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Application of triangular functions for solving Vasicek model
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Abstract. This paper introduces a numerical method for solving the vasicek model by using
a stochastic operational matrix based on the triangular functions (TFs) in combination with
the collocation method. The method is stated by using conversion the the vasicek model
to a stochastic nonlinear system of 2m + 2 equations and 2m + 2 unknowns. Finally, the
error analysis and some numerical examples are provided to demonstrate applicability and
accuracy of this method.
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1. Introduction

The vasicek model is a mathematical model describing the evolution of interest rates
where play important role in finance. This model can be used for interest rate derivative
valuation and also adapted for credit market. It is based on the ornstein-uhlenbeck pro-
cess (is the first account of a bond pricing model), that incorporates stochastic interest
rate and can be also seen as a stochastic investment model. The short-term interest rate
process (X(t))t∈R+ solves the equation

dX(t) = α(β −X(t))dt+ σdB(t),
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where dX(t) be the change in the short-term interest rate, α be the speed of mean
reversion, β be the average interest rate and σ be the volatility of the short rate.
The main disadvantage is that, under vasicek model, it is theoretically possible for the
interest rate to become negative. This shortcoming was fixed in the Cox-Ingersoll-Ross
(CIR) model. The CIR process is a markov process with continuous paths defined by the
following SDE:

dX(t) = α(β −X(t))dt+ σ
√

X(t)dB(t),

or

X(t) = X0 +

∫ t

0
α(β −X(s))ds+

∫ t

0
σ
√

X(s)dB(s), (1)

where B(s) is a standard Brownian motion (SBM) defined on a complete probability
space (Ω,𝟋, {Ft}t⩾0, P ) with natural filtration {Ft}t⩾0 and X(t) is unknown stochastic
processes defined on same probability space.

In the last years, many methods are proposed and applied for numerical solutions of
stochastic differential equations [5, 8, 9, 10], because these kinds of equations can not be
solved analytically. Hence, it is importance to provide their numerical solutions.
In this work, we reduce the Eq. (1) to the stochastic nonlinear system of 2m+2 equations
and 2m + 2 unknowns without integration by using operational matrices based on the
TFs in combination with the collocation technique, with several advantages in reducing
computations and making convergence faster than the other methods.

The results of the paper are organized as follows: In Section 2, we state some essential
preliminaries which play fundamental role in our method. In Section 3, we solve Eq.
(1) by using the stochastic operational matrix based on the TFs in combination with
the collocation method. In Sections 4 and 5, we provide the error analysis and some
numerical examples to demonstrate the applicability and accuracy of presented method.
Finally, in Section 6, we give a brief conclusion.

2. Preliminaries

The first, we state the basic properties of the SBM that play important role in solving
Eq. (1). For more details see [2, 12].

Let h(t,X), g(t,X) : (0, T ) × R → R be measurable functions and continuous with
the main properties as follows:
A1. There are constants k1, k2 > 0, such that:{

|g(t,X)− g(t, Y )| ⩽ k1|X − Y |, (lipschitz continuity),
|g(t,X)| < k2(1 + |X|), (lineargrowth).

A2. There are constants k3, k4 > 0, such that:{
|h(t,X)− h(t, Y )| < k3|X − Y |, (lipschitz continuity),
|h(t,X)| < k4(1 + |X|), (lineargrowth).

For X, Y ∈ R and t ∈ (0, T ).
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Theorem 2.1 [2, 12] Let g(t,X(t)) and h(t,X(t)) hold in conditions A1, A2 and E |
X0 |2< ∞, then, there exists a unique solution for Eq. (1).

Definition 2.2 The SBM {B(t), t ⩾ 0} is the stochastic process with main properties
as follows:
1. The process has independent increments for 0 ⩽ t0 ⩽ t1 ⩽ ... ⩽ tn ⩽ T .
2. B(t + h) − B(t) is normally distributed with mean 0 and variance h, for all t ⩾ 0,
h > 0 .
3. B(t) is a continuous function.

Definition 2.3 Let ν = ν(S, T ) be the class of functions α(t, ω) : [0,∞)×Ω −→ R such
that:
1. The function α(t, ω) be β ×𝟋 measurable.
2. The function α(t, ω) is Ft-adapted.

3. E
[ ∫ T

S α2(t, ω)dt] < ∞.

Theorem 2.4 [2, 12] Let f ∈ ν(S, T ), then

E
[
(

∫ T

S
f(t, ω)dB(t)(ω))2

]
= E

[ ∫ T

S
f2(t, ω)dt

]
.

Finally, we introduce some essential properties of the TFs that are needful for this
paper. For more details see [1, 3, 4, 6, 7, 11].
1. The 1D-TF vector are defined as follows:

T (t) =

(
T1(t)
T2(t)

)
,

where T1(t) = [T 1
0 (t), . . . , T

1
i (t), . . . , T

1
m−1(t)]

T ,

T2(t) = [T 2
0 (t), . . . , T

2
i (t), . . . , T

2
m−1(t)]

T ,

with

T 1
i (t) =

1− t−ih
h ih ⩽ t < (i+ 1)h,

0 otherwise,

and

T 2
i (t) =


t−ih
h ih ⩽ t < (i+ 1)h,

0 otherwise,

where h = T
m .

2. Let the function f(t) ∈ L2
(
(0, T )

)
, then

f(t) ≈ F T .T (t),
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where F = [f1, f2]
T , f1 = (f(ih))m×1, f2 = (f((i+ 1)h))m×1 and i = 0, 1, ..,m− 1.

3. ∫ t

0
T (s)ds ≈ PT .T (t),

where

PT =

(
P1 P2
P1 P2

)
,

with

P1 =


0 h

2
h
2 . . . h

2
0 0 h

2 . . . h
2

0 0 0 . . . h
2

...
...
...
. . .

...
0 0 0 . . . 0


m×m

,

and

P2 =


h
2

h
2

h
2 . . . h

2
0 h

2
h
2 . . . h

2
0 0 h

2 . . . h
2

...
...
...
. . .

...

0 0 0 . . . h
2


m×m

.

4. ∫ t

0
T (s)dB(s) ≈ PS .T (t),

where

PS =

(
P1S P1S
P2S P2S

)
,

with

P1S =



α(0) β(0) β(0) . . . β(0)

0 α(1) β(1) . . . β(1)

0 0 α(2) . . . β(2)

...
...

...
. . .

...

0 0 0 . . . β(m− 2)

0 0 0 . . . α(m− 1)


m×m

,
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P2S =



γ(0) ρ(0) ρ(0) . . . ρ(0)

0 γ(1) ρ(1) . . . ρ(1)

0 0 γ(2) . . . ρ(2)

...
...

...
. . .

...

0 0 0 . . . ρ(m− 2)

0 0 0 . . . γ(m− 1)


m×m

,

and 

α(i) = (i+ 1)[B((i+ 0.5)h)−B(ih)]−
∫ (i+0.5)h
ih

s
hdB(s),

β(i) = (i+ 1)[B((i+ 1)h)−B(ih)]−
∫ (i+1)h
ih

s
hdB(s),

γ(i) = −i[B((i+ 0.5)h)−B(ih)] +
∫ (i+0.5)h
ih

s
hdB(s),

ρ(i) = −i[B((i+ 1)h)−B(ih)] +
∫ (i+1)h
ih

s
hdB(s).

3. Solving NSDE by using the TFs

To find a solution for the Eq. (1) we can write it as follows:

X(t) = X0 +

∫ t

0
p(s)ds+

∫ t

0
q(s)dB(s). (2)

with {
α(β −X(s)) = g(s,X(s)) = p(s),

σ
√

X(s) = h(s,X(s)) = q(s),
(3)

with substituting (3) in Eq. (2), we get

X(t) = X0 +

∫ t

0
p(s)ds+

∫ t

0
q(s)dB(s). (4)

By using properties of the TFs, we can write{
p(s) ≈ P T .T (s),
q(s) ≈ QT .T (s),

(5)

where

P = (pi)2m×1 =
(
p(0), p(h), . . . , p((m− 1)h), p(h), p(2h), . . . , p(mh)

)
2m×1

,
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and

Q = (qi)2m×1 =
(
q(0), q(h), . . . , q((m− 1)h), q(h), q(2h), . . . , q(mh)

)
2m×1

.

With substituting (5) in (4), we get

X(t) ≈ X0 +

∫ t

0
P T .T (s)ds+

∫ t

0
QT .T (s)dB(s), (6)

or

X(t) ≈ X0 + P TPTT (t) +QTPST (t). (7)

Also, by substituting (7) in (3), we obtain{
p(t) ≈ g(t,X0 + P TPTT (t) +QTPST (t)),
q(t) ≈ h(t,X0 + P TPTT (t) +QTPST (t)).

(8)

Now, with replacing ≈ by =, the relation (8) is approximated via the collocation method
in m+ 1 nodes tj =

j
1

T
m+1

(j = 0, 1, . . . ,m), as follows:

{
p(tj) = g(tj , X0 + P TPTT (tj) +QTPST (tj)),
q(tj) = h(tj , X0 + P TPTT (tj) +QTPST (tj)),

(9)

or {
P TT (tj) = g(tj , X0 + P TPTT (tj) +QTPST (tj)),
QTT (tj) = h(tj , X0 + P TPTT (tj) +QTPST (tj)),

(10)

where Eq. (10) is the nonlinear system of 2m+2 equations and 2m+2 unknowns. From
solving Eq. (10), we can conclude

X(t) = Xm(t) = X0 + P TPTT (t) +QTPST (t). (11)

4. Error analysis

Theorem 4.1 Let f(t) be an arbitrary real bounded function on (0, 1), |f ′(t)| ⩽ M and

e(t) = f(t)− f̂(t) that f̂(t) denotes the TFs of f(t). Then,

||e(t)||2 ⩽ O(h2),

where ||e(t)||2 =
∫ 1
0 |e(t)|2dt.

Proof. By using properties of the TFs, we can write

|e(t)| = |f(t)− f̂(t)| = |f(t)−
m−1∑
i=0

f(ih)(1− t− ih

h
) + f((i+ 1)h)(

t− ih

h
)|.
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Let t ∈ (ih, (i+ 1)h), so, we get

|e(t)| = |f(t)− f̂(t)| = |f(t)− f(ih)(1− t− ih

h
)− f((i+ 1)h)(

t− ih

h
)| =

|f(t)− f(ih) +
(
f(ih)− f((i+ 1)h)

)
(
t− ih

h
)| ⩽ |f(t)− f(ih)|+ |f(ih)−

f((i+ 1)h)|| t− ih

h
| ⩽ |f(t)− f(ih)|+ |f(ih)− f((i+ 1)h)|,

by using the mean value theorem, we get

|e(t)| ⩽ |f ′(α)|(t− ih) + |f ′(t)h| ⩽ Mh,

consequently

||e(t)||2 =
∫ 1

0
|e(t)|2dt ⩽ M2h2 ⩽ O(h2). ■

Let

{
pm(t) = g(t,Xm(t)),
qm(t) = h(t,Xm(t)),

(12)

and

{
p̂(t) = ĝ(t,Xm(t)),

q̂(t) = ĥ(t,Xm(t)),
(13)

where p̂(t) and q̂(t) are defined by properties of the TFs. Also, let Xm(t) be numerical
solution of Eq. (1) defined in Eq. (11).

Theorem 4.2 Let Xm(t) be the numerical solution of Eq. (1) defined in Eq. (11) and
let conditions A1, A2 and E | X0 |2< ∞ hold. Then,

∥ X(t)−Xm(t) ∥2⩽ O(h2), t ∈ (0, 1), (14)

where ∥ X ∥2= E[X2].

Proof

X(t)−Xm(t) =

∫ t

0
(p(s)− p̂(s))ds+

∫ t

0
(q(s)− q̂(s))dB(s), (15)
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via
(
x+y

)2 ⩽ 2
(
x2+y2

)
and the property of the Itô isometry for the SBM, we can write

∥ X(t)−Xm(t) ∥2⩽ 2
(
∥
∫ t

0
(p(s)− p̂(s))ds ∥2 + ∥

∫ t

0
(q(s)− q̂(s))dB(s) ∥2

)
⩽ 2

( ∫ t

0
∥ p(s)− p̂(s) ∥2 ds+ ∥

∫ t

0
(q(s)− q̂(s))ds ∥2

)
⩽ 2

( ∫ t

0
∥ p(s)− p̂(s) ∥2 ds+∫ t

0
∥ q(s)− q̂(s) ∥2 ds

)
⩽ 2

(
2

∫ t

0
∥ p(s)− pm(s) ∥2 ds+ 2

∫ t

0
∥ pm(s)− p̂(s) ∥2 ds

+2

∫ t

0
∥ q(s)− qm(s) ∥2 ds+ 2

∫ t

0
∥ qm(s)− q̂(s) ∥2 ds

)
⩽ 4

( ∫ t

0
∥ p(s)− pm(s) ∥2

ds+

∫ t

0
∥ pm(s)− p̂(s) ∥2 ds+

∫ t

0
∥ q(s)− qm(s) ∥2 ds+

∫ t

0
∥ qm(s)−

q̂(s) ∥2 ds
)
. (16)

By using Theorem (4.1), we have{
∥ pm(s)− p̂(s) ∥2⩽ L1h

2, L1 > 0,
∥ qm(s)− q̂(s) ∥2⩽ L2h

2, L2 > 0.
(17)

Also, by using conditions A1 and A2, we have{∫ t
0 ∥ p(s)− pm(s) ∥2 ds ⩽ L3

∫ t
0 ∥ X(s)−Xm(s) ∥2 ds,∫ t

0 ∥ q(s)− qm(s) ∥2 ds ⩽ L4

∫ t
0 ∥ X(s)−Xm(s) ∥2 ds.

(18)

With substituting (17) and (18) in (16), we obtain

∥ X(t)−Xm(t) ∥2⩽ 4
(
L1h

2 + L3

∫ t

0
∥ X(s)−Xm(s) ∥2 ds+ L2h

2 +

L4

∫ t

0
∥ X(s)−Xm(s) ∥2 ds

)
, (19)

or

η(t) ⩽ m+ n

∫ t

0
η(s)ds,

where m = 4(L1h
2 +L2h

2), n = 4(L3 +L4) and η(s) =∥ X(s)−Xm(s) ∥2. Furthermore,
from Gronwall inequality, we get

η(t) ⩽ m(1 + n

∫ t

0
exp

(
n(t− s)

)
ds), t ∈ (0, 1),

so

∥ X(t)−Xm(t) ∥2⩽ O(h2). ■
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5. Numerical examples

In this section, we give some numerical results to illustrate our main results. The numeri-
cal results have been shown in Figures (1-4) via a comparison between numerical solution
of deterministic model and numerical solution of stochastic model. Also, the numerical
solution of deterministic model has been approximated using properties of the TFs. In
addition, we assume X0 = 0.03, α = 0.05, β = 0.3 and σ = 0.002 in Figures (1-2) and
X0 = 0.5, α = 0.2, β = 0.005 and σ = 0.002 in Figures (3-4).

Fig.6 results for H = 3
4
.

Fig.1 Fig.2

Fig.6 results for H = 3
4
.

Fig.3 Fig.4

6. Conclusion

In this paper, we introduce the numerical method based on the TFs for solving the
vasicek model. With using this method, we reduce Eq. (1) to the stochastic nonlinear
system. Also, numerical simulations are provided to accuracy of presented method.
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