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Abstract. In this paper we consider the so called a vector metric space, which is a gener-
alization of metric space, where the metric is Riesz space valued. We prove some common
fixed point theorems for three mappings in this space. Obtained results extend and generalize
well-known comparable results in the literature.
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1. Introduction and preliminaries

Consistent with Altun and Cevik [5, 7], the following definitions and results will be
needed in the sequel.

Given a partially ordered set (E,⩽), the notation x < y means x ⩽ y and x ̸= y. An
order interval [x, y] is the set {z ∈ E : x ⩽ z ⩽ y}.

A partially ordered set (E,⩽) is a lattice if each pair of elements has a supremum and
an infimum. A real linear space E with an order relation ⩽ on E which is compatible
with the algebraic structure of E is called an ordered linear space. An ordered linear
space E for which (E,⩽) is a lattice is called a Riesz space or linear lattice. The cone of
nonnegative elements in a Riesz space E is denoted by E+. If (an) is a decreasing sequence
in E such that inf an = a, we write an ↓ a. E is said to be Archimedean if 1

na ↓ 0 holds
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for every a ∈ E+. A sequence (bn) is said to order convergent or o-convergent to b if there
is a sequence (an) in E satisfying an ↓ 0 and |bn − b| ⩽ an for all n, and written bn →o b,
where |a| = a∨ (−a) for any a ∈ E. Moreover, (bn) is said to be o-Cauchy if there exists
a sequence (an) in E such that an ↓ 0 and |bn − bn+p| ⩽ an holds for all n and p. E is
said to be o-Cauchy complete if every o-Cauchy sequence is o-convergent. For notations
and other facts regarding Riesz spaces we refer to [3].

We begin with some important definitions.

Definition 1.1 [5, 7]Let X be a non-empty set and E be a Riesz space. The function
d : X ×X → E is said to be a vector metric or E-metric if it is satisfying the following
conditions:
(E1) d(x, y) = 0 if and only if x = y;
(E2) d(x, y) ⩽ d(x, z) + d(y, z);
for all x, y, z ∈ X. Also the triple (X, d,E) is said to be vector metric space.

For arbitrary elements x, y, z and w of a vector metric space, the following statements
are satisfied:

(Em1) 0 ⩽ d(x, y);

(Em2) d(x, y) = d(y, x);

(Em3) |d(x, z)− d(y, z)| ⩽ d(x, y);

(Em4) |d(x, z)− d(y, w)| ⩽ d(x, y) + d(z, w).

Example 1.2 [5, 7]A Riesz space E is a vector metric space with d : E×E → E defined
by d(x, y) = |x− y|. This vector metric is called to be absolute valued metric on E.

Definition 1.3 [5, 7]
(i) A sequence (xn) in a vector metric space (X, d,E) vectorial converges or E-converges

to some x ∈ E (we write xn →d,E x), if there is a sequence (an) in E satisfying an ↓ 0
and d(xn, x) ⩽ an for all n;

(ii) A sequence (xn) is called E-Cauchy sequence if there exists a sequence (an) in E
such that an ↓ 0 and d(xn, xn+p) ⩽ an holds for all n and p;

(iii) A vector metric space X is called E-complete if each E-Cauchy sequence in X
E-converges to a limit in X.

Lemma 1.4 [5, 7]We have following properties for the E-convergence sequence {xn} in
vector metric space X:
(a) The limit of the sequence {xn} is unique;
(b) Every subsequence of (xn) E-converges to x;
(c) If xn →d,E x and yn →d,E y, then d(xn, yn) →o d(x, y).

Lemma 1.5 [5] If E is a Riesz space and a ⩽ ka where a ∈ E+ and k ∈ [0, 1), then
a = 0.

Remark 1 [5, 7]
(i) The difference between vector metric and Zabrejko’s metric defined in [18] is that

the Riesz space has also a lattice structure;
(ii) One of the differences between vector metric and Huang-Zhang’s metric given in [10]
is that there exists a cone due to the natural existence of ordering on Riesz space. The
other difference is that vector metric omits the requirement for the vector space to be a
Banach space;
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(iii) Set E = R, the concepts of vectorial convergence and convergence in metric coin-
cide. If X = E and d is absolute valued vector metric, then vectorial convergence and
convergence in order are same. In the case set E = R, the concepts of E-Cauchy sequence
and Cauchy sequence are the same.

For see more details on fixed point theorems in cone metric spaces, one can review
some of paper in this field such as [4, 10, 11, 14, 15, 17] and references contained therein.
Recently, also, many authors have studied on common fixed point theorems for weakly
compatible pairs (see [1, 2, 8, 9, 12, 13, 16] and references contained therein).

Definition 1.6 [13]Let f, g : X → X be mappings of a set X. If fw = gw = z for
some w ∈ X, then w is called a coincidence point of f and g, and z is called a point of
coincidence of f and g.

Definition 1.7 [13]Let f, g : X → X be mappings of a set X. Then f and g are said to
be weakly compatible if they commute at every coincidence point.

Lemma 1.8 [1] Let f and g be weakly compatible self-maps of a set X. If f and g have
a unique point of coincidence z = fw = gw, then z is the unique common fixed point of
f and g.

2. Main results

The following theorems and corollaries are the vector metric version for some fixed point
results of Jungck [12], Arshad et al. [6], Abbas et al. [2] and Rahimi et al. [16].

Theorem 2.1 Let X be a vector metric space with E is Archimedean. Suppose the
mappings f, g, T : X → X satisfy the following conditions:
(i) for all x, y ∈ X

d(fx, gy) ⩽ kux,y(f, g, T ) (1)

where k ∈ (0, 1) is a constant and

ux,y(f, g, T ) ∈
{
d(Tx, Ty), d(fx, Tx), d(gy, Ty),

1

2
[d(fx, Ty) + d(gy, Tx)]

}
; (2)

(ii) f(X) ∪ g(X) ⊂ T (X);
(iii) one of f(X), g(X), or T (X) is a E-complete subspace of X.

Then {f, T} and {g, T} have a unique point of coincidence in X. Moreover, if {f, T}
and {g, T} are weakly compatible, then f , g, and T have a unique common fixed point
in X.

Proof. Suppose x0 is an arbitrary point of X. Since f(X) ⊂ T (X), there exists x1 ∈ X
such that f(x0) = T (x1) = y1. Since g(X) ⊂ T (X), there exists x2 ∈ X such that
g(x1) = T (x2) = y2. If we continue in this manner, then

∃ x2n+1 ∈ X s.t y2n+1 = fx2n = Tx2n+1

∃ x2n+2 ∈ X s.t y2n+2 = gx2n+1 = Tx2n+2,
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for n = 0, 1, · · · .
We first show that

d(y2n+1, y2n+2) ⩽ kd(y2n, y2n+1) (3)

for all n. From 1, we have

d(y2n+1, y2n+2) = d(fx2n, gx2n+1) ⩽ kux2n,x2n+1
(f, g, S, T )

for n = 1, 2, · · · , where

ux2n,x2n+1
(f, g, T ) ∈

{
d(Tx2n, Tx2n+1), d(fx2n, Tx2n), d(gx2n+1, Tx2n+1)

,
d(fx2n, Tx2n+1) + d(gx2n+1, Tx2n)

2

}
=

{
d(y2n, y2n+1), d(y2n+1, y2n), d(y2n+2, y2n+1)

,
d(y2n+1, y2n+1) + d(y2n+2, y2n)

2

}
=

{
d(y2n, y2n+1), d(y2n+1, y2n+2),

d(y2n+2, y2n)

2

}
.

If ux2n,x2n+1
(f, g, T ) = d(y2n, y2n+1), then clearly (3) holds. If ux2n,x2n+1

(f, g, T ) =
d(y2n+1, y2n+2), then according to Lemma 1.5, d(y2n+1, y2n+2) = 0 and clearly (3) holds.

Finally, suppose that ux2n,x2n+1
(f, g, T ) = d(y2n,y2n+2)

2 . Then, we have

d(y2n+1, y2n+2) ⩽
k

2
d(y2n, y2n+1) +

1

2
d(y2n+1, y2n+2)

which implies that (3) holds. Similarly, we have

d(y2n+2, y2n+3) ⩽ kd(y2n+1, y2n+2). (4)

Therefore, from (3) and (4), we get

d(yn, yn+1) ⩽ knd(y0, y1). (5)

By using (5), for all n and p, we have

d(yn, yn+p) ⩽ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(yn+p−1, yn+p)

⩽ (kn + kn+1 + · · ·+ kn+p−1)d(y0, y1)

⩽ kn

1− k
d(y0, y1).

Since E is Archimedean then {yn} is an E-Cauchy sequence. Suppose that T (X) is
complete. Then there exists a v in T (X), such that

Tx2n = y2n →d,E v and Tx2n+1 = y2n+1 →d,E v.
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Hence there exists a sequence {an} in E such that an ↓ 0, and d(Tx2n, v) ⩽ an and
d(Tx2n+1, v) ⩽ an+1. Since T is a self-map on X, there exist w ∈ X such that Tw = v.
Now, we prove that gw = v. For this, consider

d(v, gw) ⩽ d(v, fx2n) + d(fx2n, gw) ⩽ an+1 + kux2n,w(f, g, T ),

where

ux2n,w(f, g, T ) ∈
{
d(Tx2n, Tw), d(fx2n, Tx2n), d(gw, Tw)

,
d(fx2n, Tw) + d(gw, Tx2n)

2

}
=

{
d(y2n, v), d(y2n+1, y2n), d(gw, v)

,
d(y2n+1, v) + d(gw, y2n)

2

}
.

for all n. There are four possibilities.
Case 1.

d(v, gw) ⩽ kd(y2n, v) + an+1 ⩽ an + an+1 ⩽ 2an.

Case 2.

d(v, gw) ⩽ kd(y2n+1, y2n) + an+1 ⩽ an+1 + 2an ⩽ 3an.

Case 3.

d(v, gw) ⩽ kd(v, gw) + an+1 ⩽ kd(v, gw) + an.

Thus d(v, gw) ⩽ 1
1−kan.

Case 4.

d(v, gw) ⩽ d(y2n+1, v) + d(gw, y2n)

2
+ an+1

⩽ 1

2
d(v, gw) + 2an.

Thus d(v, gw) ⩽ 4an.
Since the infimum of sequences on the right side of last inequality are zero, then
d(v, gw) = 0, that is, gw = v. Therefore, gw = Tw = v, that is, v is a point of co-
incidence of mappings g and T , and w is a coincidence point of mappings g and T .
Now, we show that fw = v. Consider

d(fw, v) ⩽ d(fw, gx2n+1) + d(gx2n+1, v) ⩽ an + kuw,x2n+1
(f, g, T ),
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where

uw,x2n+1
(f, g, T ) ∈

{
d(Tw, Tx2n+1), d(fw, Tw), d(gx2n+1, Tx2n+1)

,
d(fw, Tx2n+1) + d(gx2n+1, Tw)

2

}
for all n. There are four possibilities.

Case 1.

d(fw, v) ⩽ an + d(v, y2n+1) ⩽ an + an+1 ⩽ 2an.

Case 2.

d(fw, v) ⩽ an + kd(fw, v).

Thus d(fw, v) ⩽ 1
1−kan.

Case 3.

d(fw, v) ⩽ an + kd(y2n+2, y2n+1) ⩽ 3an.

Case 4.

d(fw, v) ⩽ an +
d(fw, y2n+1) + d(gx2n+2, v)

2

⩽ 2an +
1

2
d(fw, v).

Thus d(fw, v) ⩽ 4an.
Since the infimum of sequences on the right side of last inequality are zero, then
d(fw, v) = 0, that is, fw = v. Therefore, fw = Tw = v, that is, v is a point of co-
incidence of mappings f and T , and w is a coincidence point of mappings f and T .
Now we shall show that v is unique point of coincidence of pairs {f, T} and {g, T}. Let
v′ be also a point of coincidence of these three mappings, then fw′ = gw′ = Tw′ = v′ for
w′ ∈ X. Now, we have

d(v, v′) = d(fw, gw′) ⩽ kuw,w′(f, g, T ),

where

uw,w′(f, g, T ) ∈
{
d(Tw, Tw′), d(fw, Tw), d(gw′, Tw′),

d(fw, Tw′) + d(gw′, Tw)

2

}
=

{
0, d(v, v′)

}
.

Hence, d(v, v′) = 0, that is, v = v′. If {f, T} and {g, T} are weakly compatible, then v is
a unique common fixed point of f , g, and T by Lemma 1.8. The proofs for the cases in
which f(X) or g(X) is complete are similar. ■

Corollary 2.2 Let X be a vector metric space with E is Archimedean. Suppose the
mappings f, T : X → X satisfy the following conditions:
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(i) for all x, y ∈ X

d(fx, fy) ⩽ kux,y(f, T )

where k ∈ (0, 1) is a constant and

ux,y(f, T ) ∈ {d(Tx, Ty), d(fx, Tx), d(fy, Ty), 1
2
[d(fx, Ty) + d(fy, Tx)]};

(ii) f(X) ⊂ T (X);
(iii) one of f(X) or T (X) is a E-complete subspace of X.

Then {f, T} have a unique point of coincidence in X. Moreover, if {f, T} are weakly
compatible, then f and T have a unique common fixed point in X.

Example 2.3 Let E = R2 with coordinatwise ordering defined by (x1, y1) ⩽ (x2, y2) if
and only if x1 ⩽ x2 and (y1, y2), X = R and d(x, y) = (|x − y|, c|x − y|) with c > 0.
Define the mappings fx = x2 + 2 and Tx = 3x2. Now, for all x, y ∈ X, we have

d(fx, fy) =
1

3
d(Tx, Ty) ⩽ kux,y(f, T )

with ux,y(f, T ) = d(Tx, Ty) for k =∈ [1/3, 1). Moreover,

f(X) = [2,∞) ⊂ [0,∞) = T (X)

and f(X) is E-complete subspace of X. Therefore all conditions of Corollary 2.2 are
satisfied. Consequently, f and T have a unique point of coincidence in X. v = 3 ∈ X is
unique point of coincidence of f and T and x1 = 1 and x2 = −1 are coincidence points
of f and T . Note that f and T have not a common fixed point, because they are not
weakly compatible.

Remark 2 Let E = R2 with coordinatwise ordering defined by (x1, y1) ⩽ (x2, y2) if and
only if x1 < x2 or x1 = x2 and (y1, y2). since R2 is not Archimedean with lexicographical
ordering, then we can not use this ordering for above example.

The following corollary extends well known Fishers result [9] to vector metric spaces
with E is Archimedean.

Corollary 2.4 Let X be a vector metric space with E is Archimedean. Suppose the
mappings f, g, T : X → X satisfy

d(fx, gy) ⩽ kd(Tx, Ty)

for all x, y ∈ X, where k < 1. If f(X)∪g(X) ⊂ T (X), and one of f(X), g(X), or T (X) is
a E-complete subspace of X, Then {f, T} and {g, T} have a unique point of coincidence
in X. Moreover, if {f, T} and {g, T} are weakly compatible, then f , g, and T have a
unique common fixed point in X.

Theorem 2.5 Let X be a vector metric space with E is Archimedean. Suppose the
mappings f, g, T : X → X satisfy the following conditions:
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(i) for all x, y ∈ X

d(fx, gy) ⩽ k1d(Tx, Ty) + k2d(fx, Tx) + k3d(gy, Ty)

+k4d(fx, Ty) + k5d(gy, Tx) (6)

where ki for i = 1, 2, · · · , 5 are nonnegative constants with

k1 + k2 + k3 + 2max{k4, k5} < 1;

(ii) f(X) ∪ g(X) ⊂ T (X);
(iii) one of f(X), g(X), or T (X) is a E-complete subspace of X.

Then {f, T} and {g, T} have a unique point of coincidence in X. Moreover, if {f, T}
and {g, T} are weakly compatible, then f , g, and T have a unique common fixed point
in X.

Proof. We define sequences {xn} and {yn} as in the proof of Theorem 2.1. From (10),
we have

d(y2n+1, y2n+2) = d(fx2n, gx2n+1)

⩽ k1d(y2n, y2n+1) + k2d(y2n+1, y2n) + k3d(y2n+2, y2n+1)

+k4d(y2n+1, y2n+1) + k5d(y2n+2, y2n).

Consequently,

d(y2n+1, y2n+2) ⩽ αd(y2n, y2n+1) (7)

where α = k1+k2+k5

1−k3−k5
< 1. Similarly,

d(y2n+3, y2n+2) = d(fx2n+2, gx2n+1)

⩽ k1d(y2n+2, y2n+1) + k2d(y2n+3, y2n+2) + k3d(y2n+2, y2n+1)

+k4d(y2n+3, y2n+1) + k5d(y2n+2, y2n+2).

Consequently,

d(y2n+3, y2n+2) ⩽ αd(y2n+2, y2n+1) (8)

where α = k1+k3+k4

1−k2−k4
< 1. From (7) and (8), we have

d(yn, yn+1) ⩽ αnd(y0, y1).

By the same arguments as in Theorem 2.1 we conclude that {yn} is a E-Cauchy sequence.
Suppose that T (X) is complete. Then there exists a v in T (X), such that

Tx2n = y2n →d,E v and Tx2n+1 = y2n+1 →d,E v.

Hence there exists a sequence {an} in E such that an ↓ 0, and d(Tx2n, v) ⩽ an and
d(Tx2n+1, v) ⩽ an+1. Since T is a self-map on X, there exist w ∈ X such that Tw = v.
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Now, we prove that fw = v. For this, consider

d(fw, v) ⩽ d(fw, gx2n+1) + d(gx2n+1, v)

⩽ k1d(Tw, Tx2n+1) + k2d(fw, Tw) + k3d(gx2n+1, Tx2n+1)

+k4d(fw, Tx2n+1) + k5d(gx2n+1, Tw) + d(gx2n+1, v)

⩽ (k1 + k3 + k4)d(v, Tx2n+1) + (k2 + k4)d(fw, v)

+(k3 + k5 + 1)d(gx2n+1, v).

Consequently,

d(fw, v) ⩽ k1 + 2k3 + k4 + k5 + 1

1− k2 − k4
an,

for all n. Thus d(fw, v) = 0, i.e. fw = v. Therefore, fw = Tw = v, that is, v is a point
of coincidence of mappings f and T , and w is a coincidence point of mappings f and T .
Now, we show that gw = v.

d(v, gw) ⩽ d(v, fx2n) + d(fx2n, gw)

⩽ d(v, fx2n) + k1d(Tx2n, Tw) + k2d(fx2n, Tx2n) + k3d(gw, Tw)

+k4d(fx2n, Tw) + k5d(gw, Tx2n)

⩽ (k1 + k2 + k5)d(v, Tx2n) + (k3 + k5)d(gw, v) + (k2 + k4 + 1)d(fx2n, v).

Consequently,

d(gw, v) ⩽ k1 + 2k2 + k4 + k5 + 1

1− k3 − k5
an,

for all n. Thus d(gw, v) = 0, i.e. gw = v. Therefore, gw = Tw = v, that is, v is a point
of coincidence of mappings g and T , and w is a coincidence point of mappings g and T .
Now we shall show that v is unique point of coincidence of pairs {f, T} and {g, T}. Let
v′ be also a point of coincidence of these three mappings, then fw′ = gw′ = Tw′ = v′ for
w′ ∈ X. Now, we have

d(v, v′) = d(fw, gw′)

⩽ k1d(Tw, Tw
′) + k2d(fw, Tw) + k3d(gw

′, T ′)

+k4d(fw, Tw
′) + k5d(gw

′, Tw)

Hence, d(v, v′) = 0, that is, v = v′. If {f, T} and {g, T} are weakly compatible, then v is
a unique common fixed point of f , g and T by Lemma 1.8. The proofs for the cases in
which g(X), or T (X) is complete are similar. ■

Corollary 2.6 Let X be a vector metric space with E is Archimedean. Suppose the
mappings f, T : X → X satisfy the following conditions:
(i) for all x, y ∈ X

d(fx, fy) ⩽ k1d(Tx, Ty) + k2d(fx, Tx) + k3d(fy, Ty) + k4d(fx, Ty) + k5d(fy, Tx) (9)
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where ki for i = 1, 2, · · · , 5 are nonnegative constants with

k1 + k2 + k3 + 2max{k4, k5} < 1;

(ii) f(X) ⊂ T (X);
(iii) one of f(X) or T (X) is a E-complete subspace of X.

Then {f, T} have a unique point of coincidence in X. Moreover, if {f, T} are weakly
compatible, then f and T have a unique common fixed point in X.

Corollary 2.7 Let X be a E-complete vector metric space with E is Archimedean.
Suppose the mapping f : X → X satisfies the following condition:

d(fx, fy) ⩽ k1d(x, y) + k2d(fx, x) + k3d(fy, y) + k4d(fx, y) + k5d(fy, x) (10)

for all x, y ∈ X, where ki for i = 1, 2, · · · , 5 are nonnegative constants with

k1 + k2 + k3 + k4 + k5 < 1.

Then f has a unique fixed point in X.

Example 2.8 Let E = R2 with coordinatwise ordering. Also, as in [7, 10], let

X = {(x, 0) ∈ R2|0 ⩽ x ⩽ 1} ∪ {(0, x) ∈ R2|0 ⩽ x ⩽ 1}.

The mapping d : X ×X → E is defined by

d((x, 0), (y, 0)) = (
4

3
|x− y|, |x− y|),

d((0, x), (0, y)) = (|x− y|, 2
3
|x− y|),

d((x, 0), (0, y)) = (
4

3
x+ y, x+

2

3
y).

Then X is E-complete vector metric space. Consider f : X → X with f(x, 0) = (0, x)
and f(0, x) = (x/2, 0), then f satisfies the relation (10) with k1 = 3/4 and k2 = k3 =
k4 = k5 = 0. According to Corollary 2.7, f has a unique fixed point in X. But f is not a
contractive mapping in real value d metric on X. Therefore we can not apply the Banach
fixed point theorem on metric space.

Remark 3 Note that if X = E and d is absolute valued vector metric, then we can
obtain common fixed point results of Riesz space E.
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