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Abstract. The aim of this paper is to introduce and obtain some characterizations of weakly
e-irresolute functions by means of e-open sets defined by Ekici [6]. Also, we look into further
properties relationships between weak e-irresoluteness and separation axioms and completely
e-closed graphs.
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1. Introduction

In 1972, Crossley et al. [4] introduced the concept of irresolute functions in topological
spaces. The class of α-irresolute functions were introduced by Maheshwari and Thakur
[9]. Recently, the class of semi α-irresolute functions and almost α-irresolute functions
and weakly B-irresolute functions were introduced in [3], [2] and [14], respectively. In
this paper, we introduce and investigate the concept of weakly e-irresolute functions
and study several characterizations and some fundamental properties of these classes
of functions. Relations between this class and some other existing classes of functions
([5, 6, 10, 12, 13]) are also obtained.

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y ) represent nonempty
topological spaces on which no separation axioms are assumed unless otherwise stated.
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Let X be a topological space and A be a subset of X. The closure of A and the inte-
rior of A are denoted by cl (A) and int (A) , respectively. U (x) denotes all open neigh-
borhoods of the point x ∈ X. A subset A of a space X is called regular open [15]
(resp. regular closed [15]) if A = int (cl (A)) (resp. A = cl (int (A))) . The δ-interior [16]
of a subset A of X is the union of all regular open sets of X contained in A and is
denoted by intδ (A) . The subset A is called δ-open [16] if A = intδ (A), i.e., a set is
δ-open if it is the union of regular open sets. The complement of a δ-open set is called
δ-closed [16].

The family of all δ-open (resp. δ-closed) sets in X is denoted by δO (X) (resp. δC(X)).
A subset A of a space X is called e-open [6] (resp. β-open [1]) if A ⊆ int (clδ (A)) ∪
cl (intδ (A)) (resp. A ⊆ cl(int(cl(A)))). The complement of an e-open (resp. β-open) set
is said to be e-closed [6] (resp. β-closed [1]). The e-interior [6] of a subset A of X is the
union of all e-open sets of X contained in A and is denoted by e-int (A) . The e-closure
[6] of a subset A of X is the intersection of all e-closed sets of X containing A and is
denoted by e-cl (A) . The family of all e-open (resp. e-closed,both e-open and e-closed)
sets of X is denoted by eO (X) (resp. eC(X), eR(X)). The family of all e-open (resp.
e-closed, both e-open and e-closed) sets of X containing a point x ∈ X is denoted by
eO (X,x) (resp. eC (X,x) , eR(X,x)).

We shall use the well-known accepted language almost in the whole of the proofs of
theorems in article.

2. Preliminaries

Definition 2.1 [11] A point x of X is called an e-θ-cluster points of A ⊆ X if e-
cl(U) ∩A ̸= ∅ for every U ∈ eO(X,x). The set of all e-θ-cluster points of A is called the
e-θ-closure of A and is denoted by e-clθ(A). A subset A is said to be e-θ-closed if and
only if A = e-clθ(A). The complement of an e-θ-closed set is said to be e-θ-open. The
family of all e-θ-open (resp. e-θ-closed) sets in X is denoted by eθO(X) (resp. eθC(X)).

Theorem 2.2 [6] Let X be a topological space and A ⊆ X. Then the followings hold:
(a) If A ∈ eC(X), then A = e-cl(A),
(b) If A ⊆ B, then e-cl(A) ⊆ e-cl(B),
(c) e-cl(A) ∈ eC(X),
(d) x ∈ e-cl(A) if and only if U ∩A ̸= ∅ for each U ∈ eO(X,x),
(e) e-cl(X \A) = X \ e-int(A).

Theorem 2.3 [11] Let X be a topological space and A ⊆ X. Then the followings hold:
(a) A ∈ eO(X) if and only if e-cl(A) ∈ eR(X),
(b) A ∈ eC(X) if and only if e-int(A) ∈ eR(X),
(c) If A ∈ eO(X), then e-cl(A) = e-clθ(A),
(d) A ∈ eR(X) if and only if eθO(X) ∩ eθC(X),
(e) x ∈ e-clθ(A) if and only if e-cl(U) ∩A ̸= ∅ for each U ∈ eO(X,x),
(f) e-intθ(X \A) = X \ e-clθ(A).

Definition 2.4 A function f : X → Y is called:
(a) weakly continuous [8] (briefly w.c.) if for each x ∈ X and for each open set V of Y

containing f(x), there exists an open set U of X containing x such that f [U ] ⊆ cl(V ),
(b) weakly e-continuous [12] if for each x ∈ X and for each open set V of Y containing

f(x), there exists an e-open set U of X containing x such that f [U ] ⊆ cl(V ),
(c) weakly β-continuous [13] if for each x ∈ X and for each open set V of Y containing



M. Özkoç and T. Yılmaz / J. Linear. Topological. Algebra. 07(01) (2018) 11-19. 13

f(x), there exists a β-open set U of X containing x such that f [U ] ⊆ cl(V ),
(d) e-continuous [6] if f−1[V ] ∈ eO(X) for every open set V of Y ,
(e) e-irresolute [7] if f−1[V ] ∈ eO(X) for every e-open set V of Y ,
(f) β-irresolute [10] if f−1[V ] ∈ βO(X) for every β-open set V of Y ,
(g) weakly B-irresolute [14] if for each x ∈ X and for each b-open V of Y containing

f(x), there exists a b-open set U of X containing x such that f [U ] ⊆ bcl(V ).

3. Weakly e-irresolute Functions

In this section we define the notion of weakly e-irresolute functions. Then we obtain
several characterizations of them.

Definition 3.1 Let X and Y be topological spaces. A function f : X → Y is said to be
weakly e-irresolute if for each x in X and for each e-open set V of Y containing f(x),
there exists U ∈ eO(X,x) such that f [U ] ⊆ e-cl(V ).

Remark 1 We have the following diagram from Definition 2.4 and Definition 3.1. The
converses of these implications are not true in general as shown by the following examples.

continuity → weak continuity
↓ ↓

e-continuity → weak e-continuity
↑ ↑

e-irresoluteness → weak e-irresoluteness

Example 3.2 Let X := {a, b, c}, τ := {∅, X, {a} , {c} , {a, c}} and σ := {∅, X, {c}}.
Define a function f : (X, τ) → (X,σ) such that f (x) = x. Then f is weakly e-continuous
but not weakly e-irresolute.

Example 3.3 Let X := {a, b, c, d, e}, τ := {∅, X, {a} , {c} , {a, c} , {c, d} , {a, c, d}}. De-
fine a function f : (X, τ) → (X, τ) such that f = {(a, a), (b, d), (c, d), (d, d), (e, e)}. Then
f is weakly e-irresolute but not e-irresolute.

Remark 2 A weakly e-irresolute function need not be a weakly B-irresolute function as
shown by the following example.

Example 3.4 Let X := {a, b, c}, τ := {∅, X, {a, b}} . Then eR(X) = P(X) and
BR(X) = {∅, {a}, {b}, {a, c}, {b, c}, X}. Define a function f : (X, τ) → (X, τ) such that
f = {(a, b), (b, c), (c, a)}. Then f is weakly e-irresolute but not weakly B-irresolute.

QUESTION. Is there any weakly B-irresolute function which is not weakly e-
irresolute?

Theorem 3.5 Let f : X → Y be a function. Then the following properties are equiva-
lent:
(a) f is weakly e-irresolute;
(b) f−1 [V ] ⊆ e-int

(
f−1 [e-cl (V )]

)
for every V ∈ eO (Y );

(c) e-cl
(
f−1 [V ]

)
⊆ f−1 [e-cl (V )] for every V ∈ eO (Y ) .

Proof. (a) =⇒ (b) : Let V ∈ eO (Y ) and x ∈ f−1 [V ].
(V ∈ eO (Y ))(x ∈ f−1 [V ]) ⇒ V ∈ eO (Y, f(x))

(a)

}
⇒

⇒ (∃U ∈ eO (X,x)) (f [U ] ⊆ e-cl (V ))
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⇒ (∃U ∈ eO (X,x))
(
U ⊆ f−1 [e-cl (V )]

)
⇒ (∃U ∈ eO (X,x))

(
x ∈ U = e-int (U) ⊆ e-int

(
f−1 [e-cl (V )]

))
⇒ x ∈ e-int

(
f−1 [e-cl (V )]

)
.

(b) =⇒ (c) : Let V ∈ eO (Y ) and x /∈ f−1 [e-cl (V )] .
x /∈ f−1 [e-cl (V )] ⇒ f (x) /∈ e-cl (V )

⇒ (∃F ∈ eO (Y, f (x))) (F ∩ V = ∅)
⇒ (∃F ∈ eO (Y, f (x))) (F ⊆ Y \ V )
⇒ (∃F ∈ eO (Y, f (x))) (e-cl (F ) ⊆ e-cl (Y \ V ) = Y \ V )
⇒ (∃F ∈ eO (Y, f (x))) (e-cl (F ) ∩ V = ∅)
⇒ (∃F ∈ eO (Y, f (x)))

(
f−1 [e-cl (F ) ∩ V ] = ∅

)
⇒ (∃F ∈ eO (Y, f (x)))

(
f−1 [e-cl (F )] ∩ f−1 [V ] = ∅

)
⇒ (∃F ∈ eO (Y, f(x)))

(
e-int

(
f−1 [e-cl (F )]

)
∩ f−1 [V ] = ∅

)
(b)⇒

(
e-int

(
f−1 [e-cl (F )]

)
∈ eO(X,x)

) (
e-int

(
f−1 [e-cl(F )]

)
∩ f−1 [V ] = ∅

)
⇒ x /∈ e-cl

(
f−1 [V ]

)
.

(c) =⇒ (a) : Let x ∈ X and V ∈ eO (Y, f (x)) .
V ∈ eO (Y, f (x)) ⇒ e-cl (V ) ∈ eR (Y, f (x)) ⇒ x /∈ f−1 [e-cl (Y \ e-cl (V ))]

(c)

}
⇒

⇒ x /∈ e-cl
(
f−1 [Y \ e-cl (V )]

)
⇒ (∃U ∈ eO (X,x))

(
U ∩ f−1 [Y \ e-cl (V )] = ∅

)
⇒ (∃U ∈ eO (X,x)) (f [U ] ∩ (Y \ e-cl (V )) = ∅)
⇒ (∃U ∈ eO (X,x)) (f [U ] ⊆ e-cl (V )) . ■

Theorem 3.6 Let f : X → Y be a function. Then the following properties are equiva-
lent:
(a) f is weakly e-irresolute;
(b) e-cl

(
f−1 [B]

)
⊆ f−1 [e-clθ (B)] for every subset B of Y ;

(c) f [e-cl (A)] ⊆ e-clθ (f [A]) for every subset A of X;
(d) f−1 [F ] ∈ eC (X) for every e-θ-closed set F of Y ;
(e) f−1 [V ] ∈ eO (X) for every e-θ-open set V of Y .

Proof. (a) =⇒ (b) : Let B ⊆ Y and x /∈ f−1 [e-clθ (B)].
x /∈ f−1 [e-clθ (B)] ⇒ f (x) /∈ e-clθ (B) ⇒ (∃V ∈ eO (Y, f (x))) (e-cl (V ) ∩B = ∅) . . . (1)
V ∈ eO (Y, f (x))

(a)

}
⇒ (∃U ∈ eO (X,x)) (f [U ] ⊆ e-cl (V )) . . . (2)

(1) , (2) ⇒ (∃U ∈ eO (X,x)) (f [U ] ∩B = ∅)
⇒ (∃U ∈ eO (X,x))

(
U ∩ f−1 [B] = ∅

)
⇒ x /∈ e-cl

(
f−1 [B]

)
.

(b) =⇒ (c) : Let A ⊆ X.
A ⊆ X ⇒ f [A] ⊆ Y

(b)

}
⇒ e-cl(A) ⊆ e-cl

(
f−1 [f [A]]

)
⊆ f−1 [e-clθ (f [A])]

⇒ f [e-cl (A)] ⊆ e-clθ (f [A]).
(c) =⇒ (d) : Let F ∈ eθC (Y ).
F ∈ eθC (Y ) ⇒ f−1 [F ] ⊆ X

(c)

}
⇒ f

[
e-cl

(
f−1 [F ]

)]
⊆ e-clθ

(
f
[
f−1 [F ]

])
⊆ e-clθ(F ) =

F
⇒ e-cl

(
f−1 [F ]

)
⊆ f−1 [F ]

⇒ f−1 [F ] ∈ eC (X).
(d) =⇒ (e) : Clear.
(e) =⇒ (a) : Let x ∈ X and V ∈ eO (Y, f(x)).
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V ∈ eO (Y, f(x)) ⇒ e-cl (V ) ∈ eθO (Y )
(e)

}
⇒

⇒
(
U := f−1 [e-cl (V )] ∈ eO (X,x)

) (
f [U ] = f

[
f−1 [e-cl (V )]

]
⊆ e-cl (V )

)
. ■

Theorem 3.7 Let f : X → Y be a function. Then the following properties are equiva-
lent:
(a) f is weakly e-irresolute;
(b) For each x ∈ X and each V ∈ eO(Y, f(x)), there exists U ∈ eO (X,x) such that
f [e-cl (U)] ⊆ e-cl (V );
(c) f−1 [F ] ∈ eR (X) for every F ∈ eR (Y ).

Proof. (a) =⇒ (b) : Let x ∈ X and V ∈ eO (Y, f(x)).

V ∈ eO (Y, f(x))
Theorem 2.3

}
⇒ e-cl (V ) ∈ eθO (Y ) ∩ eθC (Y )

Theorem 3.6(d)(e)

}
⇒

⇒
(
U := f−1 [e-cl (V )] ∈ eO(X) ∩ eC(X)

)
(f [e-cl (U)] ⊆ e-cl (V )).

(b) =⇒ (c) : Let F ∈ eR (Y ) and x ∈ f−1 [F ].
(x ∈ f−1 [F ])(F ∈ eR (Y )) ⇒ F ∈ eR(Y, f(x))

(b)

}
⇒

⇒ (∃U ∈ eO (X,x)) (f [e-cl (U)] ⊆ e-cl [F ] = F )
⇒ (∃U ∈ eO (X,x)) (U ⊆ e-cl (U) ⊆ f−1 [F ])
⇒ x ∈ e-int

(
f−1 [F ]

)
Then f−1[F ] ∈ eO(X) . . . (1)
(x ∈ f−1 [Y \ F ])(F ∈ eR (Y )) ⇒ Y \ F ∈ eR(Y, f(x))

(b)

}
⇒

⇒ (∃U ∈ eO(X,x)) (f [e-cl (U)] ⊆ e-cl [Y \ F ] = Y \ F )
⇒ (∃U ∈ eO(X,x))

(
U ⊆ e-cl (U) ⊆ f−1 [Y \ F ]

)
⇒ x ∈ e-int

(
f−1 [Y \ F ]

)
∈ eO (X)

Then f−1 [Y \ F ] ∈ eO(X) and so f−1 [F ] ∈ eC(X) . . . (2)
(1), (2) ⇒ f−1 [F ] ∈ eR (X).
(c) =⇒ (a) : Let x ∈ X and V ∈ eO (Y, f (x)).
V ∈ eO (Y, f (x)) ⇒ e-cl (V ) ∈ eR (Y, f (x))

(c)

}
⇒

⇒ (U := f−1 [e-cl (V )] ∈ eR (X,x)) (f [U ] ⊆ e-cl (V )). ■

Theorem 3.8 Let f : X → Y be a function. Then the following properties are equiva-
lent:
(a) f is weakly e-irresolute;
(b) f−1 [V ] ⊆ e-intθ

(
f−1 [e-clθ (V )]

)
for every V ∈ eO (Y );

(c) e-clθ
(
f−1 [V ]

)
⊆ f−1 [e-clθ (V )] for every V ∈ eO (Y ).

Proof. (a) =⇒ (b) : Let V ∈ eO (Y ).
V ∈ eO (Y ) ⇒ e-clθ (V ) ∈ eR (Y )

(a)

}
⇒ f−1 [e-clθ (V )] ∈ eR (X)

⇒ f−1 [e-clθ (V )] ∈ eθO (X) ⇒ e-intθ
(
f−1 [e-clθ (V )]

)
= f−1 [e-clθ (V )] ⊇ f−1[V ].

(b) =⇒ (c) : Let V ∈ eO (Y ).
V ∈ eO (Y ) ⇒ Y \ V ∈ eC (Y ) ⇒ e-intθ (Y \ V ) ∈ eR (Y )

(b)

}
⇒

f−1 [e-intθ (Y \ V )] ⊆ e-intθ
(
f−1 [e-clθ (e-intθ (Y \ V ))]

)
= e-intθ

(
f−1 [e-intθ (Y \ V )]

)
⇒ X \ e-intθ

(
f−1 [e-intθ (Y \ V )]

)
⊆ X \ f−1 [e-intθ (Y \ V )]

⇒ e-clθ
(
X \ f−1 [e-intθ (Y \ V )]

)
⊆ f−1 [Y \ e-intθ (Y \ V )]
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⇒ e-clθ
(
f−1 [Y \ e-intθ (Y \ V )]

)
⊆ f−1 [e-clθ (V )]

⇒ e-clθ
(
f−1 [e-clθ (V )]

)
⊆ f−1 [e-clθ (V )]

⇒ e-clθ
(
f−1 [V ]

)
⊆ e-clθ

(
f−1 [e-clθ (V )]

)
⊆ f−1 [e-clθ (V )].

(c) =⇒ (a) : Let V ∈ eR(Y ).
V ∈ eR (Y ) ⇒ V ∈ eO (Y )

(c)

}
⇒ e-clθ

(
f−1 [V ]

)
⊆ f−1 [e-clθ (V )] = f−1 [V ]

⇒ f−1 [V ] = e-clθ
(
f−1 [V ]

)
⇒ f−1 [V ] ∈ eθC (X) . . . (1)
V ∈ eR (Y ) ⇒ Y \ V ∈ eR (Y ) ⇒ Y \ V ∈ eO (Y )

(c)

}
⇒

⇒ e-clθ
(
f−1 [Y \ V ]

)
⊆ f−1 [e-clθ (Y \ V )] = f−1 [Y \ V ]

⇒ X \ f−1 [Y \ V ] ⊆ X \ e-clθ
(
f−1 [Y \ V ]

)
⇒ f−1 [V ] ⊆ e-intθ

(
f−1 [V ]

)
⇒ f−1 [V ] = e-intθ

(
f−1 [V ]

)
⇒ f−1 [V ] ∈ eθO (X) . . . (2)
(1), (2) ⇒ f−1 [V ] ∈ eR (X). ■

Theorem 3.9 Let f : X → Y be a function. Then the following properties are equiva-
lent:
(a) f is weakly e-irresolute;
(b) e-clθ

(
f−1 [B]

)
⊆ f−1 [e-clθ (B)] for every subset B of Y ;

(c) f [e-clθ (A)] ⊆ e-clθ (f [A]) for every subset A of X;
(d) f−1 [F ] is e-θ-closed in X for every e-θ-closed set F of Y ;
(e) f−1 [V ] is e-θ-open in X for every e-θ-open set V of Y .

Proof. (a) =⇒ (b) : Let B ⊆ Y and x /∈ f−1 [e-clθ (B)].
x /∈ f−1 [e-clθ (B)] ⇒ f(x) /∈ e-clθ (B) ⇒ (∃V ∈ eO (Y, f (x))) (e-cl (V ) ∩B = ∅)

f is w.e.i.

}
⇒

⇒ (∃U ∈ eO (X,x)) (f [e-cl (U)] ∩B = ∅)
⇒ (∃U ∈ eO (X,x))

(
e-cl (U) ∩ f−1 [B] = ∅

)
⇒ x /∈ e-clθ

(
f−1 [B]

)
.

(b) =⇒ (c) : Let A ⊆ X.
A ⊆ X ⇒ f [A] ⊆ Y

(b)

}
⇒ e-clθ(A) ⊆ e-clθ

(
f−1 [f [A]]

)
⊆ f−1 [e-clθ (f [A])]

⇒ f [e-clθ (A)] ⊆ e-clθ (f [A]).
(c) =⇒ (d) : Let F ∈ eθC(Y ).
F ∈ eθC(Y ) ⇒ (e-clθ (F ) = F )

(
f−1 [F ] ⊆ X

)
(c)

}
⇒

⇒ f
[
e-clθ

(
f−1[F ]

)]
⊆ e-clθ

(
f
[
f−1[F ]

])
⊆ e-clθ (F ) = F

⇒ e-clθ
(
f−1 [F ]

)
⊆ f−1 [F ]

⇒ f−1 [F ] ∈ eθC(X).
(d) =⇒ (e) : Let V ∈ eθO(Y ).
V ∈ eθO(Y ) ⇒ Y \ V ∈ eθC(Y )

(d)

}
⇒ X \ f−1 [V ] = f−1 [Y \ V ] ∈ eθC(X)

⇒ f−1 [V ] ∈ eθO(X).
(e) =⇒ (a) : Let V ∈ eR(Y ).
V ∈ eR(Y ) ⇒ V ∈ eθO(Y ) ∩ eθC(Y ) ⇒ (V ∈ eθO(Y )) (Y \ V ∈ eθC(Y ))

(e)

}
⇒

⇒
(
f−1 [V ] ∈ eθO(X)

) (
X \ f−1 [V ] = f−1 [Y \ V ] ∈ eθO(X)

)
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⇒
(
f−1 [V ] ∈ eθO(X)

) (
f−1 [V ] ∈ eθC(X)

) Theorem 2.3(d)⇒ f−1 [V ] ∈ eR(X). ■

4. Some Fundamental Properties

Definition 4.1 A topological space X is said to be strongly e-regular if for each point
x ∈ X and each e-open set U of X containing x, there exists V ∈ eO(X,x) such that
V ⊆ e-cl(V ) ⊆ U .

Theorem 4.2 Let X and Y be topological spaces and f : X → Y be a function. If
Y is strongly e-regular and f : X → Y is weakly e-irresolute, then the function f is
e-irresolute.

Proof. V ∈ eO (Y ) and x ∈ f−1 [V ].
(V ∈ eO (Y ))(x ∈ f−1 [V ]) ⇒ V ∈ eO(Y, f(x))

Y is strongly e-regular

}
⇒

⇒ (∃F ∈ eO (Y, f(x))) (F ⊆ e-cl (F ) ⊆ V )
f is w.e.i.

}
⇒

⇒ (∃U ∈ eO (X,x)) (f [U ] ⊆ e-cl (F ) ⊆ V )
⇒ (∃U ∈ eO (X,x))

(
U ⊆ f−1 [f [U ]] ⊆ f−1[e-cl (F )] ⊆ f−1[V ]

)
⇒ x ∈ e-int

(
f−1 [V ]

)
Then f−1[V ] ∈ eO(X). ■

Definition 4.3 A space X is said to be e-T2 [7] if for each pair of distinct points x and
y in X, there exist A ∈ eO(X,x) and B ∈ eO(X, y) such that A ∩B = ∅.

Lemma 4.4 [11] A topological space X is e-T2 if and only if for each pair of distinct
points x and y of X, there exist U ∈ eO (X,x) and V ∈ eO(X, y) such that e-cl (U) ∩
e-cl (V ) = ∅.

Theorem 4.5 Let X and Y be topological spaces and f : X → Y be a function. If Y is
e-T2 and f : X → Y is weakly e-irresolute injection, then X is e-T2.

Proof. Let x, y ∈ X and x ̸= y.

(x, y ∈ X) (x ̸= y)
f is injective

}
⇒ f (x) ̸= f (y)

Lemma 4.4

}
⇒

⇒ (∃V ∈ eO(Y, f(x))) (∃W ∈ eO(Y, f(y))) (e-cl(V ) ∩ e-cl (W ) = ∅) . . . (1)
(V ∈ eO (Y, f (x))) (W ∈ eO (Y, f (y)))

f is w.e.i.

}
⇒

⇒ (∃G ∈ eO(X,x))(∃H ∈ eO(X, y)) (f [G] ⊆ e-cl(V )) (f [H] ⊆ e-cl(W )) . . . (2)
(1), (2) ⇒ (∃G ∈ eO (X,x)) (∃H ∈ eO (X, y)) (f [G] ∩ f [H] = ∅)

⇒ (∃G ∈ eO (X,x)) (∃H ∈ eO (X, y)) (f [G ∩H] = ∅)
⇒ (∃G ∈ eO (X,x)) (∃H ∈ eO (X, y)) (G ∩H = ∅)

Then X is e-T2. ■

We recall that for a function f : X → Y, the subset {(x, f (x))|x ∈ X} of the product
space X × Y is called the graph of f and is denoted by G(f).

Definition 4.6 The graph G (f) of a function f : X → Y is said to be completely
e-closed (briefly c.e.c.) if for each (x, y) ∈ (X × Y ) \G (f), there exist U ∈ eO(X,x) and
V ∈ eO(Y, y) such that (e-cl(U)× e-cl(V )) ∩G(f) = ∅.

Lemma 4.7 The graph of a function f : X → Y is completely e-closed if and only if
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for each (x, y) ∈ (X × Y ) \G(f), there exist U ∈ eO(X,x) and V ∈ eO(Y, y) such that
f [e-cl(U)] ∩ e-cl(V ) = ∅.

Proof. Necessity. Let (x, y) ∈ (X × Y ) \G(f).
(x, y) ∈ (X × Y ) \G(f)

G(f) is c.e.c.

}
⇒

⇒ (∃U ∈ eO(X,x))(∃V ∈ eO(Y, y))([e-cl(U)× e-cl(V )] ∩G(f) = ∅)
⇒ (∃U ∈ eO(X,x))(∃V ∈ eO(Y, y))(f [e-cl(U)] ∩ e-cl(V ) = ∅).
Sufficiency. Let (x, y) ∈ (X × Y ) \G(f).
(x, y) ∈ (X × Y ) \G(f)

Hypothesis

}
⇒ (∃U ∈ eO(X,x))(∃V ∈ eO(Y, y))(f [e-cl(U)]∩ e-cl(V ) = ∅)

⇒ (∃U ∈ eO(X,x))(∃V ∈ eO(Y, y))([e-cl(U)× e-cl(V )] ∩G(f) = ∅). ■

Theorem 4.8 If Y is e-T2 and f : X → Y is weakly e-irresolute, then G(f) is completely
e-closed.

Proof. Let (x, y) ∈ (X × Y ) \G(f).
(x, y) ∈ (X × Y ) \G (f) ⇒ (x, y) /∈ G(f) ⇒ y ̸= f (x)

Y is e-T2

}
Lemma 4.4⇒

⇒ (∃V ∈ eO(Y, f(x))) (∃W ∈ eO(Y, y)) (e-cl (V ) ∩ e-cl(W ) = ∅) . . . (1)
V ∈ eO(Y, f(x))

f is w.e.i.

}
Theorem 3.7(b)⇒ (∃U ∈ eO(X,x)) (f [e-cl(U)] ⊆ e-cl(V )) . . . (2)

(1), (2) ⇒ (∃U ∈ eO(X,x)) (∃W ∈ eO (Y, y)) (f [e-cl (U)] ∩ e-cl (W ) = ∅)
⇒ (∃U ∈ eO(X,x)) (∃W ∈ eO(Y, y)) (e-cl (U)× e-cl(W )) ∩G(f) = ∅)

Then G(f) is completely e-closed. ■

Theorem 4.9 If a function f : X → Y is weakly e-irresolute injection and G (f) is
completely e-closed, then X is e-T2.

Proof. Let x, y ∈ X and x ̸= y.

(x, y ∈ X) (x ̸= y)
f is injective

}
⇒f (x) ̸= f (y) ⇒ (x, f(y)) /∈ G(f)

G(f) is c.e.c.

}
Lemma 4.7⇒

⇒ (∃U ∈ eO(X,x)) (∃V ∈ eO(Y, f(y))) (f [e-cl (U)] ∩ e-cl(V ) = ∅) . . . (1)
V ∈ eO (Y, f (y))

f is w.e.i.

}
⇒ (∃H ∈ eO (X, y)) (f [H] ⊆ e-cl (V )) . . . (2)

(1), (2) ⇒ (∃U ∈ eO (X,x)) (∃H ∈ eO(X, y)) (f [e-cl (U)] ∩ f [H] = ∅)
⇒ (∃U ∈ eO(X,x)) (∃H ∈ eO(X, y)) (f [e-cl (U) ∩H] = ∅)
⇒ (∃U ∈ eO (X,x)) (∃H ∈ eO (X, y)) (e-cl (U) ∩H = ∅)
⇒ (∃U ∈ eO (X,x)) (∃H ∈ eO (X, y)) (U ∩H = ∅)

This means that X is e-T2. ■

Definition 4.10 A topological space X is said to be e-connected [5] if it cannot be
written as the union of two nonempty disjoint e-open sets.

Theorem 4.11 If a function f : X → Y is weakly e-irresolute surjection and X is
e-connected, then Y is e-connected.

Proof. Suppose that Y is not e-connected. Then
⇒ (∃U, V ∈ eO (Y ) \ {∅}) (U ∩ V = ∅) (U ∪ V = Y ) ⇒ U, V ∈ eR (Y ) \ {∅}

Hypothesis

}
⇒

(
f−1 [U ] , f−1 [V ] ∈ eR(X) \ {∅}

) (
f−1 [U ∩ V ] = f−1[∅]

) (
f−1 [U ∪ V ] = f−1[Y ]

)
⇒

(
f−1 [U ] , f−1 [V ] ∈ eR(X) \ {∅}

) (
f−1 [U ] ∩ f−1 [V ] = ∅

) (
f−1 [U ] ∪ f−1 [V ] = X

)
.
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This means that X is not e-connected. ■
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[11] M. Özkoç, G. Aslım, On strongly θ-e-continuous functions, Bull. Korean Math. Soc. 47 (5) (2010), 1025-1036.
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