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Abstract. The annihilating-ideal graph of a commutative ring R is denoted by AG(R), whose
vertices are all nonzero ideals of R with nonzero annihilators and two distinct vertices I and
J are adjacent if and only if IJ = 0. In this article, we completely characterize rings R when
gr(AG(R)) ̸= 3.
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1. Introduction

Throughout this paper all rings are assumed to be commutative with identity 1 ̸= 0.
The notion of a zero divisor graph was first introduced by I. Beck in [7], who let all the
elements of R be vertices and two distinct vertices x and y are adjacent if and only if
xy = 0. He mainly discussed the coloring of the zero divisor graph. After that many
authors studied the zero divisor graph with some slight different in their definitions. For
a fairly complete survey on the topic see [3]. Some years later, experts generalized results
of the classic zero divisor graph theory to noncommutative rings ([10]) and recently to
module theory ([6]). Some authors assigned other graphs to rings such as co-maximal
ideal graph, total graph, unit graph, etc. (see, for example, [2, 4, 5]).
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For a commutative ring R, let A(R) be the set of all ideals with nonzero annihilators
and A(R)∗ = A(R)\{0}. In [8], the concept of the annihilating-ideal graph for a commu-
tative ring R was introduced. It is a simple undirected graph, denoted by AG(R) with
the vertex set A(R)∗ and two distinct vertices I and J are adjacent in case IJ = 0.

A graph G is said to be connected if there exists a path between any two distinct
vertices of G. For distinct vertices x and y of G, let d(x, y) be the length of a shortest
path from x to y, if there is no such path, we put d(x, y) = ∞ and let d(x, x) = 0. The
diameter of G is

diam(G) = sup{d(x, y) | x and y are distinct vertices of G}.

The girth of G, denoted by gr(G), is the length of the shortest cycle in G and if G contains
no cycles then gr(G) = ∞. In [8, Theorem 2.1], it was shown that for a commutative
ring R, the annihilating-ideal graph AG(R) is always connected with diam(AG(R)) ≤ 3
and gr(AG(R)) = 3, 4 or ∞.

A graph G is bipartite if the vertex set of G can be partitioned into two subsets A and
B such that no edge has both ends in any one subset. A bipartite graph G is said to be
complete in case every vertex is adjacent to every other vertices that are not in the same
subset. A complete bipartite graph with parts A and B such that |A| = m and |B| = n
is denoted by Km,n. A star graph is a complete bipartite graph K1,n. Let K̄n,2 be the
graph formed by joining the complete bipartite graph G1 = Kn,2 (with vertex set A∪B,
|A| = n and |B| = 2) to the star graph G2 = K1,n by identifying the center of G2 and a
point of B.

In Section 2, we investigate when gr(AG(R)) = 4. We prove that for a commutative
reduced ring R, gr(AG(R)) = 4 if and only if AG(R) = Km,n for some infinite cardinals
m and n. Next we show that for a commutative ring R with Nil(R) ̸= 0, gr(AG(R)) = 4
if and only if AG(R) = K̄n,2 for some infinite cardinal n. Moreover, R has nontrivial
idempotents.

Section 3 concerns with the case when gr(AG(R)) = ∞. For a commutative ring R, it
turns out that gr(AG(R)) = ∞ if and only if AG(R) is a star graph or AG(R) = K̄1,2

depending on whether or not R is a reduced ring. Finally we determine the girth of the
annihilating-ideal graph of polynomial ring R[x] and power series ring R[[x]] in term of
gr(AG(R)).

For a commutative ring R, let Nil(R) be the set of all nilpotent elements of R. If I is
an ideal of R, we denote the annihilator of I in R by annR(I).

2. Rings with gr(AG(R)) = 4

In this section we characterize rings R for which gr(AG(R)) = 4. First we prove the
following useful lemma about cycles of odd length in the annihilating-ideal graphs.

Lemma 2.1 For a commutative ring R, if gr(AG(R)) = 4, then AG(R) contains no
cycle of odd length.

Proof. We prove by induction on the length of a cycle. Obviously AG(R) contains no
cycle of length 3. Now suppose that there is no cycle of length 3, 5, 7,..., 2k−1 in AG(R).
We show that there dose not exist a cycle of length n := 2k + 1 in AG(R). By contrary,
suppose that I1 − I2 − ... − In − I1 is a cycle of length n in AG(R). Note that I1I3 ̸= 0
and consider the closed path I1I3− I4− I5− ...− In− I1I3 of length n−2. If I1I3 ̸= Ij for
4 ⩽ j ⩽ n, then we would have a cycle of length n − 2 which contradicts our induction
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hypothesis. Now suppose that I1I3 = Ij for some 4 ⩽ j ⩽ n. We have two cases:

Case i. If j is even, then I2−I3−I4− ...−Ij−I2 is a cycle of odd length less than 2k+1,
which is impossible.

Case ii. If j is odd, then Ij − Ij+1− ...− In− I1− I2− Ij is a cycle of odd length less than
2k + 1 and this is impossible.

Therefore, in AG(R) there exist no cycle of odd length. ■

It is known that a connected graph is bipartite if and only if it contains no cycle of
odd length.

Proposition 2.2 Let R be a commutative ring such that AG(R) has at least two ver-
tices. If gr(AG(R)) ̸= 3, then AG(R) is a bipartite graph.

Proof. We must have gr(AG(R)) = 4 or ∞. Therefore, by Lemma 2.1, there exists no
cycle of odd length in AG(R). Since AG(R) is always a connected graph, it should be a
bipartite graph. ■

In the following, we have another result considering when the annihilating-ideal graph
of a reduced ring R is a (complete) bipartite graph. Note that this result is similar to [9,
Theorem 2.3], but its proof is not the same as that one.

Proposition 2.3 Let R be a commutative reduced ring. Then AG(R) is a bipartite
graph if and only if there exist nonzero prime ideals P and Q of R with P ∩Q = 0.

Proof. Suppose that there exist nonzero prime ideals P and Q of R with P ∩ Q = 0.
Let

X := {I | I is a nonzero ideal of R contained in P}

and

Y := {J | J is a nonzero ideal of R contained in Q}.

We show that AG(R) is a complete bipartite graph with vertex set X ∪ Y . Let I be
an arbitrary vertex in AG(R). Since AG(R) is a connected graph, there is a vertex J
adjacent to I and so IJ = 0. As P is a prime ideal of R, I ⊆ P or J ⊆ P . If I ⊆ P
then I ∈ X. If I ⊈ P , then J ⊆ P . Since J ⊈ Q, we must have I ⊆ Q and hence I ∈ Y .
Therefore, A(R)∗ ⊆ X ∪ Y . Note that P ∩Q = 0 implies that X ∩ Y = ø and any vertex
in X is adjacent to any vertex in Y . Also vertices in X or vertices in Y are not adjacent
to each other. For if I1 and I2 are vertices in X with I1I2 = 0, then I1I2 ⊆ Q implies
that I1 ⊆ Q or I2 ⊆ Q. Thus I1 ⊆ P ∩Q or I2 ⊆ P ∩Q, which is impossible. Therefore,
AG(R) is a complete bipartite graph with the vertex set X ∪ Y .

Conversely, suppose that AG(R) is a bipartite graph. Therefore, A(R)∗ = X ∪ Y and
X ∩ Y = ø. Let P :=

∑
I∈X I and Q :=

∑
J∈Y J . First we show that P is a prime ideal

of R. Suppose that a, b are nonzero elements of R with ab ∈ P . Then there exist a vertex
I in X such that ab ∈ I. Since AG(R) is a bipartite graph, there is a vertex J ∈ Y with
IJ = 0, thus abJ = 0. Now we have the following two cases:

Case i. bJ = 0. Then RbJ = 0 and Rb ̸= J , observe that R is a reduced ring. As AG(R)
is a bipartite graph and J ∈ Y , we have Rb ∈ X and so b ∈ P .

Case ii. bJ ̸= 0. We claim that bJ ∈ Y and a ∈ P . We have IJ = 0 and so I(bJ) = 0.
Since R is reduced, I ̸= bJ and hence bJ ∈ Y . Also (Ra)(bJ) = 0 implies that
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Ra ̸= bJ and Ra ∈ X, thus a ∈ P .

Therefore, P is a nonzero prime ideal of R. Similarly, we can prove that Q is a prime
ideal of R. Now we show that P ∩ Q = 0. Let 0 ̸= x ∈ P ∩ Q. Then there is a vertex
I ∈ X with x ∈ I. As AG(R) is a bipartite graph, there is a vertex J ∈ Y with IJ = 0.
Thus (Rx)J = 0 and so Rx ∈ X. Similarly, we can show that Rx ∈ Y . Therefore,
Rx ∈ X ∩ Y = ø which is impossible. Hence P ∩Q = 0. ■

Now we characterize rings R for which gr(AG(R)) = 4. Two cases can be happened
depending on whether or not R is a reduced ring.

Theorem 2.4 Let R be a commutative reduced ring. The following statements are
equivalent.

(a) gr(AG(R)) = 4
(b) There exist nonzero prime ideals P and Q of R which are not minimal ideals such

that P ∩Q = 0.
(c) AG(R) = Km,n, for some infinite cardinals m and n.

Proof. (a)=⇒(b) By Proposition 2.2, AG(R) is a bipartite graph. Since R is a reduced
ring, Proposition 2.3 implies that there exist nonzero prime ideals P and Q of R with
P ∩Q = 0. Note that as in the proof of Proposition 2.3, if one of the prime ideals P or
Q is a minimal ideal of R, then AG(R) would be a star graph which does not contain a
cycle of length 4.

(b)=⇒(c) Let

X := {I | I is a nonzero ideal of R contained in P}

and

Y := {J | J is a nonzero ideal of R contained in Q}.

If |X| = m and |Y | = n, then as in the proof of Proposition 2.3, AG(R) ∼= Km,n. We
claim that m and n are infinite cardinals. By way of contrary, suppose that m < ∞.
Thus P contains finitely many nonzero ideals of R and so there exists a minimal ideal I
of R contained in P . Clearly, M := annR(I) is a maximal ideal of R contained in Q, and
hence M = Q. Therefore, R = P ⊕Q and hence P ∼= R/Q. Thus P is a minimal ideal of
R and this is a contradiction.

(c)=⇒(a) It is clear. ■

Note that for the nonzero rings R1 and R2, the prime ideals of the ring R1 × R2 are
of the form R1 × P2 and P1 ×R2 where Pi’s are prime ideals of Ri’s.

Corollary 2.5 Let R be a commutative reduced ring with nontrivial idempotents, then
gr(AG(R)) = 4 if and only if R = R1 ×R2 where R1 and R2 are integral domains which
are not fields.

Proof. Let R = R1×R2 where R1 and R2 are nonzero rings. Suppose that gr(AG(R)) =
4, then by Theorem 2.4, there exist nonzero prime ideals P and Q of R which are not
minimal ideals such that P ∩Q = 0. According to the above fact about prime ideals of
the ring R = R1 × R2, we should have P = R1 × 0 and Q = 0 × R2, therefore, R1 and
R2 are integral domains which are not fields. ■

In the following, we consider non-reduced rings R with gr(AG(R)) = 4. First we prove
the next lemma.
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Lemma 2.6 Let R be a commutative ring with Nil(R) ̸= 0. If gr(AG(R)) = 4, then R
has a nontrivial idempotent, i.e., we have R = R1 ×R2 for nonzero rings R1 and R2.

Proof. Let I ba a nonzero ideal of R with I2 = 0. Since any two distinct nonzero ideals
contained in I are adjacent and gr(AG(R)) ̸= 3, there exists at most one nonzero ideal
properly contained in I. so without of generality, we can assume that I is a minimal ideal
of R. Let M := annR(I), then M is a maximal ideal of R and M ̸= I, otherwise, (R,M)
would be a local ring and AG(R) ∼= K1. Suppose that J and K are two nonzero distinct
ideals of R such that JK = 0, J ̸= I and K ̸= I. Since JK ⊆ M , one of the ideals J or
K, say J must be contained in M and hence IJ = 0. Note that IK ̸= 0, because there
does not exist any triangle in AG(R). Thus d(I,K) = 2. Therefore, for any vertex L in
AG(R), we have d(I, L) = 0, 1 or 2. Now put

X := {J ∈ A(R)∗ | d(I, J)=0 or 2}

and

Y := {J ∈ A(R)∗ | d(I, J)=1}.

Then A(R)∗ = X∪Y and X∩Y = ø. It is easy to observe that AG(R) is a bipartite graph
with two parts X and Y . Now let P :=

∑
J∈X J and Q :=

∑
J∈Y J . Clearly, Q = M

and I ⊆ P ∩Q. We claim that P ∩Q is a nil ideal of R. By the contrary, let x ∈ P ∩Q
and that x is not nilpotent. Since x ∈ P and x is not nilpotent, there exists J ∈ X such
that x ∈ J and d(I, J) = 2. Now the connectivity of AG(R) implies that for some ideal
K ∈ Y , we have JK = 0 and so (Rx)K = 0. As x is not nilpotent and K ∈ Y , we have
Rx ̸= K and Rx ∈ X. Since x ∈ Q = M is not nilpotent, (Rx)I = 0 and thus Rx ∈ Y ,
we conclude that Rx ∈ X ∩ Y = ø, which is a contradiction. Therefore, P ∩ Q is a nil
ideal of R and P +Q = R. Consequently R/P ×R/Q and hence the ring R/P ∩Q has
a nontrivial idempotent. It is known that idempotents can be lifted modulo nil ideals,
therefore, R has a nontrivial idempotent too. ■

Theorem 2.7 Let R be a commutative ring with Nil(R) ̸= 0. Then the following
statements are equivalent:

(a) gr(AG(R)) = 4
(b) R ∼= D × S, where D is an integral domain which is not a field and (S,M) is a

local ring such that M2 = 0 and M is a minimal ideal of S.
(c) AG(R) = K̄n,2 for some infinite cardinal n.

Proof. (a)=⇒(b) Since gr(AG(R)) = 4 and Nil(R) ̸= 0, Lemma 2.6 implies that R has a
nontrivial idempotent, so R = R1×R2, for some nonzero rings R1 and R2. AsNil(R) ̸= 0,
there is a nonzero ideal I of R with I2 = 0. Let I := I1× I2 where Ii is an ideal of Ri for
i = 1, 2. If I1 and I2 are nonzero ideals, then I1 × 0− I1 × I2 − 0× I2 − I1 × 0 would be
a triangle in AG(R). Therefore, we can assume that I1 = 0 and I2 ̸= 0. If there exists a
nonzero ideal I ′ of R2 distinct from I2 such that I ′I2 = 0, then 0×I2−0×I ′−R1×0−0×I2
is a triangle in AG(R), but gr(AG(R)) = 4. We conclude that I2 is a minimal ideal of R2

and I2 = annR2
(I2) is a maximal ideal of R2, thus R2 is a local ring and I2 is the only

nontrivial ideal of R2. Now we show that R1 is an integral domain, otherwise if K and J
are two nonzero ideals in R1 with KJ = 0, then K × 0− J × I2 − 0× I2 −K × 0 would
be a triangle in AG(R). Note that R1 is not a field, since there is a cycle of length 4 in
AG(R).

(b)=⇒(c) Suppose that R = D×S, where D is an integral domain which is not a field



214 M. Ahrari et al. / J. Linear. Topological. Algebra. 04(03) (2015) 209-216.

and (S,M) is a local ring such that M2 = 0 and M is a minimal ideal of S. Consider the
following three subsets of A(R)∗.

X := {I × 0 | I is a nonzero ideal of D}

Y := {0× S, 0×M}

Z := {I ×M | I is a nonzero ideal of D}.

Thus A(R)∗ = X ∪ Y ∪ Z and every vertex in X is adjacent to every vertex in Y and
also every vertex in Z is adjacent to only o×M . If |X| = n, then AG(R) ∼= K̄n,2.

(c)=⇒(a) It is obvious. ■

As a consequence of Theorem 2.4 and Theorem 2.7, the complete bipartite graph Km,n

with m,n > 1 can be realized as an annihilating-ideal graph AG(R) if and only if m and
n are infinite cardinals. The following example exhibits such rings.

Example 2.8 Let F be a field and R = F [x,y]
⟨xy⟩ , then R is a reduced ring with two nonzero

prime ideals P = ⟨x⟩
⟨xy⟩ and Q = ⟨y⟩

⟨xy⟩ such that P ∩Q = 0. We have gr(AG(R)) = 4 and

AG(R) ∼= Km,n for infinite cardinals m and n.

3. Rings with gr(AG(R)) = ∞

The aim of this section is to study rings whose annihilating-ideal graph have no cycles.
First we consider reduced rings.

Theorem 3.1 For a commutative reduced ring R, the following statements are equiva-
lent:

(a) gr(AG(R)) = ∞
(b) R ∼= F ×D where F is a field and D is an integral domain.
(c) AG(R) is a star graph.

Proof. (a)=⇒(b) Suppose that gr(AG(R)) = ∞, then by Proposition 2.2, AG(R) is a
bipartite graph. Since R is a reduced ring and there is no cycle in AG(R), Proposition 2.3
implies that there are nonzero prime ideals P and Q of R with P ∩Q = 0 and one of the
ideals P or Q is a minimal ideal of R, say P . Note that M := annR(P ) is a maximal ideal
of R. We have PM = 0 ⊆ Q and P ⊈ Q, hence M = Q. Therefore, R ∼= (R/P )× (R/Q),
where R/P is an integral domain and R/Q is a field.

(b)=⇒(c)and (c)=⇒(a) are clear. ■

Now we characterize non-reduced rings R for which gr(AG(R)) = ∞. Two cases can
be occurred depending on whether or not R has nontrivial idempotents.

Proposition 3.2 Let R be a commutative non-reduced ring with a nontrivial idempo-
tent. The following statements are equivalent:

(a) gr(AG(R)) = ∞
(b) R ∼= F × S where F is a field and (S,M) is a local ring such that M2 = 0 and

M is a minimal ideal of S.
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(c) AG(R) ∼= K̄1,2

Proof. It is similar to the proof of Theorem 2.7. ■

Proposition 3.3 Let R be a commutative non-reduced ring with no nontrivial idempo-
tent, then gr(AG(R)) = ∞ if and only if AG(R) is a star graph or a singleton.

Proof. If AG(R) is a star graph or a singleton, clearly, gr(AG(R)) = ∞. Now suppose
that gr(AG(R)) = ∞. There is a nonzero ideal I of R with I2 = 0. As in the proof
of Lemma 2.6 , we can assume that I is a minimal ideal of R. Thus M := annR(I) is
a maximal ideal of R. If I = M , then AG(R) is a singleton. So suppose that I ̸= M ,
we claim that AG(R) is a star graph with center I. By the contrary, suppose that K
and L are two distinct vertices in AG(R) such that KL = 0 and K ̸= I ̸= L. Since
KL = 0 ⊆ M , we have K ⊆ M or L ⊆ M . Assume that K ⊆ M , thus IK = 0. Now if
0 ̸= J ⊊ K, then I−K−L−J−I would be a cycle of length 3 or 4 but gr(AG(R)) = ∞.
So K must be a minimal ideal of R. Since R has no nontrivial idempotents, K2 = 0 and
hence I − K − (K + I) − I is a cycle in AG(R). Therefore, we get a contradiction.
Consequently, AG(R) is a star graph with center I. ■

In the sequel, we present some examples of rings R for which AG(R) is a star graph.
But first we need the following lemma.

Lemma 3.4 Let R be a commutative ring with |A(R)∗| > 1. If R has a minimal ideal
P such that P is a prime ideal of R, then AG(R) is a star graph.

Proof. If I and J are nonzero ideals of R with IJ = 0, then I = P or J = P . Thus P
is the only vertex in AG(R) which is adjacent to every other vertices. ■

Note that the converse of Lemma 3.4 is not true in general. For the counterexample,
see the following.

Example 3.5 (a) The annihilating-ideal graph of the rings Zp4 where p is a prime

number and K[x]
⟨x4⟩ where K is a field, are isomorphic to K1,2.

(b) Let R = F [x,y]
⟨x2,xy⟩ where F is a field. Then ⟨x⟩

⟨x2,xy⟩ is a minimal ideal of R which is a

prime ideal. Then by Lemma 3.4, AG(R) is an infinite star graph.

(c) Let R = F [x,y]
⟨x2,y2⟩ where F is a field of characteristic 2. The annihilating-ideal graph

of R is a star graph. If x̄ = x + ⟨x2, y2⟩ and ȳ = y + ⟨x2, y2⟩, then ⟨x̄ȳ⟩ is the vertex
which is adjacent to every other vertices. Note that ⟨x̄ȳ⟩ is a minimal ideal of R which
is not a prime ideal and AG(R) is a finite star graph if and only if F is a finite field.

As an application of our results about gr(AG(R)), we can obtain gr(AG(R[x])) in
terms of gr(AG(R)).

Theorem 3.6 Let R be a commutative ring which is not an integral domain.

(a) If R is non-reduced, then gr(AG(R[x])) = 3
(b) If R is reduced and gr(AG(R)) = 3, then gr(AG(R[x])) = 3.
(c) If R is reduced and gr(AG(R)) ̸= 3, then gr(AG(R[x])) = 4.

Similar results hold for AG(R[[x]]).

Proof. (a) Suppose that R is a non-reduced ring, then there is a nonzero ideal I of R
with I2 = 0. Now consider the cycle I[x]−xI[x]−x2I[x]−I[x] in AG(R[x]) which implies
that gr(AG(R[x])) = 3.
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(b)Assume that R is a reduced ring with gr(AG(R)) = 3. So there are three distinct
nonzero ideals I, J and K in R such that I − J −K − I is a cycle in AG(R). Obviously,
I[x]− J [x]−K[x]− I[x] is a triangle in AG(R[x]) and hence gr(AG(R[x])) = 3.

(c) Suppose that R is a reduced ring with gr(AG(R)) ̸= 3, so by Proposition 2.2,
AG(R) is a bipartite graph. Now Proposition 2.3 implies that P ∩ Q = 0, for some
nonzero prime ideals P and Q of R. Observe that P [x] and Q[x] are two nonzero prime
ideals of R[x] with P [x] ∩ Q[x] = 0. Again by Proposition 2.3 , AG(R[x]) is a bipartite
graph, and P [x]−Q[x]−xP [x]−xQ[x]−P [x] is a cycle of length 4 in AG(R[x]). Therefore,
gr(AG(R[x])) = 4. ■
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