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Abstract. In this paper, we define the notion of a bipolar general fuzzy automaton, then we
construct some closure operators on the set of states of a bipolar general fuzzy automaton.
Also, we construct some topologies on the set of states of a bipolar general fuzzy automaton.
Then we obtain some relationships between them.
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1. Introduction

Zadeh [18] introduced the theory of fuzzy sets and, soon after, Wee [16] introduced the
concept of fuzzy automata. Automata have a long history both in theory and application
[1, 2] and are the prime examples of general computational systems over discrete spaces
[5]. In the conventional spectrum of automata (i.e. deterministic finite-state automata,
non-deterministic finite-state automata, probabilistic automata and fuzzy finite-state au-
tomata), deterministic finite-state automata have found the most application in different
areas [3, 10, 11, 14]. Fuzzy automata not only provide a systematic approach for han-
dling uncertainty in such systems, but are can also be used in continuous spaces [15].
Moreover, they are able to create capabilities which are not easily achievable by other
mathematical tools [17].
In the traditional fuzzy sets, the membership degrees of elements range over the inter-
val [0,1]. The membership degree expresses the degree of belongingness of elements to a
fuzzy set. The membership degree 1 indicates that an element completely belongs to its
corresponding fuzzy set, and the membership degree 0 indicates that an element does not
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belong to the fuzzy set. The membership degrees on interval (0,1) indicate the partial
membership to the fuzzy set. Sometimes, the membership degree means the satisfaction
degree of elements to some property or constraint corresponding to a fuzzy set. In the
viewpoint of satisfaction degree, the membership degree 0 is assigned to elements which
do not satisfy some property. The elements with membership degree 0 are usually re-
garded as having the same characteristics in the fuzzy set representation. By the way,
among such elements, some have irrelevant characteristics to the property corresponding
to a fuzzy set and the others have contrary characteristics to the property. The traditional
fuzzy set representation cannot tell apart contrary elements from irrelevant elements.

2. Preliminaries

Bipolar valued fuzzy sets, which are introduced by Lee [7, 8], are an extension of fuzzy
sets whose membership degree range is enlarged from the interval [0,1] to [-1,1]. Lee [7]
introduced an extension of fuzzy sets named bipolar valued fuzzy sets. Bipolar valued
fuzzy sets have membership degrees that represent the degree of satisfaction to the prop-
erty corresponding to a fuzzy set and its counter property. In a bipolar valued fuzzy
sets, the membership degree 0 means that elements are irrelevant to the corresponding
property, the membership degrees on (0,1] indicate that elements somewhat satisfy the
implicit counter property [7]. The negative membership degrees indicate the satisfaction
extent of elements to an implicit counter property. This kind of bipolar valued fuzzy
set representation enables the elements with membership degree 0 in traditional fuzzy
sets, to be expressed into the elements with membership degree 0 (irrelevant elements)
and the elements with negative membership degrees (contrary elements). Let X be the
universe of discourse. A bipolar valued fuzzy set φ in X is an object having the form

φ = {(x, φ−(x), φ+(x)) : x ∈ X}

where φ− : X → [−1, 0] and φ+ : X → [0, 1] are mappings. The positive membership de-
gree φ+(x) denotes the satisfaction degree of an element x to the property corresponding
to a bipolar valued fuzzy set φ = {(x, φ−(x), φ+(x)) : x ∈ X}, and the negative member-
ship degree φ−(x) denotes the satisfaction degree of x to some implicit counter property
of φ = {(x, φ−(x), φ+(x)) : x ∈ X}. If φ+(x) ̸= 0 and φ−(x) = 0, it is the situation that
x is regarded as having only positive satisfaction for φ = {(x, φ−(x), φ+(x)) : x ∈ X}.
If φ+(x) = 0 and φ−(x) ̸= 0, it is the situation that x does not satisfy the property
of φ = {(x, φ−(x), φ+(x)) : x ∈ X} but somewhat satisfies the counter property of
φ = {(x, φ−(x), φ+(x)) : x ∈ X}. It is possible for an element x to be φ+(x) ̸= 0 and
φ−(x) ̸= 0 when the membership function of the property overlaps that of its counter
property over some portion of the domain [8]. For the sake of simplicity, we shall use the
symbol φ =< φ−, φ+ > for the bipolar valued fuzzy set φ = {(x, φ−(x), φ+(x)) : x ∈ X},
and use the notion of bipolar fuzzy sets instead of the notion of bipolar valued fuzzy sets.
In 2004, M. Doostfatemeh and S. C. Kremer extended the notion of fuzzy automata and
introduced the notion of general fuzzy automata [4].

Definition 2.1 [9] Let Σ be a set. A word of Σ is the product of a finite sequence of
elements in Σ, Λ is empty word and Σ∗ is the set of all words on Σ. In fact, Σ∗ is the free
monoid on Σ. The length ℓ(x) of word x ∈ X∗ is the number of its letters, so ℓ(Λ) = 0.

Definition 2.2 [9] Let X be an arbitrary set. The function ψ : P (X) −→ P (X) is called
a closure operator on X, if for any two elements A and B of P (X), we have



M. Horry / J. Linear. Topological. Algebra. 05(02) (2016) 83-91. 85

(i) ψ(∅) = ∅,
(ii) A ⊆ ψ(A),
(iii) ψ(A

∪
B) = ψ(A)

∪
ψ(B),

(iv) ψ(ψ(A)) = ψ(A).

3. Bipolar general Fuzzy automata

In this section, we introduce several new concepts and derive related results.

Definition 3.1 A bipolar fuzzy finite-state automaton is a six-tuple denoted as F̃ =
(Q,Σ, R, Z, δ, ω), where Q is a finite set of states, Σ is a finite set of input symbols, R
is the start state of F̃ , Z is a finite set of output symbols, δ =< δ−, δ+ > is the bipolar
fuzzy transition function in Q × Σ × Q and ω : Q → Z is the output function. The
transition from state qi (current state) to state qj (next state) upon input ak is denoted
as δ(qi, ak, qj) =< δ−(qi, ak, qj), δ

+(qi, ak, qj) >. We use this notation to refer both to a
transition and its weight. Whenever δ(qi, ak, qj) is used as a tow-tuple value, it refers to
the weight of the transition. Otherwise, it specifies the transition itself. Also, the set of
all transitions of F̃ is denoted as ∆ =< ∆−,∆+ >.

For a nonempty set X, P̃ (X) denotes the set of all bipolar fuzzy sets on X.

Definition 3.2 A bipolar general fuzzy automaton F̃ is an eight-tuple machine denoted
as F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2), where
(i) Q is a finite set of states, Q = {q1, q2, . . . , qn},
(ii) Σ is a finite set of input symbols, Σ = {a1, a2, . . . , am},
(iii) R̃ =< R̃−, R̃+ > is the set of bipolar fuzzy start states,
(iv) Z is a finite set of output symbols, Z = {b1, b2, . . . , bk},
(v) ω : Q→ Z is the output function,
(vi) δ̃ =< δ̃−, δ̃+ > is a bipolar fuzzy set, where δ̃− : (Q× [−1, 0])×Σ×Q→ [−1, 0] and
δ̃+ : (Q× [0, 1])× Σ×Q→ [0, 1],
(vii) F1 =< F−

1 , F
+
1 >, where F−

1 : [−1, 0] × [−1, 0] → [−1, 0] and F+
1 : [0, 1] × [0, 1] →

[0, 1] are called membership assignment functions.
As we can notice, the function F+

1 (µ+, δ+), is motivated by two parameters µ+ and δ+,
where µ+ is the membership value of a predecessor and δ+ is the weight of a transition.
In this definition, the process that takes place upon the transition from state qi to qj on
input ak is represented as:

µt+1(qj) =< µt+1(qj)
−, µt+1(qj)

+ >

where

µt+1(qj)
− = δ̃−((qi, µ

t(qi)
−), ak, qj) = F−

1 (µt(qi)
−, δ−(qi, ak, qj))

and

µt+1(qj)
+ = δ̃+((qi, µ

t(qi)
+), ak, qj) = F+

1 (µt(qi)
+, δ+(qi, ak, qj)).

Which means that membership value (mv) of the state qj at time t + 1 is computed
by function F1 using both the membership value of qi at time t and the weight of the
transition.
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(viii) F2 =< F−
2 , F

+
2 >, where F−

2 : [−1, 0]∗ → [−1, 0] and F+
2 : [0, 1]∗ → [0, 1] are called

multi-membership resolution functions.

The multi-membership resolution function resolves the multi-membership active states
and assigns a single membership value to them.

Let Qact(ti) =< Qact(ti)
−, Qact(ti)

+ > be the bipolar fuzzy set of all active states at
time ti, ∀i ⩾ 0. We have Qact(t0) = R̃,

Qact(ti)
− = {(q, µti(q)−) : ∃q′ ∈ Qact(ti−1)

−, ∃a ∈ Σ, δ−(q′, a, q) ∈ ∆−}, ∀i ⩾ 1,

Qact(ti)
+ = {(q, µti(q)+) : ∃q′ ∈ Qact(ti−1)

+, ∃a ∈ Σ, δ+(q′, a, q) ∈ ∆+}, ∀i ⩾ 1.

Since Qact(ti)
+ is a fuzzy set, in order to show that a state q belongs to Qact(ti)

+ and T
is a subset of Qact(ti)

+, we should write:

q ∈ Domain(Qact(ti)
+) and T ⊂ Domain(Qact(ti)

+).

Hereafter, we simply denote them as: q ∈ Qact(ti)
+ and T ⊂ Qact(ti)

+.
The combination of the operations of functions F1 and F2 on a multi-membership

state qj will lead to the multi-membership resolution algorithm.

Algorithm 3.3. (Multi-membership resolution) If there are several simultaneous tran-
sitions to the active state qj at time t + 1, the following algorithm will assign a unified
membership value to that:
(1) Each transition weight δ(qi, ak, qj) =< δ−(qi, ak, qj), δ

+(qi, ak, qj) > together with
µt(qi) =< µt(qi)

−, µt(qi)
+ >, will be processed by the membership assignment function

F1, and will produce a membership value. Call this vi =< v−i , v
+
i >,

v−i = δ̃−((qi, µ
t(qi)

−), ak, qj) = F−
1 (µt(qi)

−, δ−(qi, ak, qj)),

v+i = δ̃+((qi, µ
t(qi)

+), ak, qj) = F+
1 (µt(qi)

+, δ+(qi, ak, qj)).

(2) These membership values are not necessarily equal. Hence, they will be processed by
another function F2, called the multi-membership resolution function.
(3) The result produced by F2 will be assigned as the instantaneous membership value
of the active state qj ,

µt+1(qj)
− =

n

F−
2

i=1

[v−i ] =
n

F−
2

i=1

[F−
1 (µt(qi)

−, δ−(qi, ak, qj))],

µt+1(qj)
+ =

n

F+
2

i=1

[v+i ] =
n

F+
2

i=1

[F+
1 (µt(qi)

+, δ+(qi, ak, qj))].

Where
• n: is the number of simultaneous transitions to the active state qj at time t+ 1.
• δ(qi, ak, qj): is the weight of a transition from qi to qj upon input ak.
• µt(qi): is the membership value of qi at time t.
• µt+1(qj): is the final membership value of qj at time t+ 1.
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Definition 3.4. Let F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2) be a bipolar general fuzzy automaton,
which is defined in Definition 3.2. We define max-min bipolar general fuzzy automata of
the form:

F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2)

where Q−
act = {Qact(t0)

−, Qact(t1)
−, Qact(t2)

−, . . . },
Q+

act = {Qact(t0)
+, Qact(t1)

+, Qact(t2)
+, . . . } and δ̃∗ =< δ̃∗−, δ̃∗+ > is a bipolar fuzzy set

in Qact × Σ∗ ×Q and let for every i, i ⩾ 0

δ̃∗−((q, µti(q)−),Λ, p) =

{
−1, q = p,
0, otherwise

δ̃∗+((q, µti(q)+),Λ, p) =

{
1, q = p,
0, otherwise

and for every i, i ⩾ 1
δ̃∗−((q, µti−1(q)−), ui, p) = δ̃−((q, µti−1(q)−), ui, p),
δ̃∗+((q, µti−1(q)+), ui, p) = δ̃+((q, µti−1(q)+), ui, p),
δ̃∗−((q, µti−1(q)−), uiui+1, p)
=

∧
q′∈Qact(ti)

−
(δ̃−((q, µti−1(q)−), ui, q

′) ∨ δ̃−((q′, µti(q′)−), ui+1, p)),

δ̃∗+((q, µti−1(q)+), uiui+1, p)
=

∨
q′∈Qact(ti)

+

(δ̃+((q, µti−1(q)+), ui, q
′) ∧ δ̃+((q′, µti(q′)+), ui+1, p)),

and recursively
δ̃∗−((q, µt0(q)−), u1u2 . . . un, p)
= ∧{δ̃−((q, µt0(q)−), u1, p1) ∨ δ̃−((p1, µt1(p1)−), u2, p2) ∨ . . .
∨δ̃−((pn−1), µ

tn−1(pn−1)
−), un, p)|p1 ∈ Qact(t1)

−, p2 ∈ Qact(t2)
−, . . . ,

pn−1 ∈ Qact(tn−1)
−},

δ̃∗+((q, µt0(q)+), u1u2 . . . un, p)
= ∨{δ̃+((q, µt0(q)+), u1, p1) ∧ δ̃+((p1, µt1(p1)+), u2, p2) ∧ . . .
∧δ̃+((pn−1), µ

tn−1(pn−1)
+), un, p)|p1 ∈ Qact(t1)

+, p2 ∈ Qact(t2)
+, . . . ,

pn−1 ∈ Qact(tn−1)
+},

in which ui ∈ Σ, ∀1 ⩽ i ⩽ n and assuming that the entered input at time ti be ui,
∀1 ⩽ i ⩽ n− 1.
Definition 3.5. Let F̃ ∗ be a max-min bipolar general fuzzy automaton. The response

function rF̃
∗
=< rF̃

∗−, rF̃
∗+ > of F̃ ∗ is defined by

rF̃
∗−(x, q) =

∧
q′∈Qact(t0)

−

δ̃∗−((q′, µt0(q′)−), x, q),

rF̃
∗+(x, q) =

∨
q′∈Qact(t0)

+

δ̃∗+((q′, µt0(q′)+), x, q),



88 M. Horry / J. Linear. Topological. Algebra. 05(02) (2016) 83-91.

for any x ∈ Σ∗, q ∈ Q, where rF̃
∗− : Σ∗ ×Q→ [−1, 0], rF̃

∗+ : Σ∗ ×Q→ [0, 1].
Definition 3.6. Let q ∈ Q and 0 ⩽ c < 1. Then q is called an accessible state of F̃ ∗

with threshold c if there exist x, y ∈ Σ∗ such that rF̃
∗
(x, q)− < −c and rF̃ ∗

(y, q)+ > c.
Definition 3.7. Let A ⊆ Q. Then F̃ ∗ is said to be connected with threshold c on A, if
A = Q̄c, where Q̄c is the set of all accessible states with threshold c.
Definition 3.8. Let F̃ ∗ be a max-min bipolar general fuzzy automaton,
p ∈ Q, q ∈ Qact(ti)

−∩Qact(ti)
+, i ⩾ 0 and 0 ⩽ c < 1. Then p is called a bipolar successor

of q with threshold c if there exist x, y ∈ Σ∗ such that δ̃∗−((q, µti(q)−), x, p) < −c and
δ̃∗+((q, µti(q)+), y, p) > c.

Definition 3.3 Let F̃ ∗ be a max-min bipolar general fuzzy automaton, q ∈ Qact(ti), i ⩾
0 and 0 ⩽ c < 1. Also let Sc(q) denote the set of all bipolar successors of q with threshold
c. If T ⊆ Q, then Sc(T ) the set of all bipolar successors of T with threshold c is defined
by

Sc(T ) =
∪
{Sc(q) : q ∈ T}.

Theorem 3.4 Let F̃ ∗ be a max-min bipolar general fuzzy automaton and 0 ⩽ c < 1.
Then
(i) q ∈ Sc(q), ∀q ∈ Q.
(ii) If r ∈ Sc(p), p ∈ Sc(q), then r ∈ Sc(q).

Proof. (i) Since for all q ∈ Q, there exists i ⩾ 0 such that q ∈ Qact(ti)
− ∩ Qact(ti)

+,
δ̃∗−((q, µti(q)−),Λ, q) = −1 < −c and δ̃∗+((q, µti(q)+),Λ, q) = 1 > c, then q ∈ Sc(q).
(ii) Since p ∈ Sc(q), then q ∈ Qact(ti)

− ∩ Qact(ti)
+ and there exist x, y ∈ Σ∗ such that

δ̃∗−((q, µti(q)−), x, p) < −c and δ̃∗+((q, µti(q)+), y, p) > c. Also, since r ∈ Sc(p), then
p ∈ Qact(tj)

− ∩Qact(tj)
+ and there exist z, t ∈ Σ∗ such that δ̃∗−((p, µtj (p)−), z, r) < −c

and δ̃∗+((p, µtj (p)+), t, r) > c. Thus, we have

δ̃∗−((q, µti(q)−), xz, r)
=

∧
q′∈Qact(tj)

−
[δ̃∗−((q, µti(q)−), x, q′)

∨
δ̃∗+((q′, µtj (q′)−), z, r)]

⩽ δ̃∗−((q, µti(q)−), x, p)
∨
δ̃∗−((p, µtj (p)−), z, r) < −c,

δ̃∗+((q, µti(q)+), yt, r)
=

∨
q′∈Qact(tj)

+

[δ̃∗+((q, µti(q)+), y, q′)
∧
δ̃∗+((q′, µtj (q′)+), t, r)]

⩾ δ̃∗+((q, µti(q)+), y, p)
∧
δ̃∗+((p, µtj (p)+), t, r) > c.

So we get that r ∈ Sc(q). ■

Example 3.5 Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min bipolar general fuzzy
automaton, where
Q = {q0, q1, q2}, Σ = {a, b}, Qact(t0)

− = {(q0, µt0(q0)−)} = {(q0,−1)},
Qact(t0)

+ = {(q0, µt0(q0)+)} = {(q0, 1)}, F−
1 (µ−, δ−) =Min(µ−, δ−),

F+
1 (µ+, δ+) =Max(µ+, δ+), Z = ∅, ω and F2 are not applicable,
δ(q0, a, q1) =< −0.4, 0.4 >, δ(q0, b, q2) =< −0.5, 0.5 >, δ(q1, a, q2) =< −0.3, 0.3 >,
δ(q2, a, q2) =< −0.2, 0.2 >. If we choose the input string x = aa . . . a, then we have

Qact(t1)
− = {(q1, µt1(q1)−)}, Qact(ti)

− = {(q2, µti(q2)−)}, ∀i ⩾ 2,

Qact(t1)
+ = {(q1, µt1(q1)+)}, Qact(ti)

+ = {(q2, µti(q2)+)}, ∀i ⩾ 2,
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µt1(q1)
− = δ̃−((q0, µ

t0(q0)
−), a, q1) = F−

1 (µt0(q0)
−, δ−(q0, a, q1))

= F−
1 (−1,−0.4) = −1,

µt1(q1)
+ = δ̃+((q0, µ

t0(q0)
+), a, q1) = F+

1 (µt0(q0)
+, δ+(q0, a, q1))

= F+
1 (1, 0.4) = 1,

µt2(q2)
− = δ̃−((q1, µ

t1(q1)
−), a, q2) = F−

1 (µt1(q1)
−, δ−(q1, a, q2))

= F−
1 (−1,−0.3) = −1,

µt2(q2)
+ = δ̃+((q1, µ

t1(q1)
+), a, q2) = F+

1 (µt1(q1)
+, δ+(q1, a, q2))

= F+
1 (1, 0.3) = 1,

µt3(q2)
− = δ̃−((q2, µ

t2(q2)
−), a, q2) = F−

1 (µt2(q2)
−, δ−(q2, a, q2))

= F−
1 (−1,−0.2) = −1,

µt3(q2)
+ = δ̃+((q2, µ

t2(q2)
+), a, q2) = F+

1 (µt2(q2)
+, δ+(q2, a, q2))

= F+
1 (1, 0.2) = 1,

µti(q2)
− = −1, ∀i ⩾ 4, µti(q2)

+ = 1, ∀i ⩾ 4,
δ̃∗−((q0, µ

t0(q0)
−), a, q1) = −1,

δ̃∗+((q0, µ
t0(q0)

+), a, q1) = 1,
δ̃∗−((q0, µ

t0(q0)
−), a2, q2) = −1

δ̃∗+((q0, µ
t0(q0)

+), a2, q2) = 1.
Also, we have δ̃∗−((q0, µ

t0(q0)
−),Λ, q0) = −1 and δ̃∗+((q0, µ

t0(q0)
+),Λ, q0) = 1. Thus

Sc(q0) = Q, ∀c, 0 ⩽ c < 1.

Theorem 3.6 Let F̃ ∗ be a max-min bipolar general fuzzy automaton and 0 ⩽ c < 1.
We define

Sc : P (Q) −→ P (Q)
A −→ Sc(A).

Then Sc is a closure operator on Q.

Proof. (i) Sc(∅) = ∅.
(ii) Let q ∈ A ⊆ Q. By Theorem 3.10, q ∈ Sc(q). Then q ∈ Sc(q) ⊆ Sc(A), Thus,
A ⊆ Sc(A).
(iii)Sc(A

∪
B) =

∪
q∈A

∪
B Sc(q) = (

∪
q∈A Sc(q))

∪
(
∪

q∈B Sc(q)) = Sc(A)
∪
Sc(B).

(iv) By (ii), we have Sc(A) ⊆ Sc(Sc(A)). Conversely, let p ∈ Sc(Sc(A)). Then there exists
q′ ∈ Sc(A) such that p ∈ Sc(q

′). Thus q′ ∈ Sc(q
′′), for some q′′ ∈ A. Consequently, by

Theorem 3.10, p ∈ Sc(q
′′). Hence, p ∈ Sc(A). Therefore Sc(Sc(A)) ⊆ Sc(A). ■

Corollary 3.7 Let F̃ ∗ be a max-min bipolar general fuzzy automaton and λ be a fuzzy
subset on Q. Then τ = {AC : A ⊆ Q,Sc(A) = A} is a topology on Q.

Proof. (i) Since Sc(∅) = ∅, then Q = (∅)C ∈ τ .
(ii) Since Sc is a closure operator on Q, then Q ⊆ Sc(Q). On the other hand, since
Sc(Q) ∈ P (Q), then Sc(Q) ⊆ Q. Thus, Sc(Q) = Q. Therefore we conclude that ∅ =
(Q)C ∈ τ .
(iii) Let AC

1 and AC
2 belong to τ . Then Sc(A1) = A1 and Sc(A2) = A2. Thus, we have

Sc(A1
∪
A2) = Sc(A1)

∪
Sc(A2) = A1

∪
A1.

That is AC
1

∩
AC

2 = (A1
∪
A2)

C ∈ τ .
(iv) Let AC

i ∈ τ , ∀i ∈ I. Then Sc(Ai) = Ai, ∀i ∈ I. Since Sc is a closure operator on Q,
then

∩
i∈I Ai ⊆ Sc(

∩
i∈I Ai). On the other hand, since Ai

∪
(
∩

i∈I Ai) = Ai, so we get that
Sc(Ai)

∪
(Sc(

∩
i∈I Ai)) = Sc(Ai). Then Sc(

∩
i∈I Ai) ⊆ Sc(Ai) = Ai. Thus Sc(

∩
i∈I Ai) ⊆∩

i∈I Ai. Hence, Sc(
∩

i∈I Ai) =
∩

i∈I Ai . That is
∪

i∈I A
C
i = (

∩
i∈I Ai)

C ∈ τ . ■
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Definition 3.8 Let F̃ ∗ be a max-min bipolar general fuzzy automaton and 0 ⩽ c < 1.
Then we say that F̃ ∗ is good with threshold c, if ∀q ∈ Q, ∃q′ ∈ Qact(ti)

− ∩ Qact(ti)
+ :

q ∈ Sc(q
′).

Example 3.9 Let F̃ ∗ be the max-min bipolar general fuzzy automaton in Example 3.
11 and 0 ⩽ c < 1. Since Sc(q0) = Q, then F̃ ∗ is good with threshold c.

Theorem 3.10 Let F̃ ∗ be a max-min bipolar general fuzzy automaton and 0 ⩽ c < 1.
Then F̃ ∗ is good with threshold c if and only if F̃ ∗ is connected with threshold c on Q.

Proof. Let F̃ ∗ be good with threshold c and q ∈ Q . Then there exists q′ ∈ Qact(ti)
− ∩

Qact(ti)
+ such that q ∈ Sc(q

′). Thus, there exist x, y ∈ Σ∗ such that
δ̃∗−((q′, µti(q′)−), x, q) < −c and δ̃∗+((q′, µti(q′)+), y, q) > c.
So

rF̃
∗−(x, q) =

∧
q′∈Qact(t0)

−

δ̃∗−((q′, µt0(q′)−), x, q) < −c,

rF̃
∗+(y, q) =

∨
q′∈Qact(t0)

+

δ̃∗+((q′, µt0(q′)+), y, q) > c,

Consequently, by Definitions 3.6, 3.7, F̃ ∗ is connected with threshold c on Q. Conversely,
let F̃ ∗ be connected with threshold c on Q and q ∈ Q. Then there exist x, y ∈ Σ∗ such
that

rF̃
∗−(x, q) =

∧
q′∈Qact(t0)

−

δ̃∗−((q′, µt0(q′)−), x, q) < −c,

rF̃
∗+(y, q) =

∨
q′∈Qact(t0)

+

δ̃∗+((q′, µt0(q′)+), y, q) > c,

Hence, there exists q′ ∈ Qact(ti)
− ∩ Qact(ti)

+ such that δ̃∗−((q′, µti(q′)−), x, q) < −c
and δ̃∗+((q′, µti(q′)+), y, q) > c. So q ∈ Sc(q

′). Therefore F̃ ∗ is good with threshold c. ■

Theorem 3.11 Let F̃ ∗ be a max-min bipolar general fuzzy automaton, 0 ⩽ c < 1 and
suppose that

pRcq ⇔ p ∈ Sc(q), q ∈ Sc(p).

Then Rc is an equivalence relation on Q.

Proof. By Theorem 3.10 the proof is obvious. ■

Theorem 3.12 Let F̃ ∗ be a max-min bipolar general fuzzy automaton, 0 ⩽ c < 1,
Bc(q) = {p ∈ Q : pRcq}, Bc(A) =

∪
q∈ABc(q). We define

Bc : P (Q) −→ P (Q)
A −→ Bc(A).

Then Bc is a closure operator on Q.
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Proof. (i) Bc(∅) = ∅.
(ii) Let q ∈ A. Since qRcq, then q ∈ Bc(q) ⊆ Bc(A). Thus, A ⊆ Bc(A).
(iii)Bc(A

∪
D) =

∪
q∈A

∪
D Bc(q) = (

∪
q∈ABc(q))

∪
(
∪

q∈D Bc(q)) = Bc(A)
∪
Bc(D).

(iv) By (ii), we have Bc(A) ⊆ Bc(Bc(A)). Conversely, let q ∈ Bc(Bc(A)). Then there
exists q′ ∈ Bc(A) such that q ∈ Bc(q

′). Thus q′ ∈ Bc(q
′′), for some q′′ ∈ A. Conse-

quently, qRcq
′ and q′Rcq

′′. By Theorem 3.17, qRcq
′′. Thus q ∈ Bc(q

′′) ⊆ Bc(A). Therefore
Bc(Bc(A)) ⊆ Bc(A). ■

Corollary 3.13 Let F̃ ∗ be a max-min bipolar general fuzzy automaton and λ be a fuzzy
subset on Q. Then ξ = {AC : A ⊆ Q,Bc(A) = A} is a topology on Q.

Proof. The proof is similar to Theorem 3.13, by using suitable modification. ■

4. Conclusions

In this paper, we have defined the notion of a bipolar general fuzzy automaton, then we
have constructed some closure operators on the set of states of a bipolar general fuzzy
automaton. Also, we have constructed some topologies on the set of states of a bipolar
general fuzzy automaton. Then we have obtained some relationships between them.
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