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Abstract. In this paper we study the impact of Minkowski metric matrix on a projec-
tion in the Minkowski Space M along with their basic algebraic and geometric proper-
ties.The relation between the m-projections and the Minkowski inverse of a matrix A in the
minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse
in Minkowski Space M is analyzed in terms of m-projections as an analogous development
and extension of the results on EP matrices.
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1. Introduction and preliminaries

Let us denote by M(m,n)(C) the set of m× n matrices and when m = n we write Mn(C)
for M(n,n)(C). The symbols A∗, A∼, A⊕, ∥A∥, A†, R(A), and N(A) denote the conjugate
transpose, Minkowski adjoint, Minkowski inverse, norm, Moore-Penrose inverse, range
space and null space of a matrix A respectively. In denote the identity matrix of order
n × n and R+ denotes the set of positive real numbers. We use P̄ = In − P (this
notation has nothing to do with the complex conjugate of a matrix element). Also we
use P̃A = I −AA⊕ and PA = AA⊕.

Indefinite inner product is a scalar product defined by

[u, v] = ⟨u,Mv⟩ = u∗Mv,
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where ⟨ , ⟩ denotes the conventional Hilbert Space inner product and M is a Hermitian
matrix. This hermitian matrix M is referred to as metric matrix. Minkowski space is
an indefinite inner product space which is agreed upon to be the most suitable space
for the study of Einstein’s theory of special relativity and has been recently taken into
consideration in a more generalized form by changing the dimension and the signature
of the metric associated with its indefinite inner product. Moreover the matrix argument
is taken into consideration. In Minkowski Space M the metric matrix is denoted by G
and is defined as

G =

[
1 0
0 −In−1

]
satisfying G2 = In and G∗ = G.

G is called the Minkowski metric matrix.
In case u ∈ Cn, indexed as u = (u0, u1, ..., un−1), G is called the Minkowski metric tensor
and is defined as Gu = (u0,−u1, ...,−un−1). For detailed study of indefinite linear algebra
refer to [13]

An idempotent matrix is called a projection if it is a hermitian i,e. A2 = A = A∗.
Projections are widely used in the literature e.g. see [1, 7, 15, 16, 20, 23–27, 34]. There
are many extensions and generalizations of the projections like generalized projections,
k-generalized projections, hypergeneralized projections etc. see [5, 11, 14, 18]. Projections
are also studied in indefinite inner product spaces see [10, and refrences therein]. In this
paper we first take into account the impact of Minkowski metric matrix on a projection,
giving rise to a new class of projections called m-projections.

Another part of this paper is devoted to study the commutativity of Minkowski inverse
of a matrix A in terms of the m-projections. A matrix A ∈ Mn(C) is said to be range
hermitian or EP matrix if N(A) = N(A∗) or equivalently AA† = A†A [1, p.157]. For
detailed study of EP matrices see [1, 6, 9, 12, 17, 28, 30–33]. The EP property was
further extended to the elements of Banach Spaces, operators, Banach Algebras and in
particular to C∗ -Algebras see [8, and references therein]. Meenakshi in [2] introduced
the concept of range symmetric matrices in the Minkowski space analogous to the EP
matrices in the unitary space. A ∈ Mn(C) is said to be range symmetric in Minkowski
space M if and only if N(A) = N(A∼) [2], where A∼ is the Minkowski adjoint of the
matrix A. The Minkowski adjoint of a matrix A ∈ M(m,n)(C), denoted by A∼, is defined
as A∼ = G1A

∗G2, where G1 ∈ Mm(C) and G2 ∈ Mn(C) are the Minkowski metric
matrices of respective size and A is said to be m-symmetric if A∼ = A. We will show
that the commutativity of a matrix A with its Minkowski inverse A⊕ is also related to
the EP property in the Minkowski Space M.

The Minkowski inverse of a matrix A ∈ M(m,n)(C) in the Minkowski Space M is
defined as the unique matrix X satisfying the following four conditions

(1) AXA = A (2) XAX = X (3) (AX)∼ = AX and (4) (XA)∼ = XA

In [22] the author has investigated certain properties of the Minkowski Inverse in the
indefinite inner product space by generalizing the signature of the Minkowski metric
matrix G. Unlike the Moore-Penrose inverse of matrices the Minkowski inverse of a
matrix does not exist always. The following result of [3] gives the necessary and sufficient
condition for the existence of the Minkowski inverse of a matrix A in the Minkowski
Space M

Lemma 1.1 For A ∈ M(m,n)(C), the Minkowski inverse A⊕ exists if and only if

rank(A) = rank(AA∼) = rank(A∼A). if A⊕ exists , then it is unique.

Definition 1.2 A matrix A ∈ Mn(C) is said to be G-unitary if AA∼ = A∼A = I.
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Following result from [2] will also be used in the forth coming sections

Theorem 1.3 Let A ∈ Mn(C), if A⊕ exists in M then AA⊕ and A⊕A are projections
on R(A) and R(A∼) respectively.

Theorem 1.4 For A ∈ Mn(C), the following statements are equivalent:

(i) A is range symmetric in M
(ii) GA and AG are EP
(iii) N(A∗) = N(AG).
(iv) R(A) = R(A∼)

2. m-projections and their algebraic properties

The concept of m-projections roots from the Minkowski adjoint of a projection P sat-
isfying the condition of being m-symmetric. We thus have a class of projections which
satisfy the condition of being m-symmetric and we call such projections as m-projections
(Minkowski projections). Hence we have the following definition

Definition 2.1 A Projection P is said to be m-projection if P 2 = P = P∼, where
P∼ = GP ∗G is the Minkowski adjoint of the projection P .

For the sake of completion we prove the following two results, concluding the basic
algebraic perspective of the m-projection.

Lemma 2.2 If P is a m-projection then I − P is also an m-projection

Proof. The proof is obvious from definition of the m - projection. ■

Theorem 2.3 Let S be the set of all m-projections in a Minkowski space M.Then for
P1, P2 ∈ S we have

(i) P1 + P2 ∈ S if and only if P1P2 = 0 = P2P1

(ii) P1 − P2 ∈ S if and only if P1P2 = P2P1 = P2

(iii) P1P2 ∈ S if and only if P1P2 = P2P1

Proof. (i) Clearly we have (P1 + P2)
∼ = P1 + P2 and

(P1 + P2)
2 = P 2

1 + P1P2 + P2P1 + P 2
2 = P1 + P2 ⇔ P1P2 + P2P1 = 0 (1)

Premultiplying (1) by P1 we get

P 2
1P2 + P1P2P1 = 0 ⇒ P∼

1 P2 + P1P2P1 = 0 (2)

Now postmultipling (1) by P1 we get

P1P2P1 + P2P
∼
1 = 0 (3)

Thus we have P∼
1 P2 = P2P

∼
1 which again on pre and post multiplying by P∼

1 gives
P1P2 = P2P1 and the result follows. (ii) and (iii) are obvious. ■

Remark 1 Since the Minkowski inverse of a matrix A exits if and only if
rank(AA∼) = rank(A∼A) = rank(A) and this condition is trivially satisfied by a m-
projection. For a m-projection P we have PP∼ = P 2 = P = P 2 = P∼P therefore
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we have rank(PP∼) = rank(P∼P ) = rank (P ) and hence P⊕ = P . Given any matrix
A ∈ Cm×n, AA⊕ is a m-projection

The following result will be used as definition for the Range Symmetric matrix in M

Theorem 2.4 Let A ∈ Mm,n(C) and A⊕ exists in M, then the following statements are
equivalent:

(a) A is Range Symmetric ( EP ) in M
(b) AA⊕ = A⊕A

Proof. Assume that A⊕ exists and A is EP in M. Using Theorem (1.3), we have AA⊕ is
the projection on R(A) and A⊕A is the projection on R(A∼). Also from Theorem (1.4),
statement (iv) we have R(A) = R(A∼), the result follows. ■

We recover the following corollary from [4]

Corollary 2.5 Let A ∈ Mn(C) be an EP matrix of rank r, Then, there exists a unitary
matrix P and a nonsingular matrix D such that A = P (D ⊕ 0)P∼ in the Minkowski
Space M

Proof. Using Theorem (1.4) we have AG is range symmetric in M. Therefore by [21,
Theorem 1] AG has the following representation

AG = U

[
A1 0
0 0

]
U∗, (4)

where U is a unitary matrix. This gives

A = UG

[
G1A1 0
0 0

]
U∗G (5)

Taking G1A1 = D and P = UG we get P∼ = U∗G. Therefore we have

A = P

[
D 0
0 0

]
P∼

■

The representation obtained in the corollary (2.5) eases to formulate the Minkowski
inverse for the range symmetric matrices and in particular for the m-projections in the
Minkowski space. From the definition of the G-unitary matrix it follows at once that a
unitary matrix U is G-unitary if and only if UG = GU . We will use this assumption
in formulating the Minkowski inverse of the m-projections in the forth coming results.
Under this assumption the above corollary can be extended to the following equivalent
statement:

Corollary 2.6 Let A ∈ Mn(C) be a matrix of rank r. Then following conditions are
equivalent:

(i) AA⊕ = A⊕A
(ii) There exists a unitary matrix P and a nonsingular matrix D such that

A = P (D ⊕ 0)P∼,where P is G-unitary.
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Proof. (i) ⇒ (ii) is obvious from Theorem (2.4) and Corollary (2.5). Also (ii) ⇒ (i)
follows from direct verification by noting that the Minkowski inverse of the A is A⊕ =
P (D−1 ⊕ 0)P∼, where P is G-unitary. ■

Let P be an m-projection in the Minkowski space M. Taking into account Remark
(1) and the observations made in the corollaries (2.5) and (2.6) of the Theorem (2.4),
there exists a G-unitary matrix U such that

P = U

[
I 0
0 0

]
U∼ (6)

The representation (6) can be used to determine the partitioning of any other m- pro-
jection say Q with the use of the same G-unitary matrix U such that

Q = U

[
W X
Y Z

]
U∼. (7)

Using the later part of the definition of a m-projection i.e. Q = Q∼, the representation
(7) becomes

Q = U

[
W X

−G1X
∼ Z

]
U∼ (8)

Where W ∈ Mr(C) is m-symmetric, Z ∈ Mn−r(C) is hermitian and G1 is the Minkowski
metric matrix of order r× r. The following results give the relation between the subma-
trices W , X and Z of the matrix Q given in (8).

Lemma 2.7 Let Q be a m-projection as given in (8). Then:

(i) W = W 2 −XG1X
∼ or equivalently WW̄ = −XG1X

∼

(ii) X = WX +XZ or equivalently X∼ = X∼W +G1ZG1X
∼

(iii) G1X
∼ = G1X

∼W + ZG1X
∼ or equivalently G1X

∼W̄ = ZG1X
∼

(iv) Z = Z2 −G1X
∼X or equivalently ZZ̄ = −G1X

∼X

Proof. The proof of these relationships is a straightforward consequence of the condition
Q2 = Q ■

Lemma 2.8 Let Q be a m-projection as given in (8). Then:

(i) W̄ = W̄ 2 −XG1X
∼

(ii) WX = XZ̄
(iii) XZ = W̄X
(iv) G1X

∼ = G1X
∼W̄ + Z̄G1X

∼

(v) Z̄ = Z̄2 −G1X
∼X

Proof. The proof follows by using Lemma (2.2) and the condition Q̄2 = Q̄ ■

Theorem 2.9 Let Q be a m-projection as given in (8). Then:

(i) WW⊕X = X
(ii) W̄W̄⊕X = X
(iii) ZZ⊕G1X

∼ = G1X
∼

(iv) Z̄Z̄⊕G1X
∼ = G1X

∼

(v) W⊕X = XZ̄⊕

(vi) XZ⊕ = W̄⊕X
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Proof. The condition (i) follows on account of the condition (i) of the Lemma (2.7) and
the fact that

R(W ) = R(WW ∗ +XX∗) = R(WW ∗) +R(XX∗) = R(W ) +R(X) (9)

Thus R(X) ⊆ R(W ), which can be expressed equivalently as WW⊕X = X. Analogously
we can obtain the next three conditions. Also from the condition (ii) of the Lemma
(2.7) we have W⊕X = W⊕(WX + XZ). Using condition (i) of the theorem we get
W⊕XZ̄ = X. Postmultiplying this equation by Z̄⊕ and utilizing condition (iv), we
obtain condition (v). The condition (vi) can be established similarly. ■

Theorem 2.10 Let Q be a m-projection as given in (8). Then:

(i) Pw = W −XZ̄⊕G1X
∼ and P̃w = W̄ +XZ̄⊕G1X

∼

(ii) Pw̄ = W̄ −XZ⊕G1X
∼ and P̃w̄ = W +XZ⊕G1X

∼

(iii) Pz = Z −G1X
∼W̄⊕X and P̃z = Z̄ +G1X

∼W̄⊕X
(iv) Pz̄ = Z̄ −G1X

∼W⊕X and P̃z̄ = Z +G1X
∼W⊕X

Proof. From the condition (i) of lemma (2.7) we have W = W 2 −XG1X
∼. Premulti-

plying on both sides by W̄⊕ and using condition (vi) of Theorem (2.9) we get the later
part of the point (i) and subtracting the obtained expression from Ir on both sides we
get the remaining part. On the same lines the other points can be established. ■

3. m-projections onto certain subspaces

In this section we develop the representations of m-projectors onto certain subspace
including their sum and intersection. The second lemma gives a powerful tool for con-
structing the m-projectors onto given spaces which is obtained as an analogous result
from orthogonal projectors.

Lemma 3.1 Let Q be partitioned as in (6) . Then:

(i) rk(W̄ ) = r − rk(W ) + rk(X)
(ii) rk(Z̄) = n− r + rk(X)− rk(Z)

Proof. Using (i) of Lemma (2.7) and the fact that rk(WW̄ ) = rk(W ) + rk(W̄ ) − r,
from (2.12) in [35] we get rk(W̄ ) = r + rk(X)− rk(W ).
Condition (ii) follows analogously. ■

Lemma 3.2 Let P, Q ∈ Cmp
n . Then:

(i) P + P̄ (P̄Q)⊕ is the m-projector onto R(P ) +R(Q)
(ii) P − P (PQ̄)⊕ is the m-projector onto R(P ) ∩R(Q)

Proof. The proof follows analogously from the equivalent conditions of Theorems (3)
and (4) in [29]. ■

Using Lemma (3.2) we obtain the following representations of the m-projectors onto
the sums and intersection of certain subspaces , including their dimensions.

Lemma 3.3 Let P,Q ∈ Cmp
n and let Q be partitioned as in (8). Then:

(i) PR(P )+R(Q) = U

[
Ir 0
0 Pz

]
U∼, where dim[R(P ) +R(Q)] = r + rk(Z)
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(ii) PR(P )+NQ) = U

[
Ir 0
0 Pz̄

]
U∼, where dim[R(P ) +N(Q)] = r + rk(X) + rk(Z)

(iii) PN(P )+R(Q) = U

[
Pw 0
0 In−r

]
U∼, where dim[N(P ) +R(Q)] = n− r + rk(W )

(iv) PN(P )+N(Q) = U

[
Pw̄ 0
0 In−r

]
U∼, where dim[N(P ) +N(Q)] = n− rk(W ) + rk(X)

Proof. For P = U

[
Ir 0
0 0

]
U∼ and Q = U

[
W X

−G1X
∼ Z

]
U∼. We have

(P̄Q) = U

[
0 0

−G1X
∼ Z

]
U∼. Now utilising the conditions (iv) of Lemma (2.7) and (iii)

of Theorem (2.9), it can be easily verified that the minkowski inverse of P̄Q is

(P̄Q)⊕ = U

[
0 XZ⊕

0 Pz

]
U∼ (10)

Hence, using the statement (i) of Lemma (3.2) and substituting (10), we obtain the m-
projector as claimed in point (i). The remaining part is obvious from the representation
of the projector. The remaining points can be obtained in a similar fashion. ■

Lemma 3.4 Let P, Q ∈ Cmp
n and let Q be partitioned as in (8). Then:

(i) PR(P )∩R(Q) = U

[
P̃w̄ 0
0 0

]
U∼, where dim[R(P ) ∩R(Q)] = rk(W )− rk(X)

(ii) PR(P )∩N(Q) = U

[
P̃w 0
0 0

]
U∼, where dim[R(P ) ∩N(Q)] = r − rk(W )

(iii) PN(P )∩R(Q) = U

[
0 0

0 P̃z̄

]
U∼, where dim[R(P ) ∩R(Q] = rk(Z)− rk(X)

(iv) PN(P )∩R(Q) = U

[
0 0

0 P̃z

]
U∼, where dim[R(P ) ∩R(Q)] = n− r − rk(Z)

Proof. With given P and Q we have PQ̄ = U

[
W̄ −X
0 0

]
U∼. Using the conditions (i)

and (ii) of Lemma (2.7) and Theorem (2.9) respectively direct verification shows that
the Minkowski inverse (PQ̄)⊕ of PQ̄ is

(PQ̄)⊕ = U

[
W̄W̄⊕ 0

G1X
∼W̄⊕ 0

]
U∼ (11)

Now using the statement (ii) of the Lemma (3.2) and substituting (11) we obtain the
representation claimed in point (i) of the lemma. Also dim(PR(P )∩R(Q)) = rk(P̃w̄) =

r−rk(W̄ ). Whereupon utilizing the rank equality obtained in statement (i) of the Lemma
(3.1) we get the remaining part of the result. The remaining representations can be
obtained similarly. ■

4. Minkowski inverse and m-projections

In this section we characterize the relation between the m-projections and the Minkowski
inverse of a matrix in the Minkowski SpaceM.We denote byM−1 the set of all invertible
elements in Minkowski space M
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Theorem 4.1 Let A ∈ Mn(C) in the Minkowski SpaceM , then the following conditions
are equivalent:

(i) There exists a unique m-projection P such that A+ P ∈ M−1 and AP = PA = 0
(ii) A is range symmetric in M.

Proof. (i) ⇒ (ii)
Let P be an m-projection. Since AP = 0 and P 2 = P , we have AP + P 2 = P which

implies (A+ P )P = P Also (A+ P )−1 exists so we have P = P (A+ P )−1. Similarly we
get P = (A+ P )−1P . we claim that

A{(A+ P )−1 − P} = I − P (12)

we have

A{(A+ P )−1 − P} = (A+ P − P ){(A+ P )−1 − P}

= (A+ P ){(A+ P )−1 − P} − P{(A+ P )−1 − P}

= I − P.

(13)

Similarly {(A+ P )−1 − P}A = I − P . Now we prove that A⊕ = X = {(A+ P )−1 − P}
In order to prove this we show that X satisfies the conditions of the definition of the
Minkowski inverse of A. Using (12) and the given condition that AP = PA = 0 we have

AXA = A{(A+ P )−1 − P}A = (I − P )A = A− PA = A (14)

Also

XAX = {(A+ P )−1 − P}A{(A+ P )−1 − P} = {(A+ P )−1 − P} (15)

We now prove the m-symmetric conditions i,e. (AX)∼ = AX and (XA)∼ = XA
Again using (12) we have (AX)∼ = G[{(A+ P )−1 − P}A]∗G = I − P = AX
Analogously we can prove that (XA)∼ = XA
Therefore X = A⊕. Also AA⊕ = I − P = A⊕A i,e. AA⊕ = A⊕A. Therefore by Theorem
(2.4) A is Range Symmetric i,e. A is EP in M
(ii) ⇒ (i) Let P be the m-projection defined by P = I −AA⊕.
Evidently we have AP = 0 and PA = 0. Also

(A+ P )(A⊕ + P ) = AA⊕ +AP + PA⊕ + P = AA⊕ + P = I (16)

This shows that (A+ P ) is invertible and (A+ P )−1 = (A⊕ + P )
Finally we show that the m-projection P is unique.
Assume that Q is another m-projection such that AQ = 0 = QA and A + Q ∈ M−1

then,

A⊕ = (A+ P )−1 − P = (A+Q)−1 −Q (17)

Premultiplying (10) by A we get

AA⊕ = A(A+ P )−1 −AP = A(A+Q)−1 −AQ (18)
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⇒ A(A+ P )−1 = A(A+Q)−1 ⇒ P = Q (19)

This shows that the m-projection P is unique. ■

Remark 2 For A,B ∈ Mn(C) we have

(A+B)∼ = A∼ +B∼, (λA)∼ = λ̄A∼, (AB)∼ = B∼A∼and (A∼)∼ = A. (20)

It is interesting to observe from (20) that the mapping A 7→ A∼ satisfies the conditions of
being an involution. Under this involution the similar results will hold in the C∗-algebra.

Following the usual notation we also denote the unique m-projection P = I−AA⊕ by
P̄A and we have the following corollary

Corollary 4.2 Let A ∈ Mm,n(C) and A⊕ exists in M, then the following are equivalent

(i) Ak = A⊕

(ii) A is range symmetric and Ak+1 + P̄A = 1

Proof. Clearly Ak = A⊕ ⇒ AA⊕ = A⊕A. Thus A is EP in M. Now using the facts
that P̄A = I −AA⊕ and A⊕ = (A+ P̄A)

−1 − P̄A, we have

A⊕ = Ak

⇔ (A+ P̄A)
−1 − P̄A = Ak

⇔ (A+ P̄A)
−1 = Ak + P̄A

(21)

This gives (A+ P̄A)(A
k + P̄A) = In ⇔ Ak+1 + P̄A = In. ■

Corollary 4.3 Let A ∈ M be EP, then

(i) A⊕ = (A+ P̄A)
−1(I − P̄A)

(ii) P̄A is idempotent
(iii) AP̄A = P̄AA = A⊕P̄A = P̄AA

⊕ = 0
(iv) P̄A = 0 if and only if A is nonsingular
(v) A = P (D ⊕ 0)P∼ then P̄A = P (0⊕ In−r)P

∼

(vi) rank(P̄A) = n− rank(A)

Proof. Noting that P̄A = I −AA⊕, A is EP in M and using Theorem (2.4) we have

(A+ P̄A)
−1(I − P̄A) = (A+ P̄A)

−1 − (A+ P̄A)
−1P̄A

= (A+ P̄A)
−1 − (A+ P̄A)

−1(I −AA⊕)

= (A+ P̄A)
−1(A+ P̄A − P̄A)A

⊕

= (A+ P̄A)
−1(A+ P̄A)A

⊕ − (A+ P̄A)
−1P̄AA

⊕

= A⊕ − (A+ P̄A)
−1(I −AA⊕)A⊕

= A⊕

The remaining statements are obvious. ■

Remark 3 If A is range symmetric in M, then using Theorem (2.4), the definition of
the Minkowski inverse X of a matrix A reduces to AXA = A, XAX = X, and (AX)∼ =
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(XA)∼. which is analogous to the definition of the Group inverse in the Minkowski space
M. Also from [2, Theorem 2.9] we have if A is range symmetric in M and rank(A2) =
rank(A) then A⊕ exists. But rank(A2) = rank(A) is the necessary and sufficient condition
for the existence of the group inverse A♯ of a matrix A [1, page156]. Thus in this case
we have A⊕ = A♯

5. Commutativity with an range symmetric element

In this section some characterizations of the matrices which commute with their
Minkowski inverse are obtained in terms of m-projections. Using the involution defined
in the Remark (2) and the fact that every m-projection is also a projection we have an
analogous results in the settings of a C∗-algebra. The following result of [19] is a very
useful representation of the Weighted Minkowski inverse of a matrix A ∈ Mm,n(C) and
is used in this section.

Theorem 5.1 Let A ∈ Mm,n(C in M and A = N−1G1A
∗G2M where M ∈ Mm(C) and

N ∈ Mn(C) are positive definite matrices and G1 and G2 are Minkowski metric matrices
of order n× n and m×m respectively such that σ(Aα) ⊂ R+. Then

A⊕
M,N = lim

t→0
(tI +A∼A)−1A∼

In particular when M = In and N = In, then A⊕
M,N reduces to the Minkowski inverse

A⊕ of A in M

Lemma 5.2 Let P be an m-projection and A be Minkowski invertible i,e. A⊕ exists
such that PA = AP then

(i) A⊕P = PA⊕

(ii) PAP is Minkowski Invertible and (PAP )⊕ = PA⊕P

Proof. (i) From AP = PA and P∼ = P we have A∼P = PA∼. This gives

A∼PA = PA∼A ⇒ A∼AP = PA∼A.

Thus for some t ∈ R+ we have

⇒ P (A∼A+ tIn)
−1 = (A∼A+ tIn)

−1P (22)

Now using the Theorem (5.1) we deduce that A⊕P = PA⊕

(ii) It follows from the direct verification. ■

Theorem 5.3 Let A,B ∈ Mn(C) such that A is EP in M and AB = BA = 0. Then

(i) P̄AB = B = BP̄A

(ii) A⊕B = BA⊕ = 0
(iii) B⊕ exists implies AB⊕ = B⊕A = 0
(iv) B⊕ exists implies (A+B)⊕ exists and (A+B)⊕ = A⊕ +B⊕

(v) B is EP in M implies A+B is EP in M and P̄A+B = P̄A + P̄B − I
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Proof. (i) we have

(A+ P̄A)(I − P̄A)B = (A+ P̄A −AP̄A − P̄A)B

= AB + P̄AB −AP̄AB − P̄AB

= 0.

(23)

This gives (A + P̄A)(I − P̄A)B = 0. But (A + P̄A) ∈ M−1. Therefore (I − P̄A)B = 0
implies P̄AB = B. In a similar fashion, by using B(I−P̄A)(A+P̄A) = 0 we get BP̄A = B.
The equality (i) can also be obtained directly by using the give condition that A is EP
in M and P̄A = I −AA⊕.

(ii) Recall that in Theorem (4.1) we have proved that A⊕ = (P̄A + A)−1 − P̄A. Also
(P̄A +A)B = B implies B = (P̄A +A)−1B. Therefore

A⊕B = {(P̄A +A)−1 − P̄A}B

= (P̄A +A)−1B − P̄AB

= 0

(24)

This can also be proved by using Corollary (4.3).
(iii) From lemma (5.2), statement (ii) we have (P̄ABP̄A)

⊕ = P̄AB
⊕P̄A. Also P̄ABP̄A =

B. Therefore B⊕ = P̄AB
⊕P̄A implies AB⊕ = AP̄AB

⊕P̄A = 0. Similarly B⊕A = 0.
(iv) This follows from direct verification.
(v) B is EP in M implies BB⊕ = B⊕B. Also (A+B)⊕ = (A⊕+B⊕). Using Theorem

(2.4) we have A + B is EP in M. Also P̄A+B = P̄A + P̄B − I follows by doing simple
algebra. ■

Let us define the norm of a matrix A as given in [34, page 49]. For A ∈ Mm,n(C) lets

define the norm of A as ∥A∥ = {tr(ATA)}1/2 =
√

m∑
i=1

n∑
j=1

a2ij , then we have the following

result used in next theorem from [34, page 49].

Lemma 5.4 ∥AB∥ ⩽ ∥A∥.∥B∥ and ∥A + B∥ ⩽ ∥A∥ + ∥B∥. Also if P is a projection
then ∥AP∥ ⩽ ∥A∥ with equality if PA = A.

Theorem 5.5 Let A,B ∈ Mn(C) such that A is EP in M, then ∥(I − P̄A)BP̄A∥ ⩽
∥A⊕∥.∥AB −BA∥. and ∥P̄AB(I − P̄A)∥ ⩽ ∥A⊕∥.∥AB −BA∥

Proof. Since P̄A and (I−P̄A) are idempotent projections, we have ∥P̄A∥ = ∥(I−P̄A)∥ =
1. Also (I − P̄A)(AB − BA)P̄A = ABP̄A − P̄AABP̄A + P̄ABAP̄A = ABP̄A. This gives
∥(I − P̄A)(AB −BA)P̄A∥ = ∥ABP̄A∥.

Thus we have

∥(I − P̄A)BP̄A∥ = ∥{I − (I −AA⊕)}BP̄A∥

⩽ ∥A⊕∥.∥ABP̄A∥

= ∥A⊕∥.∥(I − P̄A)(AB −BA)P̄A∥

= ∥A⊕∥.∥AB −BA∥

Analogously we can prove the second inequality. ■



226 M. Saleem Lone et al. / J. Linear. Topological. Algebra. 05(03) (2016) 215-228.

Corollary 5.6 Let A,B ∈ Mn(C) such that A is EP in M. If AB = BA then BP̄A =
P̄AB

Proof. The proof follows by using AB = BA in the above proved inequalities. ■

Theorem 5.7 Let A,B ∈ Mn(C) such that A and B are EP in M and AB = BA. Then

(i) P̄AP̄B = P̄BP̄A

(ii) AB⊕ = B⊕A and A⊕B = BA⊕

(iii) A⊕B⊕ = B⊕A⊕ = (AB)⊕

Proof. (i) Since A and B are both EP in M. Therefore from Corollary (5.6) we have
P̄AB = BP̄A and P̄BA = AP̄B. Also from lemma (5.2), point (i) we have B⊕P̄A = P̄AB

⊕.
Now P̄AP̄B = P̄A(I −BB⊕) = P̄A − P̄ABB⊕ = P̄BP̄A

(ii) Again using corollary (5.6) we have

AB +AP̄B = BA+ P̄BA (25)

which implies

A(B + P̄B) = (B + P̄B)A (26)

Thus invertibility of (B + P̄B) implies

(B + P̄B)
−1A = A(B + P̄B)

−1 (27)

Hence we have

AB⊕ = A{(B + P̄B)
−1 − P̄B}

= A(B + P̄B)
−1 −AP̄B

= B⊕A

(28)

Similarly, A⊕B = BA⊕

(iii) we have

(B + P̄B)
−1A = A(B + P̄B)

−1 (29)

Similarly,

(B + P̄B)
−1P̄A = P̄A(B + P̄B)

−1 (30)

Adding equations (29) and (30), we get

(B + P̄B)
−1(A+ P̄A)

−1 = (A+ P̄A)
−1(B + P̄B)

−1 (31)

Now

A⊕B⊕ = {(A+ P̄A)
−1 − P̄A}{(B + P̄B)

−1 − P̄B}

Using the equation (31) we get the result. ■
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6. Conclusion

In this paper we have studied the algebraic and the geometric behavior of m-projections
in Minkowski Space, and have established a relation between an m-projection and the
Minkowski inverse associated with a matrix. Further we have characterized some Range
Symmetric elements in Minkowski Space by using m-projections.The next step naturally
will be directed towards establishing the full characterization of the Range Symmetric
elements in the Minkowski Space.
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