟨0.5, 0.3, 0.1⟩.

Therefore we can get the following table for β

β g(β)
(1, 2) ⟨0.2, 0.3, 0.5⟩, ⟨0.5, 0.3, 0.1⟩
(2, 2) ⟨0, 0, 1⟩, ⟨0.5, 0.3, 0.1⟩

Out of which (⟨0, 0, 1⟩, ⟨0.5, 0.3, 0.1⟩) is the minimal one. And also it satisfy xA = b that
is x̂ = (⟨0, 0, 1⟩, ⟨0.5, 0.3, 0.1⟩). Using the same method we have followed, one can find
the g-inverse of a fuzzy neutrosophic soft matrix if it exits.

Example 3.13 Let A =

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
. To find the g-inverse, put AXA = A and

AX = B so that BA = A, where

X =

[
⟨xT11, xI11, xF11⟩ ⟨xT12, xI12, xF12⟩
⟨xT21, xI21, xF21⟩ ⟨xT22, xI22, xF22⟩

]
and B =

[
⟨bT11, bI11, bF11⟩ ⟨bT12, bI12, bF12⟩
⟨bT21, bI21, bF21⟩ ⟨bT22, bI22, bF22⟩

]
.

To find B and X:

(
⟨bT11, bI11, bF11⟩, ⟨bT12, bI12, bF12⟩

) [⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
=
(
⟨1, 1, 0⟩, ⟨1, 1, 0⟩

)
⟨bT11, bI11, bF11⟩ =

⟨
min
k

σ(a1k, b1k),min
k

σ
′
(a

′

1k, b
′

1k),max
k

σ
′′
(a

′′

1k, b
′′

1k)
⟩
= ⟨1, 1, 0⟩

⟨bT12, bI12, bF12⟩ = ⟨min
k

σ(a2k, b2k),min
k

σ
′
(a

′

2k, b
′

2k),max
k

σ
′′
(a

′′

2k, b
′′

2k)⟩ = ⟨1, 1, 0⟩

Take

(
⟨bT21, bI21, bF21⟩, ⟨bT22, bI22, bF22⟩

) [⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
= (⟨1, 1, 0⟩, ⟨0, 0, 1⟩)

⟨bT21, bI21, bF21⟩ = ⟨min
k

σ1k, b2k),min
k

(σ
′

1k, b
′

2k),max
k

(σ
′′

1k, b
′′

2k)⟩ = ⟨0, 0, 1⟩

⟨bT22, bI22, bF22⟩ = ⟨min
k

(σ2k, b2k),min
k

(σ
′

2k, b
′

2k),max
k

(σ
′′

2k, b
′′

2k)⟩ = ⟨1, 1, 0⟩
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Therefore B̂ =

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

]
which satisfy BA = A. Moreover, AX = B becomes

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

] [
⟨xT11, xI11, xF11⟩ ⟨xT12, xI12, xF12⟩
⟨xT21, xI21, xF21⟩ ⟨xT22, xI22, xF22⟩

]
=

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

]
⟨xT11, xI11, xF11⟩ = ⟨min

k
(σk1, bk1),min

k
(σ

′

k1, b
′

k1),max
k

(σ
′′

k1, b
′′

k1)⟩ = ⟨0, 0, 1⟩

⟨xT12, xI12, xF12⟩ = ⟨min
k

(σk1, bk2),min
k

(σ
′

k1, b
′

k2),max
k

(σ
′′

k1, b
′′

k2)⟩ = ⟨1, 1, 0⟩

⟨xT21, xI21, xF21⟩ = ⟨min
k

(σk2, bk1),min
k

(σ
′

k2, b
′

k1),max
k

(σ
′′

k2, b
′′

k1)⟩ = ⟨1, 1, 0⟩

⟨xT22, xI22, xF22⟩ = ⟨min
k

(σk2, bk2),min
k

(σ
′

k2, b
′

k2),max
k

(σ
′′

k2, b
′′

k2)⟩ = ⟨1, 1, 0⟩

Therefore

X̂ =

[
⟨0, 0, 1⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨1, 1, 0⟩

]
.

Clearly AX̂A = A. Hence X̂ is the maximum g-inverse of AX̂A = A. To get the minimal
solution: Let us find the minimum B̂ from B̂A = A and using the minimum B̂ in AX = B
we can find the minimum X̂. Consider[

⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

] [
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
=

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
.

Step 1 Determine the set Jij(B̂)

J11(B̂) = {min{⟨1, 1, 0⟩, ⟨1, 1, 0⟩},min{⟨1, 1, 0⟩, ⟨1, 1, 0⟩}} = ⟨1, 1, 0⟩

= {⟨1, 1, 0⟩, ⟨1, 1, 0⟩} = {1, 2}

J12(B̂) = {min{⟨1, 1, 0⟩, ⟨1, 1, 0⟩},min{⟨1, 1, 0⟩, ⟨0, 0, 1⟩}} = ⟨1, 1, 0⟩

= {⟨1, 1, 0⟩, ⟨0, 0, 1⟩} = {1}

J21(B̂) = {min{⟨0, 0, 1⟩, ⟨1, 1, 0⟩},min{⟨1, 1, 0⟩, ⟨1, 1, 0⟩}} = ⟨1, 1, 0⟩

= {⟨0, 0, 1⟩, ⟨1, 1, 0⟩} = {2}

J22(B̂) = {min{⟨0, 0, 1⟩, ⟨1, 1, 0⟩},min{⟨1, 1, 0⟩, ⟨0, 0, 1⟩}} = ⟨0, 0, 1⟩

= {⟨0, 0, 1⟩, ⟨0, 0, 1⟩} = {1, 2}

Let β1 = J11(B̂)× J12(B̂) = {1, 2} × {1} = {(1, 2), (2, 1)}
β2 = J21(B̂)× J22(B̂) = {2} × {1, 2} = {(2, 1), (2, 2)}
Step 2. Determine the set K(βk, j) for k = 1, 2 and j = 1, 2
For β1 = (1, 1)K(β1, 1) = {1, 2}

K(β1, 2) = {ϕ}
For β1 = (2, 1)K(β1, 1) = {2}

K(β1, 2) = {1}
For β2 = (2, 1)K(β2, 1) = {2}

K(β2, 2) = {1}
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For β2 = (2, 2)K(β2, 1) = {ϕ}
K(β2, 2) = {1, 2}

Writing the values in tabular form we get

(β1, j) 1 2
(1, 1) {1, 2} ϕ
(2, 1) {2} 1

(β2, j) 1 2
(2, 1) {2} {1}
(2, 2) {ϕ} {1, 2}

Step 3. For each βk let us generate the g(βk) tuples
For β1 = (1, 1)

g1(β1) = (1, 1)
g1(β1) = max

k∈K(β,1)
{⟨1, 1, 0⟩, ⟨1, 1, 0⟩} = ⟨1, 1, 0⟩

g2(β1) = ⟨0, 0, 1⟩
For (β1) = (2, 1)

g1(β1) = ⟨1, 1, 0⟩
g2(β1) = ⟨1, 1, 0⟩

For g1(β1) = (2, 1)
g1(β1) = ⟨1, 1, 0⟩
g2(β1) = ⟨1, 1, 0⟩

For g1(β1) = (2, 2)
g1(β2) = ⟨0, 0, 1⟩
g2(β2) = max{⟨1, 1, 0⟩, ⟨0, 0, 1⟩} = ⟨1, 1, 0⟩

The corresponding tabular forms are given by

(β1, j) g(β1)
(1, 1) (⟨1, 1, 0⟩, ⟨0, 0, 1⟩)
(2, 1) (⟨1, 1, 0⟩, ⟨1, 1, 0⟩)

(β2, j) g(β2)
(2, 1) (⟨0, 0, 1⟩, ⟨1, 1, 0⟩)
(2, 1) (⟨0, 0, 1⟩, ⟨1, 1, 0⟩)

By pairwise comparison we can find out the minimum in each of the above table, we get

B̌ =

[
⟨1, 1, 0⟩ ⟨0, 0, 1⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

]

Using the minimum B̌ in AX = B we can find the minimum X̌. Now AX = B̌ is

[
⟨1, 1, 0⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

] [
⟨0, 0, 1⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨1, 1, 0⟩

]
=

[
⟨1, 1, 0⟩ ⟨0, 0, 1⟩
⟨0, 0, 1⟩ ⟨1, 1, 0⟩

]

Step. 4 Determine the set Jij(B̂)
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J11(X̂) = {min⟨{⟨1, 1, 0⟩, ⟨0, 0, 1⟩},min⟨{⟨1, 1, 0⟩, ⟨1, 1, 0⟩}} = ⟨1, 1, 0⟩

= {⟨0, 0, 1⟩⟨1, 1, 0⟩ = {2}

J12(X̂) = {min⟨{⟨1, 1, 0⟩, ⟨1, 1, 0⟩},min⟨{⟨1, 1, 0⟩, ⟨1, 1, 0⟩}} = ⟨0, 0, 1⟩

= {⟨1, 1, 0⟩⟨1, 1, 0⟩ = {ϕ}

J21(X̂) = {min⟨{⟨1, 1, 0⟩, ⟨0, 0, 1⟩},min⟨{⟨0, 0, 1⟩, ⟨1, 1, 0⟩}} = ⟨0, 0, 1⟩

= {⟨0, 0, 1⟩⟨0, 0, 1⟩ = {1, 2}

J22(X̂) = {min⟨{⟨1, 1, 0⟩, ⟨1, 1, 0⟩},min⟨{⟨0, 0, 1⟩, ⟨1, 1, 0⟩}} = ⟨1, 1, 0⟩

= {⟨1, 1, 0⟩⟨0, 0, 1⟩ = {1}

Let β1 = J11B̂ × J12B̂ = {2} × ϕ

β2 = J21B̂ × J22B̂ = {1, 2} × {1} = {(1, 1)(2, 1)}
Step 5. Determine the set K(βk, j) for k=1,2 and j=1,2
For β1 = {2}, K(β1, 1) = ϕ and K(β1, 2) = {1}
For β2 = {2, 1}, K(β2, 1) = {2} and K(β2, 2) = {1}

k(β1, j) 1 2
{2} × ϕ ϕ {1}

k(β2, j) {1, 2} ϕ
(1, 1) {1, 2} ϕ
(2, 1) {2} {1}

Step 6: For each βk Let as generate the g(βk) tuples:
For β1 = {2} × ϕ put g1(β1) = ⟨0, 0, 1⟩ and g2(β1) = ⟨1, 1, 0⟩
For β2 = (1, 1) put g1(β2) = ⟨1, 1, 0⟩ and g2(β2) = ⟨0, 0, 1⟩
For β2 = (2, 1) put g1(β2) = ⟨1, 1, 0⟩ and g2(β2) = ⟨0, 0, 1⟩
The corresponding tabular forms are given by

β1 g(β1)
{2} × ϕ ⟨0, 0, 1⟩, ⟨1, 1, 0⟩

β2 g(β2)
(1, 1) ⟨1, 1, 0⟩, ⟨0, 0, 1⟩
(2, 1) ⟨1, 1, 0⟩, ⟨0, 0, 1⟩

To get the X̌ select a minimum row from each table, that is

X̌ =

[
⟨0, 0, 1⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨0, 0, 1⟩

]
Clearly this X̌ will satisfy AXA = A and we observe that

[X̌, X̂] =

{[
⟨0, 0, 1⟩ ⟨1, 1, 0⟩
⟨1, 1, 0⟩ ⟨α, α′

, α
′′⟩

]
| 0 ⩽ α ⩽ 1, 0 ⩽ α

′ ⩽ 1, 0 ⩽ α
′′ ⩽ 1, α+ α

′
+ α

′′ ⩽ 3

}
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is the set of all g-inverse in [X̌, X̂].

4. Conclusion

The maximum and minimum solution of the relational equations xA = b and Ax = b
has been obtained. Using these relational equations maximum and minimum g-inverse
of a fuzzy neutrosophic soft matrix are also found. Using this g-inverse concept, further
work is planned to find the necessary and sufficient condition for the existence of unique
minimal solution of these relational equations xA = b and Ax = b for fuzzy neutrosophic
soft matrices.
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