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Abstract. In this work, we conduct a comparative study among the combine Laplace trans-
form and modified Adomian decomposition method (LMADM) and two traditional methods
for an analytic and approximate treatment of special type of nonlinear Volterra integro-
differential equations of the second kind. The nonlinear part of integro-differential is approx-
imated by Adomian polynomials, and the equation is reduced to a simple equations. The
proper implementation of combine Laplace transform and modified Adomian decomposition
method can extremely minimize the size of work if compared to existing traditional tech-
niques. Moreover, three particular examples are discussed to show the reliability and the
performance of method.
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1. Introduction

This paper presents a comparative study between combine Laplace transform and mod-
ified Adomian decomposition method (MADM) [7, 8, 11] and two traditional methods,
namely the Adomian decomposition method (ADM) [4, 5, 9], and the series solution
method (SSM) [3], for solving an special type of nonlinear Volterra integro-differential
equations of the second kind. The nonlinear Volterra integro-differential equation which
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we study here is given by the following:

u(n)(x) = f(x) + λ

∫ x

0
k(x, t)[u′(t)]pdt, u(k)(0) = bk, 0 ⩽ k ⩽ (n− 1), (1)

where u(n)(x) is the nth derivative of the unknown function u(x) that will be determined,
f(x) is an known analytic function, k(x, t) is the kernel of the integral equation, u′ rep-
resents the first order derivative of u with respect to t, p is a positive integer and λ
is suitable constant.
The Volterra integro-differential equations (1) arise from the mathematical modeling
of the spatiotemporal development of an epidemic model in addition to various physical
and biological models [6], and also from many other scientific phenomena. Nonlinear phe-
nomena, which appear in many applications in scientific fields, such as fluid dynamics,
solid state physics, plasma physics, mathematical biology and chemical kinetics, can be
modeled by partial differential equations and by integral equations as well. The concepts
of integral equations have motivated a large amount of research work in recent years.
Several analytical and numerical methods were used such as the Adomian decomposition
method and the direct computation method, the series solution method, the successive
approximation method, the successive substitution method and the conversion to equiv-
alent differential equations. However, these analytical solution methods are not easy to
use and require tedious calculation. Our aim in this paper is to obtain the analytical so-
lutions by using the LMADM for the integro-differential equations. The remainder of the
paper is organized as follows: In Section 2, a brief discussion for the LMADM is presented
and exact solutions for all examples are obtained. In Sections 3, we shall discuss the two
traditional methods briefly. In Section 4 presented numerical examples that shows the
efficiency and accuracy of proposed method in analogy to two traditional methods. We
introduce the convergence analysis of the proposed method in section 5. Section 6 ends
this paper with a brief conclusion.

2. The combined Laplace transform-modified Adomian
decomposition method

In this work we will assume that the kernel k(x, t) of (1) is a difference kernel that can be
expressed by the difference (x− t). The nonlinear Volterra integro-differential equation
(1) can thus be expressed as following

u(n)(x) = f(x) + λ

∫ x

0
k(x− t)[u′(t)]pdt, u(k)(0) = bk, 0 ⩽ k ⩽ (n− 1). (2)

Applying the Laplace transform to both sides of (2) gives

L{u(n)(x)} = L{f(x)}+ λL{
∫ x

0
k(x− t)[u′(t)]pdt}. (3)

On the other hand, using the differentiation property of Laplace transform, we have

L{u(n)(x)} = snL{u(x)} − sn−1u(0)− · · · − su(n−2)(0)− u(n−1)(0). (4)
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Substituting (4) into (3), and by using the convolution theorem we obtain

U(s) = F (s) + λK(s)L{[u′(x)]p}, (5)

where

U(s) = L{u(x)},

F (s) =
b0
s
+ ...+

bn−2

sn−1
+

bn−1

sn
+

1

sn
L{f(x)}, K(s) =

1

sn
L{k(x)}. (6)

The modified Adomian decomposition method and the Adomian polynomials can be used
to handle (5) and to address the nonlinear term [u′(x)]p. We first represent the linear
term U(s) at the left side by an infinite series of components given by

U(s) =

∞∑
n=o

Un(s), (7)

and similarly

u(x) =

∞∑
n=o

un(x), (8)

where the components Un(s), n ⩾ 0 will be determined recursively.
modified Adomian decomposition method suggest that the function F (s) defined above
in equation (5) can be decomposed into two parts namely, F0(s) and F1(s), i.e.

F (s) = F0(s) + F1(s). (9)

In the above equation proper choice of F0(s) and F1(s) is essential and depends mainly
on the trail basis. However, the nonlinear term [u′(x)]p at the right side of (5) will be
represented by an infinite series of the Adomian polynomials An in the form

[u′(x)]p =

∞∑
n=o

An(x), (10)

where An, n ⩾ 0 are defined by

An =
1

n!

dn

dλn
[N(

∞∑
i=0

λiui)]λ=0
, n = 0, 1, 2, ..., (11)

where the so-called Adomian polynomials An can be evaluated for all forms of nonlin-
earity. In other words, assuming that the nonlinear function is [u′(x)]p, therefore the
Adomian polynomials are given by

A0 = [u′0(x)]
p,

A1 = p[u′1(x)][u
′
0(x)]

p−1,
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A2 = p[u′2(x)][u
′
0(x)]

p−1 +
p(p− 1)

2!
[u′1(x)]

2[u′0(x)]
p−1, (12)

. . . .

Substituting equations (7), (9) and (10) into equation (5), we get

∞∑
n=o

Un(s) = F0(s) + F1(s) + λK(s)L{
∞∑
n=o

An(x)}. (13)

Thus the following recursive relations for the modified Adomian decomposition method
are formulated as

U0(s) = F0(s),

U1(s) = F1(s) + λK(s)L{A0(x)},

Un+1(s) = λK(s)L{An(x)}, n ⩾ 1. (14)

Applying the inverse Laplace transform to the first part of (14) gives u0(x), that will
define A0. Using A0(x) will enable us to evaluate u1(x). The determination of u0(x) and
u1(x) leads to the determination of A1(x) that will allows us to determine u2(x), and
so on. This in turn will lead to the complete determination of the components of un(s),
n ⩾ 0 upon using the third part of (14). The series solution follows immediately after
using (8). The series (8) is convergent to an exact solution for most of the cases, if such
a solution exists, and also the rate of convergence depends on how we choose F0(s).

3. The series solution method

This method is a traditional method that mainly depends on Taylor series and has been
used in differential and integral equations as well. However, the method is mainly used
for solving Volterra integral equations. In what follows, we present a brief idea about the
method where details can be found in many references such as [2, 3]. Assuming that u(x)
is an analytic function, it can be represented by a series given by

u(x) =

∞∑
k=0

akx
k, (15)

where ak are constants that will be determined recursively. The first few coefficients can
be determined by using the prescribed initial conditions where we may use

a0 = u(0),

a1 = u′(0),
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a2 =
1

2!
u′′(0), (16)

. . . .

Substituting (16) into both sides of (1), and assuming that the kernel k(x, t) is separable
as k(x, t) = p1(x)p2(t), we obtain

(

∞∑
k=0

akx
k)(n) = f(x) + λp1(x)

∫ x

0
p2(t)[

∞∑
k=1

kakt
k−1]pdt. (17)

Notice that by using this method, we put the procedure of the problem in a straightfor-
ward manner, although we can integrate both sides of (1) with respect to t. Using the
Taylor series expansions for f(x), p1(x) and p2(t), and equating the coefficients of like
powers in both sides of the resulting equations, one can easily determine the coefficients
ak, k ⩾ 0. Substituting the results in equation (15) leads to the series solution of u(x),
as a result, we may obtain the closed form of the solution if the exact solution exists.

4. Numerical Examples

In this part three examples are provided. These examples are considered to illustrate
ability and reliability of the new technique. The computations associated with the ex-
amples in this paper were performed using the package Matlab.
Example 4.1 Let us first consider the special case of nonlinear Volterra integro-
differential equation of second kind [12]:

u′(x) = ex +
1

2
(1− e2x) +

∫ x

0
[u′(t)]2dt, u(0) = 0. (18)

The exact solution of this problem is u(x) = ex − 1.
And we solve it by using combine Laplace transform and modified Adomian decompo-
sition method, the Adomian decomposition method and the series solution method as
follows:
4.1.1.Using LMADM: By taking Laplace transform of both sides equation (18), and
by using the initial condition we obtain

U(s) =
1

s(s− 1)
+

1

2s2
− 1

2s(s− 2)
+

1

s2
L{[u′(x)]2}, (19)

where

F (s) =
1

s(s− 1)
+

1

2s2
− 1

2s(s− 2)
, K(s) =

1

s2
, λ = 1. (20)

Now splitting F (s) into two part i.e.,

F0(s) =
1

s(s− 1)
, F1(s) =

1

2s2
− 1

2s(s− 2)
. (21)
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The modified Adomian decomposition method admits the use of

U0(s) =
1

s(s− 1)
,

U1(s) =
1

2s2
− 1

2s(s− 2)
+

1

s2
L{A0(x)},

Un+1(s) =
1

s2
L{An(x)}, n ⩾ 1. (22)

Using the recurrence relation (22), and by using the inverse Laplace transform of U0(s),
we find

u0(x) = ex − 1. (23)

Using this result in U1 of (22), and by using the inverse Laplace transform we find u1(x).
Proceeding in this manner we find the following components

u0(x) = ex − 1,

u1(x) = 0,

un+1(x) = 0, n ⩾ 1. (24)

The series solution is therefore given by

u(x) = ex − 1, (25)

which is the exact solution. It is clear that this series solution satisfies the first condition
u(0) = 0.
4.1.2.Using ADM: For using this method, we substitute the decomposition series (8)
for u(x) into both sides of (18) which gives

∞∑
n=o

u′n(x) = ex +
1

2
(1− e2x) +

∫ x

0
[

∞∑
n=o

An(t)]dt. (26)

Identifying the zero component u′0(x) in (26) by ex+ 1
2(1−e2x), the remaining components

u′n(x), n ⩾ 1 can be determined by using the following recurrence relation

u′0(x) = ex +
1

2
(1− e2x),

u′n(x) =

∫ x

0

∞∑
n=0

An(t)dt, n ⩾ 1,
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where An are the so-called Adomian polynomials. Therefore, we obtain

u0(x) =
1

2
x− 1

4
e2x + ex − 3

4
,

u1(x) =
1

8
e2x − 47

48
x− 1

9
e3x +

1

64
e4x + ex +

1

8
x2 − 593

576
,

u2(x) =
551

2880
x+

167

192
e2x − 5

54
e3x − 41

768
e4x +

11

600
e5x

− 1

576
e6x − 47

24
ex − 1

16
xe2x +

1

2
xex − 47

96
x2 +

1

24
x3 +

210457

172800
, (27)

. . . .

In view of the above equations, the solution u(x) is readily obtained in a series form by

u(x) = −1422665425256885

2533274790395904
+

1

24
x3 − 35

96
x2 +

1

2
xex − 1

16
te2x +

1

24
ex − 1

576
e6x

+
11

600
e5x − 29

768
e4x − 11

54
e3x − 829

2880
x+

143

192
e2x + · · · . (28)

The last expression shows that using the Adomian decomposition method cannot lead
to the closed form of the solution.
4.1.3.Using SSM: Evidently, from (18), we get u(0) = 0. Now, we consider the series
expansion (15):

u(x) =

∞∑
k=1

akx
k. (29)

By substituting (29) into both sides of (18), and using the Taylor series of the functions
involved, and finally integrating the right-hand side of the result equation, we have

a1x+ 2a2x
2 + · · · = 1 + x− (

1

2
− 2a1a2)x

2 + (−1

2
+ 4a22 + 6a1a3)x

3 + · · · . (30)

Now, we equate the coefficients of like powers of x from the both sides of (30), yields

a1 = 1, a2 =
1

2
, a3 =

1

6
, a4 =

1

24
, (31)

and so on. Substituting these results into (29) gives the following series solution:

u(x) = x+
1

2
x2 +

1

6
x3 +

1

24
x4 + · · · , (32)
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and in a closed form, u(x) = ex − 1.
Example 4.2 Second we can study the following nonlinear Volterra integro-differential
equation [1]:

u′′(x) = sinh(x) +
1

2
x+

1

2
cosh(x)sinh(x)−

∫ x

0
[u′(t)]2dt, u(0) = 0, u′(0) = 1 (33)

with the exact solution u(x) = sinh(x).
4.2.1.Using LMADM: Applying the Laplace transform of both sides equation (33),
and by using the initial conditions we have

U(s) =
1

s2 − 1
+

1

2s2(s2 − 4)
+

1

2s4
− 1

s3
L{[u′(x)]2}, (34)

where

F (s) =
1

s2 − 1
+

1

2s2(s2 − 4)
+

1

2s4
, K(s) =

1

s3
, λ = −1. (35)

Now splitting F (s) into two part i.e.,

F0(s) =
1

s2 − 1
, F1(s) =

1

2s2(s2 − 4)
+

1

2s4
. (36)

Applying the same procedure as in the previous example we arrive the modified recursive
relation given below

u0(x) = sinh(x),

u1(x) = 0,

un+1(x) = 0, n ⩾ 1. (37)

The series solution is therefore given by

u(x) = sinh(x), (38)

which is the exact solution. It is clear that this series solution satisfies the first conditions
u(0) = 0, u′(0) = 1.
4.2.2.Using ADM: By employing the Adomian decomposition method, we obtain

u0(x) = −9

8
x+

1

12
x3 + sinh(x) +

1

16
sinh(2x),

u1(x) =
17833

18432
x− 13

256
sinh(2x)− 1

8192
sinh(4x)− 35

9
sinh(x)
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+
3

128
xcosh(2x)− 1

2
x2sinh(x)− 1

54
sinh3(x)− 1

128
x2sinh(2x)

+3xcosh(x)− 227

768
x3 +

3

320
x5 − 1

3360
x7, (39)

. . . .

In view of (39), the solution u(x) is readily obtained in a series form by

u(x) = − 2903

18432
x+

3

256
sinh(2x)− 1

8192
sinh(4x)− 26

9
sinh(x)

+
3

128
xcosh(2x)− 1

2
x2sinh(x)− 1

54
sinh3(x)− 1

128
x2sinh(2x)

+3xcosh(x)− 163

768
x3 +

3

320
x5 − 1

3360
x7 + · · · . (40)

This solution also cannot be written in the closed form.
4.2.3.Using SSM: We use the series (15), namely

u(x) =

∞∑
k=0

akx
k, (41)

and substitute (41) into both sides of (33), and next we use the Taylor series expansion
of the functions involved, integrating the right-hand side of the result equation, and we
finally equate the coefficients of like powers of x from both sides, as a result, we have the
following:

a0 = 0, a1 = 1, a2 = 0, a3 =
1

3!
, a4 = 0, a5 =

1

5!
, (42)

and so on. Substituting the results given in (42) into (41), gives the following series
solution

u(x) = x+
1

3!
x3 +

1

5!
x5 +

1

7!
x7 + · · · , (43)

and in a closed form we have, u(x) = sinh(x).
Example 4.3 In the final example we consider the nonlinear Volterra integro-differential
equation:

u′(x) = xex +
1

3
x3e2x −

∫ x

0
e2(x−t)[u′(t)]2dt, u(0) = 0 (44)

with the exact solution u(x) = ex(x− 1) + 1.
4.3.1.Using LMADM: First, we apply the Laplace transform and by using the initial
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condition we obtain

U(s) =
1

s(s− 1)2
+

2

s(s− 2)4
− 1

s(s− 2)
L{[u′(x)]2}, (45)

where

F (s) =
1

s(s− 1)2
+

2

s(s− 2)4
, K(s) =

1

s(s− 2)
, λ = −1. (46)

Now splitting F (s) into two part i.e.,

F0(s) =
1

s(s− 1)2
, F1(s) =

2

s(s− 2)4
. (47)

Applying the same procedure as in the previous examples we arrive the modified recursive
relation given as

u0(x) = ex(x− 1) + 1,

u1(x) = 0,

un+1(x) = 0, n ⩾ 1. (48)

The series solution is therefore given by

u(x) = ex(x− 1) + 1, (49)

which is the exact solution. It is clear that u(0) = 0.
4.3.2.Using ADM: Proceeding with the previous steps, we obtain

u0(x) = ex(x− 1) +
e2x(8x3 − 12x2 + 12x− 6)

48
+

9

8
,

u1(x) =
135

16
e2x − 1936

243
e3x − 635

2048
e4x − 1

4
xe2x +

640

81
xe3x +

315

512
xe4x

+
1

4
x2e2x − 104

27
x2e3x − 1

6
x3e2x − 155

256
x2e4x +

32

27
x3e3x +

25

64
x3e4x

−2

9
x4e3x − 35

192
x4e4x +

1

16
x5e4x − 1

72
x6e4x − 79807

497664
, (50)

...
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In view of the above equations, the solution u(x) can be obtained in a following series
form

u(x) =
135

16
e2x − 1936

243
e3x − 635

2048
e4x − 1

4
xe2x +

640

81
xe3x +

315

512
xe4x

+ ex(x− 1) +
e2x(8x3 − 12x2 + 12x− 6)

48
+

1

4
x2e2x +

104

27
x2e3x

−1

6
x3e2x − 155

256
x2e4x +

32

27
x3e3x +

25

64
x3e4x − 2

9
x4e3x

− 35

192
x4e4x +

1

16
x5e4x − 1

72
x6e4x +

480065

497664
− · · · . (51)

This solution also cannot be written in the closed form.
4.3.3.Using SSM: By employing the series solution method, we obtain

a0 = 0, a1 = 0, a2 =
1

2
, a3 =

1

3
, a4 =

1

8
, a5 =

1

30
, (52)

and so on. Substituting the results given in (52) into (15), gives the following series
solution

u(x) =
1

2
x2 +

1

3
x3 +

1

8
x4 +

1

30
x5 + · · · , (53)

and in a closed form we have, u(x) = ex(x− 1) + 1.

5. Convergence Analysis

Here, we will study the convergence analysis as same manner in [7, 10] of the LMADM
applied to the nonlinear Volterra integro-differential equations.

6. Conclusion

In this paper, coupling Laplace transform and modified Adomian decomposition method,
for solving special type of nonlinear Volterra integro-differential equations of the second
kind, is presented successfully. Moreover we conducted a comparative study between
LMADM and the traditional methods, i.e. the ADM, and the SSM. The LMADM is
implemented in a straightforward manner, and it accelerates the rapid convergence of the
series solution. The two traditional methods suffer from the tedious work of calculations.
However, the traditional methods were capable of providing more than one solution
which is consistent with the theory of nonlinear equations. Generally speaking, LMADM
is reliable and more efficient compared to other techniques.
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