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On the irreducibility of the complex specialization
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Abstract. We consider a 2-dimensional representation of the Hecke algebra H(G7,u), where
G'7 is the complex reflection group and w is the set of indeterminates

u = (21,72, Y1,Y2,Y3, 21, 22, 23).
After specializing the indetrminates to non zero complex numbers, we then determine a nec-
essary and sufficient condition that guarantees the irreducibility of the complex specialization

of the representation of the Hecke algebra H(G7,u).

© 2016 TAUCTB. All rights reserved.

Keywords: Braid group, Hecke algebra, irreducible, reflections.

2010 AMS Subject Classification: 20F36.

1. Introduction

Let V be a complex vector space and W a finite irreducible subgroup of GL(V') generated
by complex reflections. Let R be the set of reflections in W. For any element s of R, denote
by Hj its pointwise fixed hyperplane. We define the set V™ = V- UgscrHs and denote

by V' the quotient V" /W. The braid group associated to (W,V) is the fundamental

group B(W) = m1(V,zg) of V with respect to any point Zo € V. We choose the set
of indeterminates, u = (us7j)570<j<0(8)_1, where s runs over the generators of W and
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usj = uy,; if s and t are conjugate in W. Here o(s) denotes the order of s. The cyclotomic
Hecke algebra associated to W is the quotient of the group algebra Z[u,u!|BW by the
ideal generated by the relations H?(:s())fl(s — Usj)-

In [7], G. Malle and J. Michel constructed on the cyclotomic hecke algebra H(G7r,u)
of the complex reflexion group, G7, an irreducible representation

=

¢ : H(Gr,u) = Ma(Clu>,u”3)),
where u is the set of indeterminates v = (z1,x2,y1, 92,3, 21, 22, 23). In our work, we
specialize the indeterminates x1, 2, Y1, Y2, Y3, 21, 22 and z3 to nonzero complex numbers
pe'®, where a € (—m, ] and p a positive real number. We then get a representation

v : H(G7,u) = GLy(C).

In section 3, we consider the case when x1 = x9 and we show that ¢ is irreducible if and
only if z; # % and 21 # % (Theorem 3.4). In section 4, we assume that x1 # 2
and we show that ¢ is irreducible if and only if x1yoze # Xoyi121, T1y122 F# Toysz1,
xT1Y221 7 xoy122 and x1y121 # Tay2ze (Theorem 4.5).

2. Preliminaries

Definition 2.1 [6] Let V be a complex vector space of dimension n. A complex reflection
of GL(V) is a non-trivial element of GL(V) which acts trivialy on a hyperplane.

Definition 2.2 [6] Let V be a complex vector space of dimension n. A complex reflection
group is the subgroup of GL(V) generated by complex reflections.

Examples of complex reflection groups include dihedral groups and symmetric groups.
For n > 3, the dihedral group, D, is the group of the isometries of the plane preserving
a regular polygon, with the operation being composition.

A classification of all irreducible reflection groups shows that there are 34 primitive
irreducible reflection groups [8]. The starting point was with A. Cohen, who provided a
data for those irreducible complex reflection groups of rank 2 [5].

Definition 2.3 [3] The complex reflection group, G7, is an abstract group defined by
the presentation

3

G7:<t,u,s]t2:u =3 =1, tus = ust = stu > .

Theorem 2.4 [1] The braid group of G7 is isomorphic to the group
B =< s1, 89,83 | 15283 = $28351 = S35182 > .

Definitions and properties of braid groups are found in [2].

Definition 2.5 [7] Let u be the set of indeterminates u = (z1, 2, y1,Y2, Y3, 21, 22, 23).
The cyclotomic Hecke algebra H(G7,u) of G7 is the quotient of the group algebra of B
over Z[u,u"!] by the relations

(s1 — 21)(s1 — @2) = 0, T2, (2 — i) = 0, T2, (53— 2) = 0.
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For more details about the Hecke algebra of G7, see [4].

Definition 2.6 [7] Let u = (1, 2,91, Y2, Y3, 21, 22, 23). The representation ¢ is defined
as follows:

1

¢ : H(G7,u) — Mo(C(uFz))

Y1+y2 (z1422) w2 1 -

x — + 0

S1 = L Y1Y2 T , So = hn Y2 Z1 and S3 = Y1Y2T122 ,
0 x2 —y1y2x1 0 T 21+ 22

where r = \/T1T2y1Y22122.

We specialize the indeterminates 1, x2, Y1, Y2, 21, 22 and z3 to nonzero complex num-
bers, pe'®, where a € (—m, 7| and p a positive real number. We then get a representation
Q: ’H(G7,u) — GLQ(C)

Definition 2.7 Principal square root function is defined as follows:
z€C, z=(p,a), p=0 and \/5:\/,562% where — 7 < a < 7.

Since a € (—m, m], it follows that V22 = z for any complex number z.

3. Irreducibility of the representation ¢ for x; = x5

We assume that x1 = z2 and we find a necessary and sufficient condition that guarantees
the irreducibility of the representation ¢ : H(G7,u) — GL2(C). Under this assumption,
we have that the images of the generators of H(G7,u) are

Yatyo (z1+22)T2 1

i) —
81 = Y12 Vadyyezize || 59 = i
0 T —y1y2z2 0

and

x§y1yz
r 21+ 22

<0 _ \/zéylyza@)

S§3 = .

For the matrix s1, we denote by s1(7, ) the term of the matrix s; which lies in the ith
row and in the jth column.

Lemma 3.1 s1(1,2) =0 if and only if z; = y;% or 21 = %
Proof. We show that if s1(1,2) = 0 then 21 = % or z; = % Assume that s1(1,2) =

.. . 4 .. .
0. This implies that y;j;f = xif}ylzz)iz. This implies that (y1 + y2)\/Y1y22122 = (21 +

22)y1y2. Using y1y2 = (VU192)?%, we get (y1 + y2)\/z122 = (21 + 22)\/¥1Y2. Squaring
both sides, we obtain (y1 +y2)?2122 = (21 + 22)°y1y2. This implies that 21 = 22 or
21 = 22 On the other hand, direct computations show that if z; = £22 or z; = £2

1 Y2 Y1
then s1(1,2) = 0. [ |
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We now determine a sufficient condition for irreduciblity.
Proposition 3.2 The representation ¢ is irreducible if z; # y;% and 21 # %

Proof. Using the hypothesis and Lemma 3.1, we get s1(1,2) # 0. Let S be a non trivial
proper invariant subspace of C2. The eigenspace of s; is generated by e;. This implies
that S is of the form < v >, where v = ae; for some non-zero complex number a. S
is invariant implies that sov = (a(y1 + y2), —axoy1y2) € S, which is a contradiction.
Therefore S is irreducible. [ ]

We determine a necessary condition for irreducibility.

— Y122 or 2] = Y222

Proposition 3.3 The representation ¢ is reducible if z; m T

Proof. In each case, we show that the 1-dimensional subspace M generated by the

vector u = (_Klyz’ 1) is invariant.
— Y122

Casel. z; = T Substituting in Definition 2.6, we get

zy 0 Y1+ 5o 0 @
= = 2 d — 2Y2 .
o ( 0 962) % (—-’mylw 0 e o Toy12p 22 + L2

It is easy to see that ssu = yju and s3u = zou. This implies that M is invariant.
— Y222

Case2. z; = T Substituting in Definition 2.6, we get

1 22
z2 0 y1+y2 o 0 —z
g g d = 2Y1 .
o1 (0 $2> o <—x2y1y2 0 ane o Tayoze 2o + L2

It is also easy to see that sou = y1u and szu = 29 %u This implies that M is invariant.
[ |

Here we have proved the following theorem:

Theorem 3.4 The representation ¢ is irreducible if and only if 27 # y;% and z1 # yz%

4. Irreducibility of the representation ¢ for x; # x5

We assume that z; # 22 and we find a necessary and sufficient condition that guarantees
the irreducibility of the representation ¢: H(G7,u) — GL2(C). For simplicity, we denote
by w the term

(21 — 22)*yiy5 2122 + [(y1 + y2)r — Tayrye(21 + 22)][(y1 + y2)r — Tayiya(21 + 22)] (1)

Lemma 4.1 The complex number w, defined in (1), is different from zero if and only if
T1Y222 F TaY121, T1Y122 F T2Ye21, T1Y221 7 Tay122 and T1y121 # TaYaz2.

Proof. Simple calculations show that w = af, where

a = Tay1y221 + T1y1y222 — (Y1 + y2)r
B = x1y1Y221 + Tay1y2ze — (Y1 + y2)r-
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Assume that w = 0. This implies that a =0 or § = 0. If & = 0, then

Toy1Y221 + T1y1y2z2 = (Y1 + yo)r.

Squaring both sides, we get
y1y2(—22y221 + T1Y122)(—T2y121 + T1Y222) = 0.

This implies that x1y122 = Tayoz1 Or T1Yyo22 = woy121. If B =0, then

T1Y1Y221 + Tay1y2ze = (Y1 + yo)r.

Squaring both sides, we get

y1y2(x1y221 - x2y122)(:131y121 - $2y222) =0.

This implies that z1y221 = xoy120 or x1y121 = Tay222. On the other hand, we assume
that any of the following conditions holds true.

T1Y222 = X2Y121, T1Y122 = T2Y221, T1Y221 = T2Y122 O T1Y121 = T2Y222

Under direct computations, we easily verify that w = 0. [ |
We now give a sufficient condition for the irreducibility of the representation .

Proposition 4.2 The representation ¢ is irreducible if xiyozo # xoy121, T1y120 #
ToYo21, T1Y221 7# Tay122 and T1y121 # Tay222.

Proof. If the term s1(1,2) = y1+y2 — xz(zfzz) equals zero, then neither e; nor es is a

common eigenvector for so and s3 yThlS implies that the representation is irreducible. We
note that under this case, we have that the complex number w is not zero and hence, by
Lemma 4.1, we also have that x1y2z9 # Toy121, T1Y122 # Taye21, T1Y221 F Toy12e and
T1y121 # Tay2ze. I 51(1,2) = B2 — Zalzrtn)
by the invertible matrix

y1tyo _ za(z1+22)
yiy2 r
T=|1"= :
0 1

-1 o 1‘10
T slT—(O $2>.

We then conjugate so by the matrix 7. We get

_ M w
T lsT = ,
°2 <—961y1y2 P)

is not zero, we diagonalize the matrix S

We get
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where

To(—T1y1Y221 — T1Y1Y222 + Y17 + Yor)
(1 — x2)r

M=—

)

»’61(—362y1y221 — X2Y1Y222 — Yir — yQT)

P—_
(x1 — mo)r

By conjugating s3 by T, we get

_ AB
T lssT = <T C),

where
A= (y1 + y2)1r — 22y1y2(21 + 22)
(z1 — 22)y192
and
1 2 2 2
B = mxlbeZlZQ( — xlajgylygzl — l‘lﬂfgylZlZQ — xlylygzle
— 231 ToY1 Y221 22 — THY1Y22122 — T1T2Y32122
— T1T2Y1 Y275 + T1Y1217 + Toy1 24T
+ T1Yy221T + X2Y2217 + T1Y1 22T + Xoy1227
+ T1Y222T + :Ugyngr)
and
C— —r(y1 + y2) + 21y192(21 + 22)

(z1 — 22)y1Y2

For simplicity, we denote T~ 1's,T by b; for 1 < i < 3. Suppose, to get contradiction,
that the representation is reducible. That is, there exists a non trivial proper invariant
subspace M of C? of dimension 1. The subspace M has to be one of the following

subspaces < e; > or < eg >.

Casel S =< e; >. Since e; € M, it follows that bse; = (A,r) € M. This implies that

r = 0, a contradiction.

Case2 S =< eg >. Since ey € M, it follows that beey = (w, P) € M. By Lemma 4.1, we
have that w is different from zero, which is a contradiction. Therefore the representation

is irreducible.

We now present a lemma concerning the number B used in defining 7~ 's37 in Propo-

sition 4.2.

Lemma 4.3 The complex number B equals zero in each of the following cases:

(1) z1y222 = X211
(2) z1y122 = X2Y221
(3) T1y221 = Tay122
(4) T1Y121 = T2Y222
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Proof. We verify that B = 0 in case (1). Suppose that x;y220 = xoy121 then

2,22
1 ToY121 9 T2Y121 2 LoY171
B = ———Fzniznz| — L2Y1y22z1 — TY12122 — — 5 5 Y1Y22122
(z1 — x2)%r 2 2 Y325
T2Y121 2 T2Y121 2
-2 T2Y1Y22122 — ToY1Y22122 — T2Yp 2122
Y222
T2Y121 2 , T2Y121
- ToY1Y225 + Y121T2Y121 + Tay12122Y121
Y222 29
T2Y1%1 T2Y121

1 1
Y22122Y121 + X2Y22122Y121 + Y12222Y121
2 2

T2Y121
B Y222T2Y121 + T2Y222T2Y121
2

+ Toy122T2Yy121 +

2,2.3 2,3.2 2.3.3
_ 1 ToY1 21 TY1R]  TRY1Rq
- 2 3$1$22122 - - -
(1‘1 - 932) r 22 Y2 Y222
2,3.3
TY1 %1

2 9 9 2 2 2 2 92
— 205Y1 2] — T3Y1Y22122 — TRY1Y22] — TRYi2122 +

Y222
2,2.3 2,3.2
LoY1%1 ToY1%1 2 2
+ T3Y121%2

+ x%y%Z% + + x§y1y22‘% +

+ m%y%z% + 90%3/11/22122) =0.

Likewise, we show that B = 0 under each of the other conditions. [ |
We now present a necessary condition for irreducibility.

Proposition 4.4 The representation is reducible in each of the following cases:

(1) z1y222 = X211
(2) z1y122 = X2Y221
(3) T1y221 = Tay122
(4) T1Y121 = T2Y222

Proof. Assume that we have either one of the following conditions holds true:
T1Y2%22 = T2Y121, T1Y1R2 = T2Y271, T1Y221 = L2Y122 OT T1Y121 = XL2Y2%22-
Let S be the one dimensional subspace generated by es. If

51(1,2) = Y1 t+y2 wo(21 + 22) —0,

Y1Yy2 r

then w, as defined in section 4, equals (z1 — z2)?y?y32122. This implies that w # 0. By
Lemma 4.1, we get a contradiction. Therefore, without loss of generality, we assume that
s1(1,2) # 0. We then conjugate the representation by the invertible matrix 7. Recall
that b; = T~ 's,T (i = 1,2,3). We then have that byes = (w,P) = (0, P) by Lemma
4.1, and bsep = (B,C) = (0,C) by Lemma 4.3. It follows that S is invariant under this
representation. |

This leads us to state a necessary and sufficient condition for the irreducibility of the
representation.
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Theorem 4.5 The representation is irreducible if and only if z1y229 # Xoy121, T1Yy122 F
ToYo21, T1Y221 7# Tay122 and T1y121 # Tay222.
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