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for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is
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techniques. Also by using Mountain Pass Lemma, we establish the existence of at least one
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1. Introduction

The class of elliptic partial differential problems involving the nonlinear boundary condi-
tions arise from many branches of science, for example in mechanics, geometry and other
sciences. The attention of many authors have been attracted toward the existence and
multiplicity of solutions for semilinear elliptic problems with nonlinear boundary condi-
tions. The aim of this paper is to prove existence and multiplicity results of nontrivial
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nonnegative solutions for the semilinear elliptic system:

∆u+m1(x)u =
1

p
λfu(x, u, v) + gu(x, u, v) x ∈ Ω,

∆v +m2(x)v =
1

p
λfv(x, u, v) + gv(x, u, v) x ∈ Ω,

∂u

∂n
=

1

q
µhu(x, u, v) +

1

r
ju(x, u, v) x ∈ ∂Ω,

∂v

∂n
=

1

q
µhv(x, u, v) +

1

r
jv(x, u, v) x ∈ ∂Ω,

(1)

where λ, µ > 0, 1 < q, r < 2 < p < 2∗, where 2∗ is the critical Sobolev exponent
(2∗ = 2N

N−2 if N > 2, 2∗ = ∞ if N ⩽ 2), ∂
∂n is the outer normal derivative, Ω ⊂ RN is

a bounded domain with smooth boundary ∂Ω and m1,m2 ∈ C(Ω̄) are positive bounded
functions. Also f, g, h and j are C1−positively homogenous functions of degrees p, 1, q
and r respectively such that f(x, 0, 0) = g(x, 0, 0) = h(x, 0, 0) = j(x, 0, 0) = 0.

We say ψ(x, u, v) is a positively homogeneous function of degree α whenever
ψ(x, tu, tv) = tαψ(x, u, v) for every t > 0. It is clear that if α ⩾ 0 and ψ(x, u, v)
is an α−homogeneous C1−function, then ψ(x, u, v) ⩽ Kψ(|u|α + |v|α), where Kψ =

max{ψ(x, u, v) : (x, u, v) ∈ Ω × R2, |u|α + |v|α = 1}. So from assumptions over f, g, h
and j we conclude that there exist positive constants Kf ,Kg,Kh and Kj such that{

f(x, u, v) ⩽ Kf (|u|p + |v|p), g(x, u, v) ⩽ Kg(|u|+ |v|),

h(x, u, v) ⩽ Kh(|u|q + |v|q), j(x, u, v) ⩽ Kj(|u|r + |v|r).
(2)

Over the last years, many authors have studied the existence of solutions for the
following elliptic system

−∆u+m1(x)|u|p−2u = Fu(x, u, v) +Gu(x, u, v) x ∈ Ω,

−∆v +m2(x)|v|p−2v = Fv(x, u, v) +Gv(x, u, v) x ∈ Ω,

∂u

∂n
= Hu(x, u, v) + Ju(x, u, v),

∂v

∂n
= Hv(x, u, v) + Jv(x, u, v) x ∈ ∂Ω,

where Ω is a bounded region in RN (N > 2) with smooth boundary ∂Ω and F,G,H and
J are positively homogenous functions of different degrees. For instance, Brown and Wu
[6] considered the case m1 = m2 = 0, G(x, u, v) = J(x, u, v) = 0 and

F (x, u, v) =
1

α+ β
f(x)uαvβ

H(x, u, v) = λ
1

q
g(x)uq + µ

1

q
h(x)vq

where α > 1, β > 1, 2 < α+ β < 2∗ and the weight functions f, g, h satisfy the following
conditions:
• f ∈ C(Ω) with ∥f∥∞ = 1 and f+ = max{f, 0} ̸≡ 0.
• g, h ∈ C(∂Ω) with ∥g∥∞ = ∥h∥∞ = 1 and g± = max{±g, 0} ̸≡ 0 and h± =
max{±h, 0} ̸≡ 0.
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They found that the above problem has at least two nonnegative solutions when the
pair of the parameters (λ, µ) belongs to a certain subset of R2. Also in [17], Wu con-
sidered the case F (x, u, v) = 1

qλf(x)u
q + 1

qµg(x)v
q, G(x, u, v) = J(x, u, v) = 0 and

H(x, u, v) = 2
α+βh(x)u

αvβ, where 1 < q < 2, α > 1, β > 1 satisfy 2 < α + β < 2∗

and the weights f, g, h satisfy some suitable conditions. The author showed this problem
has at least two solutions when (λ, µ) belongs to a certain subset of R2.
In [14], Feng-Yun Lu proved the existence at least two nontrivial nonnegative solutions
in the case m1 = m2 = 1, F (x, u, v) = 1

qλf(x)u
q + 1

qµg(x)v
q, G(x, u, v) = J(x, u, v) = 0

and H(x, u, v) = 1
α+βh(x)u

αvβ, where α > 1, β > 1 and 2 < α + β < 2∗. Recently,

Fan [11] studied the case F (x, u, v) = 1
rλu

r + 1
rµv

r, H(x, u, v) = J(x, u, v) = 0 and

G(x, u, v) = 2
α+βu

αvβ for 1 < r < p < 2∗. By using the Nehari manifold and the

Lusternik-Schnirelman category, the author proved the problem admits at least cat(Ω)+1
positive solutions. Moreover, equations involving positively homogeneous functions have
been considered in many papers, such as [2–4, 8, 12, 13, 15] and the references cited
therein.

In this paper, at first, by exploiting the relationship between the Nehari manifold,
fibering maps and extraction of the palais-smale sequences in the Nehari manifold and
using the Rellich-Kondrachov Theorem [5] we establish the existence of local minimizers
for Euler functional associated with the equation and so we prove the existence of non-
negative solutions of system (1). Then by using Mountain Pass Lemma [16], we establish
the existence of at least one solution with positive energy.

Problem (1) is posed in the framework of the Sobolev space W =W 1,2(Ω)×W 1,2(Ω)
with the norm

∥(u, v)∥W =

(∫
Ω
(|∇u|2 +m1(x)|u|2)dx+

∫
Ω
(|∇v|2 +m2(x)|v|2)dx

) 1

2

,

which is equivalent to the standard one and we use the standard Lr(Ω) spaces whose
norms denoted by ∥u∥r. Throughout this paper, we denote by Sr and S̄r the best Sobolev
and the best Sobolev trace constant for the embeddings of W 1,2(Ω) into Lr(Ω) and
W 1,2(Ω) into Lr(∂Ω), respectively. So we have

(∥(u, v)∥2W )r

(
∫
∂Ω(|u|r + |v|r)dx)2

⩾ 1

4S̄2r
r

and
(∥(u, v)∥2W )r

(
∫
Ω(|u|r + |v|r)dx)2

⩾ 1

4S2r
r

. (3)

Now we will show the existence and multiplicity results of nontrivial solutions of system
(1) by looking for critical points of the associated Euler functional

ℓλ,µ(u, v) =
1

2
M(u, v)− 1

p
λF (u, v)−G(u, v)− 1

q
µH(, u, v)− 1

r
J(u, v), (4)

where

M(u, v) =

∫
Ω
(|∇u|2 +m1(x)|u|2)dx+

∫
Ω
(|∇v|2 +m2(x)|v|2)dx
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and 
F (u, v) =

∫
Ω
f(x, |u|, |v|)dx, G(u, v) =

∫
Ω
g(x, |u|, |v|)dx,

H(u, v) =

∫
∂Ω
h(x, |u|, |v|)dσ, J(u, v) =

∫
∂Ω
j(x, |u|, |v|)dσ.

(5)

Moreover, a pair of functions (u, v) ∈ W is said to be a weak solution of the problem
(1), if ⟨ℓ′λ,µ(u, v), (φ1, φ2)⟩ = 0, i.e.

∫
Ω

(
∇u.∇φ1 +m1(x)uφ1

)
dx+

∫
Ω

(
∇v.∇φ2 +m2(x)vφ2

)
dx

=
1

p
λ

∫
Ω
(fuφ1 + fvφ2)dx+

∫
Ω
(guφ1 + gvφ2)dx

+
1

q
µ

∫
∂Ω

(huφ1 + hvφ2)dσ +
1

r

∫
∂Ω

(juφ1 + jvφ2)dσ,

for all (φ1, φ2) ∈W.

To get the solutions of system (1) we look for minimizers of the energy functional
ℓλ,µ. But ℓλ,µ is not bounded neither above nor below on W , so we introduce the Nehari
manifold

Nλ,µ(Ω) = {(u, v) ∈W \ {(0, 0)} : ⟨ℓ′λ,µ(u, v), (u, v)⟩ = 0},

where ⟨, ⟩ denotes the usual duality between W and W−1, where W−1 is the dual space
of the Sobolev space W. We recall that any nonzero solution of problem (1) belongs to
Nλ,µ(Ω). Moreover, by definition, we have that (u, v) ∈ Nλ,µ(Ω) if and only if

M(u, v)− λF (u, v)−G(u, v)− µH(u, v)− J(u, v) = 0. (6)

The following result concerns the behavior of ℓλ,µ on Nλ,µ(Ω).

Lemma 1.1 ℓλ,µ is coercive and bounded from below on Nλ,µ(Ω).

Proof. Let (u, v) ∈ Nλ,µ(Ω) be an arbitrary. Then by (2)–(6) we get

ℓλ,µ(u, v) =
p− 2

2p
M(u, v)− µ

q − p

qq
H(u, v)− p− 1

p
G(u, v)− p− r

rp
J(u, v)

⩾ p− 2

2p
M(u, v)− µ

p− q

pq
Kh

∫
∂Ω

(|u|q + |v|q)dσ

− p− 1

p
Kg

∫
Ω
(|u|+ |v|)dx− p− r

pr
Kj

∫
∂Ω

(|u|r + |v|r)dσ

⩾ p− 2

2p
M(u, v)− 2µS̄qq

p− q

pq
Kh(M(u, v))q/2

− 2S1
p− 1

p
Kg(M(u, v))

1

2 − 2S̄rr
p− r

pr
Kj(M(u, v))r/2.
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Thus, ℓλ,µ is coercive and bounded from below on Nλ,µ(Ω).
The Nehari manifold is closely linked to the behavior of functions of the form ϕu,v :

t 7→ ℓλ,µ(tu, tv) (t > 0). Such maps are known as fibering maps. They were introduced
by Drabek and Pohozaev in [9] and also were discussed in Brown and Zhang [7]. So for
(u, v) ∈W , we have

ϕu,v(t) = ℓλ,µ(tu, tv)

=
t2

2
M(u, v)− tp

p
λF (u, v)− tG(u, v)− tq

q
µH(u, v)− tr

r
J(u, v),

ϕ
′

u,v(t) = ⟨ℓ′λ,µ(tu, tv), (u, v)⟩

= tM(u, v)− λtp−1F (u, v)−G(u, v)− µtq−1H(u, v)− tr−1J(u, v).

(7)

It is easy to see that ϕ
′

u,v(t) = 0 if and only if (tu, tv) ∈ Nλ,µ(Ω). In particular,

(u, v) ∈ Nλ,µ(Ω) if and only if ϕ
′

u,v(1) = 0, i.e. elements in Nλ,µ(Ω) correspond to
stationary points of fibering maps. Thus, it is natural to split Nλ,µ into three parts
corresponding to local minima, local maxima and points of inflection and so we define

N+
λ,µ = {(tu, tv) ∈W : ϕ

′

u,v(t) = 0, ϕ
′′

u,v(t) > 0},

N−
λ,µ = {(tu, tv) ∈W : ϕ

′

u,v(t) = 0, ϕ
′′

u,v(t) < 0},

N 0
λ,µ = {(tu, tv) ∈W : ϕ

′

u,v(t) = 0, ϕ
′′

u,v(t) = 0}.

(8)

The following lemma shows that minimizers for ℓλ,µ(u, v) onNλ,µ(Ω) are usually critical
points for ℓλ,µ, as proved by Brown and Zhang in [7] or in Aghajani et al. [1].

Lemma 1.2 Let (u0, v0) be a local minimizer for ℓλ,µ(u, v) on Nλ,µ(Ω), if (u0, v0) /∈
N 0
λ,µ(Ω), then (u0, v0) is a critical point of ℓλ,µ.

The purpose of this paper is to prove the following results.

Theorem 1.3 If q ⩽ r, G(u, v) > 0 and J(u, v) ⩽ 0, then there exists Λ∗ ⊂ (R+)2 such
that for (λ, µ) ∈ Λ∗, system (1) has at least two positive distinct solutions.

Theorem 1.4 If G(u, v) > 0 and F (u, v) > 0, then there exists Λ∗∗ (Λ∗ ⊆ Λ∗∗ ⊆ (R+)2
)

such that for (λ, µ) ∈ Λ∗∗, system (1) has at least one nontrivial solution with positive
energy.

This paper is organized as follows. In section 2 we point out some notations and
preliminaries and give a fairly complete description of the Nehari manifold and fibering
map. Finally Theorem 1.3 and Theorem 1.4 are proved in section 3.

2. Preliminaries and auxiliary results

In this section some properties of the Nehari manifold and fibering map will be perused.
First, motivated by Lemma 1.2, we will get conditions for N 0

λ,µ = ∅.

Lemma 2.1 If q ⩽ r, G(u, v) > 0 and J(u, v) ⩽ 0, then there exists Λ0 ⊂ (R+)2 such
that for (λ, µ) ∈ Λ0 and q ⩽ r, we have N 0

λ,µ = ∅.
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proof. Suppose otherwise, let (u, v) ∈ N 0
λ,µ be an arbitrary, then by (7) and (8) we

have

ϕ
′′

u,v(1) =M(u, v)− λ(p− 1)F (u, v)− µ(q − 1)H(u, v)− (r − 1)J(u, v) = 0, (9)

and

ϕ
′

u,v(1) =M(u, v)− λF (u, v)−G(u, v)− µH(u, v)− J(u, v) = 0. (10)

Using (2), (3), (5), (9) and (10) we obtain

(2− q)M(u, v) = (p− q)λF (u, v) + (1− q)G(u, v) + (r − q)J(u, v)

< (p− q)λKf

∫
Ω
(|u|p + |v|p)dx ⩽ 2(p− q)(SppλKf )(M(u, v))

p

2 ,

which concludes

M(u, v) >

(
2− q

2(p− q)SppλKf

) 2

p−2

. (11)

On the other hand, by relations (9), (10), (2), (3), (5) and Young inequality we get

(p− 2)M(u, v) = µ(p− q)H(u, v) + (p− 1)G(u, v) + (p− r)J(u, v)

⩽ µ(p− q)Kh

∫
∂Ω

(|u|q + |v|q)dσ + (p− 1)Kg

∫
Ω
(|u|+ |v|)dx

⩽ 2µS̄qq (p− q)Kh(M(u, v))
q

2 + 2S1(p− 1)Kg(M(u, v))
1

2

⩽ 2(p− 2)

3q

(
2− q

2

(3q(p− q)

(p− 2)
µS̄qqKh

) 2

2−q +
q

2
M(u, v)

)
+

2(p− 2)

3

(
1

2

(3(p− 1)

(p− 2)
S1Kg

)2
+

1

2
M(u, v)

)
,

so we have

M(u, v) ⩽ L+ L′, (12)

where L = (2−q)
q

(3q(p−q)
(p−2) µS̄

q
qKh

) 2

2−q and L′ = (3(p−1)
(p−2) S1Kg)

2. Now by (12) and (11) we

must have (
2− q

2(p− q)SppλKf

) 2

p−2

< L+ L′,

which is a contradiction for λ and µ sufficiently small. So there exists Λ0 ⊂ (R+)2 such
that for (λ, µ) ∈ Λ0, N 0

λ,µ = ∅.

Lemma 2.2 If (u, v) ∈ N−
λ,µ, q ⩽ r, G(u, v) > 0 and J(u, v) ⩽ 0, then F (u, v) > 0.
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Proof. By using (7) and (8) for (u, v) ∈ N−
λ,µ we have

F (u, v) ⩾ 2− q

λ(p− q)
M(u, v) +

q − 1

λ(p− q)
G(u, v) +

q − r

λ(p− q)
J(u, v) > 0. (13)

As it was mentioned in previous section we have, ϕ
′

u,v(t) = 0 if and only if (tu, tv) ∈
Nλ,µ(Ω). Therefore our purpose is to describe the nature of the derivative of the fibering
maps for all possible signs of F (u, v), to do this, at first we define the following functions

Rλ(t) :=
1

2
t2M(u, v)− λ

1

p
tpF (u, v),

Sµ(t) := µ
1

q
tqH(u, v) + tG(u, v) +

1

r
trJ(u, v),

(14)

follows from (7) that, ϕu,v(t) = Rλ(t)− Sµ(t) and in particular ϕ
′

u,v(t) = 0 if and only if

R
′

λ(t) = S
′

µ(t), where{
R

′

λ(t) = tM(u, v)− tp−1λF (u, v),

S
′

µ(t) = µtq−1H(u, v) +G(u, v) + tr−1J(u, v).
(15)

In the next result we see that, ϕu,v has positive values for all nonzero (u, v) ∈ W
whenever, λ and µ are sufficiently small.

Lemma 2.3 There exists Λ1 ⊂ (R+)2 such that ϕu,v(t) = Rλ(t)−Sµ(t) takes on positive
values for all non-zero (u, v) ∈W, whenever (λ, µ) ∈ Λ1.

Proof. If F (u, , v) ⩽ 0, then Rλ(t) > Sµ(t) for t sufficiently large and so ϕu,v(t) > 0.
Otherwise, suppose there exists (u, v) ∈W such that F (u, v) > 0. By elementary calculus,
we infer that Rλ(t) takes a maximum at

tmax =

(
∥(u, v)∥2W
λF (u, v)

) 1

p−2

, (16)

then follow by (14), (16), (2), (3) and (5)

Rλ(tmax) =
p− 2

2p

(
(∥(u, v)∥2W )p(
λF (u, v)

)2 ) 1

p−2

⩾ p− 2

2p(λKf )
2

p−2

(
(∥(u, v)∥2W )p( ∫

Ω(|u|p + |v|p)dx
)2) 1

p−2

⩾ p− 2

2p(λKf )
2

p−2

(
1

4S2p
p

) 1

p−2

⩾ δ

λ
2

p−2

,

(17)

where δ is independent of (u, v). Now, we are going to prove that there exists Λ1 ⊂ (R+)2

such that for all non-zero (u, v) ∈ W, ϕu,v(tmax) > 0, provided that (λ, µ) ∈ Λ1. To do
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this, first note that from (16), (17) and (3) for 1 ⩽ α < 2∗

(tmax)
α

∫
Ω
(|u|α + |v|α)dx ⩽ 2Sαα

(
∥(u, v)∥2W
λF (u, v)

) α

p−2

(∥(u, v)∥2W )
α

2

= 2Sαα

(
(∥(u, v)∥2W )p

(λF (u, v))2

) α

2(p−2)

= 2Sαα
( 2p

p− 2

)α

2 (Rλ(tmax)
)α

2 = c1(Rλ(tmax)
)α

2 ,

(18)

similarly, (tmax)
α
∫
∂Ω(|u|

α + |v|α)dx = c̄1(Rλ(tmax)
)α

2 . By computing (2), (5), (14) and
(18) we find

Sµ(tmax) =
1

q
µ(tmax)

qH(u, v) + tmaxG(u, v) +
1

r
(tmax)

rJ(u, v)

⩽ 1

q
µKh(tmax)

q

∫
∂Ω

(|u|q + |v|q)dσ

+Kgtmax

∫
Ω
(|u|+ |v|)dx+

1

r
Kj(tmax)

r

∫
∂Ω

(|u|r + |v|r)dσ

⩽ µC1

(
Rλ(tmax)

) q

2 + C2

(
Rλ(tmax)

) 1

2 + C3

(
Rλ(tmax)

) r

2 ,

(19)

where C1, C2 and C3 are positive constants and independent of (u, v). Hence using (7),
(17) and (19) we observe that

ϕu,v(tmax) = Rλ(tmax)− Sµ(tmax)

⩾ R

(
1− µC1R

q−2

2 − C2R
−1

2 − C3R
r−2

2

)
⩾ δ

λ
2

p−2

(
1− µC1δ

q−2

2 λ
2−q

p−2 − C2δ
−1

2 λ
1

p−2 − C3δ
r−2

2 λ
2−r

p−2

)
,

where R = Rλ(tmax). Since 1 < q, r < 2 < p, so there exist Λ1 ⊂ (R+)2 and ϵ > 0 such
that if (λ, µ) ∈ Λ1, then ϕu,v(tmax) > ϵ > 0 for all nonzero (u, v) and this completes the
proof.

Corollary 2.4 If (λ, µ) ∈ Λ1, then ℓλ,µ(u, v) > ϵ > 0 for all (u, v) ∈ N−
λ,µ.

Proof. Since (u, v) ∈ N−
λ,µ thus, ϕu,v has a positive global maximum at t = 1, i.e.

ℓλ,µ(u, v) = ϕu,v(1) ⩾ ϕu,v(tmax) > ϵ > 0.

Corollary 2.5 For (λ, µ) ∈ Λ1, ϕ
′

u,v(t) = R
′

λ(t) − S
′

µ(t) takes on positive values for all
non-zero (u, v) ∈W .

Proof. Let (u, v) ∈ W , using (7) ϕu,v(0) = 0, and by Lemma 2.3, ϕu,v(tmax) > 0. So
there exists 0 < τ < tmax, such that ϕ′u,v(τ) > 0.

To state our main results, we now present some important properties of N−
λ,µ and N+

λ,µ.
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Corollary 2.6 If G(u, v) > 0, then for (u, v) ∈W \ {(0, 0)} and (λ, µ) ∈ Λ1, we have
(i) there exists t1 > 0 such that (t1u, t1v) ∈ N+

λ,µ and ϕu,v(t1) < 0.

(ii) if F (u, v) > 0, then there exists 0 < t1 < t2 such that (t1u, t1v) ∈ N+
λ,µ, (t2u, t2v) ∈

N−
λ,µ and ϕu,v(t1) < 0.

Proof. (i) From the definition of ϕ′u,v(t), we know ϕ′u,v(0) < 0 and by Corollary 2.5, we
obtain that ϕ′u,v(τ) > 0 for suitable τ > 0, so exists 0 < t1 < τ such that ϕ′u,v(t1) = 0 and

ϕ′′u,v(t1) > 0. Therefore, we conclude that (t1u, t1v) ∈ N+
λ,µ and ϕu,v(t1) < ϕu,v(0) = 0.

Proof. (ii) As in the proof of (i), we have that ϕ′u,v(0) < 0 and ϕ′u,v(τ) > 0. Moreover
limt→∞ ϕ′u,v(t) = −∞, so there exist t1, t2 such that 0 < t1 < τ < t2 and ϕ′u,v(t1) =

ϕ′u,v(t2) = 0. Furthermore (t1u, t1v) ∈ N+
λ,µ, (t2u, t2v) ∈ N−

λ,µ and ϕu,v(t1) < ϕu,v(0) = 0.

3. Existence of solutions

In order to prove of Theorem 1.3, we need to show the existence of local minimum for
ℓλ,µ on N+

λ,µ and N−
λ,µ, for this, we need the following remark:

Remark 1 By using relation (2) we have f(x, u, v) ⩽ Kf (|u|p + |v|p), g(x, u, v) ⩽
Kg(|u|+|v|), h(x, u, v) ⩽ Kh(|u|q+|v|q) and j(x, u, v) ⩽ Kj(|u|r+|v|r) for 1 < q, r < 2 <
p < 2∗. Hence from compactness of the embeddings W 1,2(Ω) ↪→ Lα(Ω) and W 1,2(Ω) ↪→
Lα(∂Ω) for 1 ⩽ α < 2∗ (Rellich-Kondrachov Theorem [5]) and the fact that the functions
f(x, u, v), g(x, u, v), h(x, u, v) and j(x, u, v) are continuous, we conclude that the func-
tionals I1(u, v) =

∫
Ω f(x, u, v)dx, I2(u, v) =

∫
Ω g(x, u, v)dx, I3(u, v) =

∫
∂Ω h(x, u, v)dσ

and I4(u, v) =
∫
∂Ω j(x, u, v)dσ are weakly continuous, i.e. if (un, vn) ⇀ (u, v), then

Ii(un, vn) → Ii(u, v), i=1,2,3,4.

Definition 3.1 A sequence yn = (un, vn) ⊂W is called a Palais-Smale sequence ((PS)-
sequence) if {ℓλ,µ(yn)} is bounded and ℓ′λ,µ(yn) → 0 as n → ∞. It is said that the
functional ℓλ,µ satisfies the Palais-Smale condition if each Palais-Smale sequence has a
convergent subsequence.

Now we prove the boundedness of Palais-Smale sequence.

Lemma 3.2 If {(un, vn)} is a (PS)− sequence for ℓλ,µ, then {(un, vn)} is bounded in
W .
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Proof. By using Young inequality and from (2), (3), (5) and (7) we get

ℓλ,µ(un, vn)−
1

p
⟨ℓ′λ,µ(un, vn), (un, vn)⟩

=
p− 2

2p
M(un, vn)− µ

p− q

pq
H(un, vn)

− p− 1

p
G(un, vn)−

p− r

pr
J(un, vn)

⩾ p− 2

2p
M(un, vn)−

p− q

pq
2µS̄qqKhM(un, vn)

q

2

− p− 1

p
2S1KgM(un, vn)

1

2 − p− r

pr
2S̄rrKjM(un, vn)

r

2

⩾ p− 2

2p
M(un, vn)−

(p− 2)

4pq

(
2− q

2

(4(p− q)

(p− 2)
2µS̄

q
qKh

) 2

2−q +
q

2
M(u, v)

)
− (p− 2)

4p

(
1

2

(4(p− 1)

(p− 2)
2S1Kg

)2
+

1

2
M(un, vn)

)
− (p− 2)

4pr

(
2− r

2

(4(p− r)

(p− 2)
2S̄rrKj

) 2

2−r +
r

2
M(u, v)

)
⩾ p− 2

8p
∥(un, vn)∥2W − L,

where

L =
(p− 2)(2− q)

8pq

(4(p− q)

(p− 2)
2µS̄qqKh

) 2

2−q

+
(p− 2)

8p

(4(p− 1)

(p− 2)
2S1Kg

)2
+

(p− 2)(2− r)

8pr

(4(p− r)

(p− 2)
2S̄rrKj

) 2

2−r ,

so {(un, vn)} is bounded in W .

Now, we establish the existence of local minimum for ℓλ,µ on N+
λ,µ and N−

λ,µ. For

simplicity, let Λ∗ = {Λ0 ∩ Λ1} and Λ∗∗ = Λ1 where Λ0 and Λ1 are given in the previous
section.

First, we establish the existence of local minimum for ℓλ,µ on N+
λ,µ and N−

λ,µ.

Proposition 3.3 If G(u, v) > 0, then for (λ, µ) ∈ Λ∗ we have
(i) there exists a minimizer of ℓλ,µ on N+

λ,µ(Ω),

(ii) if q ⩽ r and J(u, v) ⩽ 0, then there exists a minimizer of ℓλ,µ on N−
λ,µ(Ω).

Proof. (i) By arguing as in Lemma 1.1, ℓλ,µ is bounded from below on Nλ,µ(Ω) and
so on N+

λ,µ(Ω). Let {(un, vn)} be a minimizing sequence for ℓλ,µ on N+
λ,µ(Ω), i.e.

lim
n→∞

ℓλ,µ(un, vn) = inf
(u,v)∈N+

λ,µ

ℓλ,µ(u, v) = c.

From Ekeland’s variational principle [10] we have

⟨ℓ′λ,µ(un, vn), (un, vn)⟩ → 0,
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combining the compact embedding Theorem [5] and Lemma 3.2, we obtain that there
exists a subsequence {(un, vn)} and (u1, v1) in W such that{

un ⇀ u1, vn ⇀ v1 weakly in W 1,2(Ω),

un → u1, vn → v1 strongly in Lα(Ω) andLα(∂Ω) for1 ⩽ α < 2∗,
(20)

and (un(x), vn(x)) → (u1(x), v1(x)), a.e.

By Corollary 2.6(i) for (u1, v1) ∈ W \ {(0, 0)}, there exists t1 such that (t1u1, t1v1) ∈
N+
λ,µ and so ϕ′u1,v1(t1) = 0. Now we show that (un, vn) → (u1, v1) in W . Suppose this is

false, then

M(u1, v1) < lim inf
n→∞

M(un, vn), (21)

also we have

ϕ
′

un,vn(t) = tM(un, vn)− λtp−1F (un, vn)

− µtq−1H(un, vn)−G(un, vn)− tr−1J(un, vn),
(22)

and

ϕ
′

u1,v1(t) = tM(u1, v1)− λtp−1F (u1, v1)

− µtq−1H(u1, v1)−G(u1, v1)− tr−1J(u1, v1),
(23)

so from (20)–(23) and Remark 1, ϕ
′

un,vn(t1) > ϕ′u1,v1(t1) = 0 for n sufficiently large. Since

{(un, vn)} ⊆ N+
λ,µ(Ω), by considering the possible fibering maps it is easy to see that,

ϕ′un,vn(t) < 0 for 0 < t < 1 and ϕ′un,vn(1) = 0 for all n. Hence, we must have t1 > 1, but

(t1u1, t1v1) ∈ N+
λ,µ and so

ℓλ,µ(t1u1, t1v1) = ϕu1,v1(t1) < ϕu1,v1(1)

< lim
n→∞

ϕun,vn(1) = lim
n→∞

ℓλ,µ(un, vn) = inf
(u,v)∈N+

λ,µ

ℓλ,µ(u, v),

which is a contradiction. Therefore, (unvn) → (u1, v1) in W and so

ℓλ,µ(u1, v1) = lim
n→∞

ℓλ,µ(un, vn) = inf
(u,v)∈N+

λ,µ

ℓλ,µ(u, v).

Thus, (u1, v1) is a minimizer for ℓλ,µ on N+
λ,µ(Ω).

Proof. (ii) By Corollary 2.4, we have ℓλ,µ(u, v) > ϵ > 0 for all (u, v) ∈ N−
λ,µ, i.e.

inf
(u,v)∈N−

λ,µ

ℓλ,µ(u, v) > 0,

hence, there exists a minimizing sequence {(un, vn)} ⊆ N−
λ,µ(Ω) such that

lim
n→∞

ℓλ,µ(un, vn) = inf
(u,v)∈N−

λ,µ

ℓλ,µ(u, v) > 0. (24)
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Similar to the argument in the proof of (i), we find that, {(un, vn)} is bounded in W and
also the results obtained in (20) are satisfied for {(un, vn)} and {(u2, v2)}. Since (un, vn) ∈
N−
λ,µ(Ω), so by (8) ϕ′un,vn(1) = 0, ϕ′′un,vn(1) < 0 and by Lemma 2.2, F (un, vn) > 0. Letting

n→ ∞, we see that ϕ′u2,v2(1) = 0, ϕ′′u2,v2(1) ⩽ 0 and F (u2, v2) ⩾ 0. If F (u2, v2) = 0, then
by (7) and (8) we have

(2− q)M(u, v) + (q − 1)G(u, v) + (q − r)J(u, v) ⩽ 0,

which is a contradiction with our assumptions. So F (u2, v2) > 0 and by Corollary 2.6(ii)
there exists t2 > 0 such that (t2u2, t2v2) ∈ N−

λ,µ(Ω). We claim that (un, vn) → (u2, v2) in
W , suppose that this is false, so

M(u2, v2) < lim inf
n→∞

M(un, vn), (25)

but (un, vn) ∈ N−
λ,µ and so ℓλ,µ(un, vn) ⩾ ℓλ,µ(tun, tvn) for all t ⩾ 0. Therefore, by

considering (7), (24) and (25) and Remark 1, we can write

ℓλ,µ(t2u2, t2v2) = ϕu2,v2(t2) < lim
n→∞

ϕu2,v2(t2)

= lim
n→∞

ℓλ,µ(t2un, t2vn) ⩽ lim
n→∞

ℓλ,µ(un, vn) = inf
(u,v)∈N−

λ,µ

ℓλ,µ(u, v),

which is a contradiction. Therefore, (un, vn) → (u2, v2) inW and so the proof is complete.

Lemma 3.4 If G(u, v) > 0, then for (λ, µ) ∈ Λ∗, the functional ℓλ,µ(u, v) satisfies (PS)
condition on W .

Proof. If ℓλ,µ(un, vn) is bounded and ℓλ,µ(un, vn) → 0, then using Lemma 3.2, (un, vn)
is bounded in W . Also, similar to the argument in the proof of Proposition 3.3(i) we find
that, the sequence (un, vn), has a convergent subsequence and this completes the proof.

Proof of Theorem 1.3. By Proposition 3.3 there exist (u1, v1) ∈ N+
λ,µ(Ω)

and (u2, v2) ∈ N−
λ,µ(Ω) such that ℓλ,µ(u1, v1) = inf(u,v)∈N+

λ,µ
ℓλ,µ(u, v) and

ℓλ,µ(u2, v2) = inf(u,v)∈N−
λ,mu

ℓλ,µ(u, v) and by Lemmas 1.2 and 2.1, (u1, v1) and

(u2, v2) are critical points of ℓλ,µ on W and hence are weak solutions of problem (1). On
the other hand, ℓλ,µ(u, v) = ℓλ,µ(|u|, |v|), so we may assume that (u1, v1) and (u2, v2)
are positive solutions. Also, since N+

λ,µ ∩N
−
λ,µ = ∅, this implies that (u1, v1) and (u2, v2)

are distinct and the proof is complete.

For the proof of Theorem 1.4. we need the Mountain Pass Lemma.

Mountain Pass Lemma. (see [16]) Let X be a real Banach space with the norm
∥.∥ and J ∈ C1(X,R), J(0) = 0. Assume
(i) the function J(u) on X satisfies the (PS) condition;
(ii) there are β, ρ > 0 such that J(u) ⩾ β, ∥u∥ = ρ;
(iii) there is e ∈ X, ∥e∥ ⩾ ρ such that J(e) ⩽ 0.
then c0 = infϕ∈Ψmaxt∈[0,1] J(ϕ(t)) is a critical value of J(u) with 0 < β ⩽ c0 < ∞,
where Ψ = {ϕ ∈ (C[0, 1], X), ϕ(0) = 0, ϕ(1) = e}.

Proof of Theorem 1.4. From (7), it is clear that ℓλ,µ(u, v) ∈ C1(W,R) and
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ℓλ,µ(0, 0) = 0. Since F (u, v) > 0, then limt→∞ ℓ(tu, tv) = −∞, this means that there
exists t0 > 0 such that ℓλ,µ(t0u, t0v) < 0. Also by using corollary 2.4. we know that
ℓλ,µ(u, v) > ϵ > 0 and by Lemma 3.4. ℓλ,µ(u, v) satisfies the (PS) condition on W . Now
application of the Mountain Pass Lemma gives Theorem 1.4.
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