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1. Introduction

In 1940, a question that was given by Ulam [27] concerning the stability of group ho-
momorphisms gave rise to the stability problem of functional equations. In the following
year, Hyers [14] gave a partial affirmative answer to the question of Ulam for Banach
spaces. Hyers’s theorem was generalized by Rassias [24] for linear mappings by con-
sidering an unbounded Cauchy difference. Rassias’s paper has significantly influenced
in the development of what we now call the Hyers-Ulam-Rassias stability of functional
equations.

On the other hand, Dales and Polyakov [8] introduced the notion of multi-normed
spaces and presented many nice properties of these spaces. A number of analysts have
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established some results concerning the stability problems of various functional equations
in multi-normed spaces (cf. e.g. [9, 20, 21]). Moslehian [22] studied superstability of higher
derivations in multi-Banach algebras and proved that every (α, φ)-approximate strongly
higher derivation in a multi-Banach algebra is a higher derivation. We recall that an
equation is called superstable if each its approximate solution is an exact solution.

The notion of fuzzy norm first was introduced by Katsaras [16]. Thereafter, some
mathematicians discussed several notions of fuzzy norms from various points of view (cf.
e.g. [11, 17]). In particular in 2003, Bag et al., [1], following Cheng and Mordeson [3] gave
an idea of a fuzzy norm and established a decomposition theorem of a fuzzy norm into a
family of crisp norms. They also described some nice properties of the fuzzy norm in [2].
In [10], Eshaghi Gordji et al., introduced the notion of fuzzy Banach algebra and studied
the generalized Hyers-Ulam stability of Jordan homomorphisms and Jordan derivations
on fuzzy Banach algebras.

In this work, inspiring the concepts of multi-normed space, multi-Banach algebra and
fuzzy normed space we establish the structure of multi-fuzzy normed space and multi-
fuzzy Banach algebra. Then taking some ideas from [20, 22], we extend the Hyers-Ulam
stability of the quadratic functional equation for mappings from groups into multi-fuzzy
normed spaces and also the superstability of strongly higher derivations in multi-fuzzy
Banach algebras.

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called a quadratic
functional equation and every solution Q of it is said to be a quadratic mapping. The
Hyers-Ulam stability of the quadratic functional equation was proved by Skof [26] for
mappings f : X → Y , where X is a normed space and Y is a Banach space. Cholewa
[5] showed that the theorem of Skof is true if the relevant domain X is replaced by
an abelian group. In [6], Czerwik proved the generalized Hyers-Ulam stability of the
quadratic functional equation. Furthermore, Park [23] studied the stability of quadratic
mappings on Banach modules.

Let A be an algebra and n0 ∈ {0, 1, . . .} ∪ {∞}. A sequence {dj}n0

j=0 of linear
mappings on A is called a higher derivation of rank n0 if for each 0 ⩽ j ⩽ n0,

dj(ab) =

j∑
l=0

dl(a)dj−l(b) (a, b ∈ A). Evidently, d0 is a homomorphism and d1 is a d0-

derivation in the sense of [19]. If d0 is the identity operator idA on A, then {dj}n0

j=0 is said
to be a strongly higher derivation. The notion of higher derivation was introduced by
Hasse and Schmidt [12]. This notion closely related to the concept of homomorphisms [7].

A standard example of a strongly higher derivation is {Dj

j! }
∞
j=0, where D is a derivation

on an algebra A. For more details on this issue see [13, 15, 18, 25] and the bibliography
quoted there.

In the following we recall some basic definitions and facts which will be used further
on. We denote by T the set {−1, 1}, which will be used in next sections.

Definition 1.1 [4] Let X be a real vector space. A function N : X ×R → [0, 1] is called
a fuzzy norm on X if
(N1) N(x, t) = 0 for all x ∈ X and t ∈ R with t ⩽ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all x ∈ X and t > 0;
(N3) N(cx, t) = N(x, t

|c|) for all x ∈ X and c ̸= 0;

(N4) N(x+ y, s+ t) ⩾ min{N(x, s), N(y, t)} for all x, y ∈ X and all s, t ∈ R;
(N5) N(x, .) is a non-decreasing function of R and lim

t→∞
N(x, t) = 1 for all x ∈ X and

t ∈ R;
(N6) For all x ∈ X with x ̸= 0, N(x, .) is continuous on R.
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The pair (X,N) is called a fuzzy normed vector space.

Let (X,N) be a fuzzy normed space. Then a sequence {xn} in X is called:
(i) convergent if there exists x ∈ X such that lim

n→∞
N(xn − x, t) = 1, for all t > 0. In this

case, x is called the limit of the sequence {xn} and we write N - lim
n→∞

xn = x.

(ii) Cauchy if for each ε > 0 and each δ > 0, there exists n0 such thatN(xm−xn, δ) > 1−ε
for all n,m ⩾ n0.
The fuzzy normed space (X,N) is complete if every Cauchy sequence in X converges in
X. In this case fuzzy normed space is called a fuzzy Banach space.

Definition 1.2 [10] Let X be an algebra and (X,N) be complete fuzzy normed space,
the pair (X,N) is said to be a fuzzy Banach algebra if for every x, y ∈ X, t, s ∈ R,

N(xy, ts) ⩾ max{N(x, t), N(y, s)}.

It is straightforward to check that if {xn} and {yn} are convergent sequences in (X,N)
with N - lim

n→∞
xn = x and N - lim

n→∞
yn = y, then N - lim

n→∞
xnyn = xy.

Let (E, ∥.∥) be a complex normed space and let k ∈ N. We denote by Ek, the linear
space E⊕ . . .⊕E consisting of k-tuples (x1, . . . , xk), where x1, . . . , xk ∈ E. The linear op-
erations on Ek are defined coordinatewise. The zero element of either E or Ek is denoted
by 0. We denote by Nk the set {1, . . . , k} and denote by Sk the group of permutations
on k symbols. For σ ∈ Sk, x = (x1, . . . , xk) ∈ Ek and α = (α1, . . . , αk) ∈ Ck define
Aσ(x) = (xσ(1), . . . , xσ(k)) and Mα(x) = (α1x1, . . . , αkxk).

Definition 1.3 [8] Let (E, ∥.∥) be a complex (respectively, real) normed space. A multi-
norm on {Ek, k ∈ N} is a sequence {∥.∥k} = {∥.∥k, k ∈ N} such that ∥.∥k is a norm on
Ek for each k ∈ N, ∥x∥1 = ∥x∥ for each x ∈ E (so that ∥.∥1 is the initial norm), and the
following axioms (A1)-(A4) are satisfied for each k ∈ N with k ⩾ 2:
(A1) for each σ ∈ Sk and x ∈ Ek, ∥Aσ(x)∥k = ∥x∥k;
(A2) for each α1, . . . , αk ∈ C (R) and x ∈ Ek, ∥Mα(x)∥k ⩽ ( max

1⩽i⩽k
|αi|)∥x∥k;

(A3) for each x1, . . . , xk−1 ∈ E, ∥(x1, . . . , xk−1, 0)∥k = ∥(x1, . . . , xk−1)∥k−1;
(A4) for each x1, . . . , xk−1 ∈ E, ∥(x1, . . . , xk−1, xk−1)∥k = ∥(x1, . . . , xk−1)∥k−1.
In this case, we say that {(Ek, ∥.∥k), k ∈ N} is a multi-normed space. Moreover, if
(E, ∥.∥1) is a Banach space, then (Ek, ∥.∥k) is a Banach space for each k = 2, 3, ...,
in this case, {(Ek, ∥.∥k), k ∈ N} is called a multi-Banach space.

Theorem 1.4 [20] Let {(En, ∥.∥n) : n ∈ N} be a multi-normed space and let
{(Fn, ∥.∥n) : n ∈ N} be a multi-Banach space. Suppose that f : E → F is a map-
ping. Then f is quadratic if and only if for every k ∈ N,
∥f(x1+y1)+f(x1−y1)−2f(x1)−2f(y1), . . . , f(xk+yk)+f(xk−yk)−2f(xk)−2f(yk)∥k → 0
as ∥(x1, . . . , xk)∥k + ∥(y1, . . . , yk)∥k → ∞.

2. Asymptotic aspect of quadratic the functional equations in
multi-fuzzy normed spaces

In this section, we deal with the asymptotic behavior of the quadratic equations in the
framework of multi-fuzzy normed spaces.

Definition 2.1 Let (E,N) be a fuzzy normed space. A multi-fuzzy norm on {Ek, k ∈ N}
is a sequence {Nk} such that Nk is a fuzzy norm on Ek for each k ∈ N, N1(x, t) = N(x, t)
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for each x ∈ E and t ∈ R and the following axioms are satisfied for each k ∈ N with
k ⩾ 2:
(MF1) for each σ ∈ Sk, x ∈ Ek and t ∈ R, Nk(Aσ(x), t) = Nk(x, t);
(MF2) for each α = (α1, . . . , αk) ∈ Rk, x ∈ Ek, t ∈ R,

Nk(Mα(x), t) ⩾ Nk(max
i∈Nk

|αi|x, t);

(MF3) for each x1, . . . , xk ∈ E and t ∈ R,

Nk+1

((
x1, . . . , xk, 0

)
, t
)
= Nk

((
x1, . . . , xk

)
, t
)
;

(MF4) for each x1, . . . , xk ∈ E and t ∈ R,

Nk+1

((
x1, . . . , xk, xk

)
, t
)
= Nk

((
x1, . . . , xk

)
, t
)
.

In such a case {(Ek, Nk), k ∈ N} is called a multi-fuzzy normed space.

Example 2.2 Let (E,N) be a fuzzy normed space. For each k ∈ N, set

Nk

((
x1, . . . , xk

)
, t
)
= min

{
N(xi, t), i = 1, . . . , k

}
, x1, . . . , xk ∈ E, t ∈ R.

Then {(Ek, Nk), k ∈ N} is a multi-fuzzy normed space.

Proposition 2.3 Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space, k, n ∈
N, x1, . . . , xk, xk+1, . . . , xk+n ∈ E and η1, . . . , ηk ∈ T, then we have

(i) Nk

((
η1x1, . . . , ηkxk

)
, t
)
= Nk

((
x1, . . . , xk

)
, t
)
.

(ii) Nk

((
x1, . . . , xk

)
, t
)
⩾ Nk+1

((
x1, . . . , xk, xk+1

)
, t
)
.

(iii) Nk+n

((
x1, . . . , xk, xk+1, . . . , xk+n

)
, t
)
⩾

min
{
Nk

((
x1, . . . , xk

)
, αt

)
, Nn

((
xk+1, . . . , xk+n

)
, βt

)}
,

where α, β ⩾ 0 and α+ β = 1.

(iv) min
i∈Nk

N(xi, t) ⩾ Nk

((
x1, . . . , xk

)
, t
)

⩾ min
i∈Nk

N(xi, αit), where α1, ..., αk ⩾ 0 and

k∑
i=1

αi = 1. In particular,

Nk

((
x1, . . . , xk

)
, t
)
⩾ min

i∈Nk

N(kxi, t).

Here is a direct consequence of Proposition 2.3.

Corollary 2.4 Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space and (E,N1) be a
fuzzy Banach space. Then for each k ∈ N, (Ek, Nk) is a fuzzy Banach space, too.

In the light of the above corollary, the following definition is reasonable.
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Definition 2.5 Suppose that {(Ek, Nk), k ∈ N} is a multi-fuzzy normed space, for which
(E,N1) is a fuzzy Banach space, then we say {(Ek, Nk), k ∈ N} is a multi-fuzzy Banach
space.

The following result plays an essential role in the proofs of this section. We include
the proof for the benefit of the reader.

Lemma 2.6 Let E be a group, {(F k, Nk), k ∈ N} be a multi-fuzzy Banach space, (Z,N)
be a fuzzy-normed space and f : E → F be a mapping. Suppose that α is a nonzero
fixed vector in Z such that

Nk

((
f(x1 + y1) + f(x1 − y1)− 2f(x1)− 2f(y1), . . . , f(xk + yk)+

f(xk − yk)− 2f(xk)− 2f(yk)
)
, t
)
⩾ N(α, t), (1)

for all x1, . . . , xk, y1, . . . , yk ∈ E and all t > 0, then there exists a unique quadratic
mapping Q : E → F such that

Nk

((
Q(x1)− f(x1) +

f(0)

3
, . . . , Q(xk)− f(xk) +

f(0)

3

)
, 3t

)
⩾ N(α, t), (2)

where x1, . . . , xk ∈ E and t > 0.

Proof. Replacing xi and yi by 2nxi, i = 1, . . . , k, in (1), we deduce that

Nk

((f(2n+1x1)

4n+1
+
f(0)

4n+1
− f(2nx1)

4n
, . . . ,

f(2n+1xk)

4n+1
+
f(0)

4n+1
− f(2nxk)

4n
)
,

t

4n+1

)

⩾ N(α, t). (3)

An induction argument implies that

Nk

((f(2n+mx1)

4n+m
− f(2nx1)

4n
+ f(0)(

n+m∑
i=n+1

4−i), . . . ,
f(2n+mxk)

4n+m
− f(2nxk)

4n
+

f(0)(

n+m∑
i=n+1

4−i)
)
, t(

n+m∑
i=n+1

4−i)
)
⩾ N(α, t), (4)

for nonnegative integer numbers n,m. Substituting yi = 0 for i = 1, . . . , k, in (1), we
obtain

N(f(0),
t

2
) ⩾ N(α, t). (5)

From (4), (5) and the properties of fuzzy norm we get



72 M. Khanehgir et al. / J. Linear. Topological. Algebra. 05(02) (2016) 67-81.

Nk

((f(2n+mx1)
4n+m − f(2nx1)

4n , . . . , f(2
n+mxk)
4n+m − f(2nxk)

4n

)
, t(

n+m∑
i=n+1

4−i)
)

⩾ min{Nk

((f(2n+mx1)

4n+m
− f(2nx1)

4n
+ f(0)(

n+m∑
i=n+1

4−i), . . . ,
f(2n+mxk)

4n+m
− f(2nxk)

4n
+

f(0)(

n+m∑
i=n+1

4−i)
)
,
t

2
(

n+m∑
i=n+1

4−i)
)
, N(f(0),

t

2
)} ⩾ N(2α, t). (6)

Replacing x1, . . . , xk by x in (6), it follows that

N(
f(2n+mx)

4n+m
− f(2nx)

4n
, t(

n+m∑
i=n+1

4−i)) ⩾ N(2α, t).

Let ε > 0 and δ > 0 be given. Since lim
t→∞

N(2α, t) = 1, there is some t0 > 0 such that

N(2α, t0) > 1 − ε. Since

∞∑
i=1

t04
−i < ∞, there is some n0 ∈ N such that

n+m∑
i=n+1

t04
−i < δ

for all n ⩾ n0. It implies that

N(
f(2n+mx)

4n+m
− f(2nx)

4n
, δ) ⩾ N(

f(2n+mx)

4n+m
− f(2nx)

4n
, t0(

n+m∑
i=n+1

4−i))

⩾ N(2α, t0) > 1− ε.

Consequently, {f(2nx)
4n } is a Cauchy sequence in (F,N). Since (F,N) is complete {f(2nx)

4n }
converges to some Q(x) ∈ F . Thus the mapping Q : E → F given by

Q(x) := N − lim
n→∞

f(2nx)

4n
,

is well-defined and according to Proposition 2.3, we deduce

N - lim
n→∞

(f(2nx1)
4n

, . . . ,
f(2nxk)

4n

)
=

(
Q(x1), . . . , Q(xk)

)
. (7)

Moreover, put n = 0 in (4), using (N5) it follows that

Nk

((f(2mx1)
4m

− f(x1) + f(0)(

m∑
i=1

4−i), . . . ,
f(2mxk)

4m
− f(xk) + f(0)(

m∑
i=1

4−i)
)
, t
)

⩾ N(α, t).

(8)
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Therefore,

Nk

((
Q(x1)− f(x1) +

f(0)

3
, . . . , Q(xk)− f(xk) +

f(0)

3

)
, 3t

)
⩾ min

{
Nk

((f(2mx1)
4m

− f(x1)

+ f(0)(

m∑
i=1

4−i), . . . ,
f(2mxk)

4m
− f(xk) + f(0)(

m∑
i=1

4−i)
)
, t
)
,

Nk

((f(2mx1)
4m

−Q(x1), . . . ,
f(2mxk)

4m
−Q(xk)

)
, t
)
,

N
(
f(0)(

m∑
i=1

4−i − 1

3
), t

)}
.

Applying (5), (7) and (8), for m large enough, we derive

Nk

((
Q(x1)− f(x1) +

f(0)

3
, . . . , Q(xk)− f(xk) +

f(0)

3

)
, 3t

)
⩾ N(α, t).

Next we will show that Q is quadratic. Let x, y ∈ E, put

x1 = . . . = xk = 2nx,

y1 = . . . = yk = 2ny,

and replace t by 4nt in (1), to obtain

Nk(
f(2nx+ 2ny)

4n
+
f(2nx− 2ny)

4n
− 2f(2nx)

4n
− 2f(2ny)

4n
, t) ⩾ N(α, 4nt). (9)

On the other hand,

N
(
Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y), 5t

)
⩾ min

{
N
(
Q(x+ y)− f(2nx+ 2ny)

4n
, t
)
,

N
(
Q(x− y)− f(2nx− 2ny)

4n
, t
)
, N

(
2Q(x)− 2f(2nx)

4n
, t
)
, N

(
2Q(y)− 2f(2ny)

4n
, t
)
,

N
(f(2nx+ 2ny)

4n
+
f(2nx− 2ny)

4n
− 2f(2nx)

4n
− 2f(2ny)

4n
, t
)}
,

for each x, y ∈ E and t > 0. The first four terms on the right hand side of the above
inequality tend to 1 as n→ ∞ and fifth term, by (9) is greater than or equal N(α, 4nt),
which tends to 1 as n→ ∞. Therefore Q(x+y)+Q(x−y) = 2Q(x)+2Q(y). This means
that Q is quadratic. We are going to show that Q is unique. Suppose that Q′ is another
quadratic mapping from E into F, which satisfies the required inequality. Then for each
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x ∈ E and t > 0 we have

N
(
Q(x)−Q′(x), 6t

)
= N

(Q(2nx)

4n
− Q′(2nx)

4n
, 6t

)
⩾ min

{
N
(
Q(2nx)− f(2nx) +

f(0)

3
, 3t× 4n

)
,

N(Q′(2nx)− f(2nx) +
f(0)

3
, 3t× 4n)

}
⩾ N(α, 4nt).

Taking the limit as n→ ∞, we observe that Q = Q′. ■

In the following we demonstrate the stability of quadratic equation on a restricted
domain. We denote by Bk(Ek) the open ball in Ek with center 0 ∈ Ek, radius 0 < r < 1
and with t′ > 0, more precisely Bk(Ek) = Bk(0, r, t′) = {z ∈ Ek, Nk(z, t

′) > 1− r}.

Proposition 2.7 Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space, {(F k, Nk), k ∈
N} be a multi-fuzzy Banach space, 0 < r < 1, p > 1, t′ > 0 and ψk : E2k × R →
[0, 1] (k ∈ N) be a family of functions such that ψk(x, x, .) ba a decreasing function of
R, lim

t→∞
ψk(x, y, t) = 0, lim

t→0
ψk(x, y, t) = 1 and ψk(

x
2 ,

y
2 , t) ⩽ ψk(x, y, 4

2pt) for all x, y ∈
Bk(Ek), all t ∈ R and all k ∈ N. Suppose that f : E → F is a mapping satisfying
f(0) = 0 and

Nk

((
f(x1 + y1) + f(x1 − y1)− 2f(x1)− 2f(y1), . . . , f(xk + yk)+

f(xk − yk)− 2f(xk)− 2f(yk)
)
, t
)
⩾ 1− ψk(x, y, t), (10)

for all k ∈ N and all x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Bk(Ek) with x ± y ∈ Bk(Ek)
and t > 0. Then there exists a unique quadratic mapping Q : E → F such that

Nk

((
f(x1)−Q(x1), . . . , f(xk)−Q(xk)

)
, 2t

)
⩾ 1− ψk(x, x, 4

2pt), (11)

where x = (x1, . . . , xk) ∈ Bk(Ek) and t > 0.

Proof. Let x = (x1, . . . , xk) ∈ Bk(Ek). The argument used in the proof of Lemma 2.6,
shows that {4nf( x

2n )} is Cauchy and so is convergent in the complete fuzzy normed space
F . In addition, the mapping

Q̃(x) := N - lim
n→∞

4nf(2−nx), (x ∈ B1(E)),

satisfies

Nk

((
Q̃(x1)− f(x1), . . . , Q̃(xk)− f(xk)

)
, 2t

)
⩾ 1− ψk(x, x, 4

2pt),

where x = (x1, . . . , xk) ∈ Bk(Ek). Define a mappingQ : E → F byQ(x) := 4n0Q̃(2−n0x),
where n0 is the least nonnegative integer such that 2−n0x ∈ B1(E). It is readily verified
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that

Q(x) = N - lim
n→∞

4nf(
x

2n
) (x ∈ E)

and Q̃|B1(E) = Q(x). Now let x, y ∈ E. There is a large enough n such that

2−nx, 2−ny, 2−n(x + y), 2−n(x − y) ∈ B1(E). Put x1 = · · · = xk = 2−nx, y1 = · · · =
yk = 2−ny in (10), to obtain

N
(
f(2−n(x+ y)) + f(2−n(x− y))− 2f(2−nx)− 2f(2−ny), t

)
⩾

1− ψk

(
(x, . . . , x), (y, . . . , y), 42npt

)
.

We observe that
N(Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y), t) ⩾
min

{
N(Q(x+ y)− 4nf(2−n(x+ y)), t5), N(Q(x− y)− 4nf(2−n(x− y)), t5),

N(2× 4nf(2−nx)− 2Q(x), t5), N(2× 4nf(2−ny)− 2Q(y), t5),

N(4nf(2−n(x+ y)) + 4nf(2−n(x− y))− 2× 4nf(2−nx)− 2× 4nf(2−ny), t5)
}
.

Whence by taking the limit as n → ∞, we get Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y).
Hence Q is quadratic.
It remains to prove the uniqueness assertion. Suppose that Q′ is another quadratic map-
ping satisfying (11). Then for each x ∈ B1(E) and t > 0 we have

N(Q(x)−Q′(x), 4t) = N(4nQ(
x

2n
)− 4nQ′(

x

2n
), 4t)

⩾ min
{
N(Q(

x

2n
)− f(

x

2n
),

2t

4n
), N(Q′(

x

2n
)− f(

x

2n
),

2t

4n
)
}

⩾ 1− ψk(x, x, 4
n(2p−1)t).

Passing the limit as n→ ∞, we obtain Q = Q′. ■

The following lemma is a version of [20, Lemma 4.1] in the framework of multi-fuzzy
normed spaces.

Lemma 2.8 Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space, {(F k, Nk), k ∈ N}
be a multi-fuzzy Banach space and (Z,N), (R, N) be fuzzy-normed spaces. Suppose
that {βk} is a sequence of positive real numbers, α is a nonzero fixed vector in Z and
f : E → F is a mapping satisfying

Nk

((
f(x1 + y1) + f(x1 − y1)− 2f(x1)− 2f(y1), . . . ,

f(xk + yk) + f(xk − yk)− 2f(xk)− 2f(yk)
)
, t
)
⩾ N(α, 5t), (12)

for all k ∈ N, x1, . . . , xk, y1, . . . , yk ∈ E, and all t > 0 with

min
{
Nk

((
x1, . . . , xk

)
, t
)
, Nk

((
y1, . . . , yk

)
, t
)}

⩽ N(βk, t).
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Then there exists a unique quadratic mapping Q : E → F such that

Nk

((
Q(x1)− f(x1) +

f(0)

3
, . . . , Q(xk)− f(xk) +

f(0)

3

)
, 15t

)
⩾ N(α, 5t),

for all x1, . . . , xk ∈ E and all t > 0.

Proof. Let us fix k ∈ N and x = (x1, . . . , xk) and y = (y1, . . . , yk). Assume that

min
{
Nk(x, t), Nk(y, t)

}
> N(βk, t).

For x = y = 0, take z = (z1, . . . , zk) to be a vector of Ek with Nk(z, t) ⩽ N(βk, t). If x
and y are nonzero, then there exist sufficiently large natural numbers k1 and k2, in which
Nk(x,

2t
k1−3) ⩽ N(βk, t) and Nk(y,

2t
k2−1) ⩽ N(βk, t). Put z1 = k1x, z2 = k2y, and also set

z :=

{
z1−x
2 , if Nk(x, t) ⩽ Nk(y, t),

z2−y
2 , if Nk(y, t) < Nk(x, t),

for all t > 0. Clearly, Nk(z, t) ⩽ N(βk, t).
One observes that the following relations hold.

min
{
Nk(x, t), Nk(y + 2z, t)

}
⩽ N(βk, t).

min
{
Nk(x− z, t), Nk(y + z, t)

}
⩽ N(βk, t).

min
{
Nk(x+ z, t), Nk(y + z, t)

}
⩽ N(βk, t).

min
{
Nk(y + z, t), Nk(z, t)

}
⩽ N(βk, t).

min
{
Nk(x, t), Nk(z, t)

}
⩽ N(βk, t). (13)

If x = 0 and y ̸= 0 (or x ̸= 0 and y = 0), then easy computations shows that (13) holds,
too. From (13) we get

Nk

((
f(x1+ y1)+ f(x1− y1)− 2f(x1)− 2f(y1), . . . , f(xk + yk)+ f(xk − yk)− 2f(xk)−

2f(yk)
)
, 5t

)
⩾

min
{
Nk

((
f(x1 + y1) + f(x1 − y1 − 2z1) − 2f(x1 − z1) − 2f(y1 + z1), . . . , f(xk + yk) +

f(xk − yk − 2zk)− 2f(xk − zk)− 2f(yk + zk)
)
, t
)
,

Nk

((
f(x1 + y1 + 2z1) + f(x1 − y1) − 2f(x1 + z1) − 2f(y1 + z1), . . . , f(xk + yk + 2zk) +

f(xk − yk)− 2f(xk + zk)− 2f(yk + zk)
)
, t
)
,

Nk

((
2f(y1 + 2z1) + 2f(y1) − 4f(y1 + z1) − 4f(z1) . . . , 2f(yk + 2zk) + 2f(yk) − 4f(yk +

zk)− 4f(zk)
)
, t
)
,

Nk

((
f(x1 + y1 +2z1) + f(x1 − y1 − 2z1)− 2f(x1)− 2f(y1 +2z1), . . . , f(xk + yk +2zk) +
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f(xk − yk − 2zk)− 2f(xk)− 2f(yk + 2zk)
)
, t
)
,

Nk

((
2f(x1 + z1) + 2f(x1 − z1) − 4f(x1) − 4f(z1), . . . , 2f(xk + zk) + 2f(xk − zk) −

4f(xk)− 4f(zk)
)
, t
)}

⩾ N(α, 5t).

This inequality holds for all k ∈ N, all x1, . . . , xk, y1, . . . , yk ∈ E and all t > 0 (if
min{Nk(x, t), Nk(y, t)} ⩽ N(βk, t) we get it immediately by (12)). Now the result is
deduced from Lemma 2.6. ■

Now we are ready to prove the main result of this section.

Theorem 2.9 Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space, {(F k, Nk), k ∈ N}
be a multi-fuzzy Banach space. Suppose that f : E → F is a mapping such that f(0) = 0.
Then f is quadratic if and only if for every k ∈ N

Nk

((
f(x1 + y1) + f(x1 − y1)− 2f(x1)− 2f(y1), . . . ,

f(xk + yk) + f(xk − yk)− 2f(xk)− 2f(yk)
)
, t
)
→ 1

as

min
{
Nk

((
x1, . . . , xk

)
, t
)
, Nk

((
y1, . . . , yk

)
, t
)}

→ 0. (14)

Proof. If f is quadratic, then evidently (14) holds. Conversely, let (Z,N) and (R, N)
be fuzzy-normed spaces. Fix nonzero vector α in Z. Using the limits (14), we can find
for every n ∈ N a sequence {βnk

} in R such that

Nk

((
f(x1 + y1) + f(x1 − y1)− 2f(x1)− 2f(y1), . . . , f(xk + yk)

+f(xk − yk)− 2f(xk)− 2f(yk)
)
, t
)
⩾ N(

α

n
, 5t),

for all k ∈ N and all x1, . . . , xk, y1, . . . , yk ∈ E, with

min
{
Nk

((
x1, . . . , xk

)
, t
)
, Nk

((
y1, . . . , yk

)
, t
)}

⩽ N(βnk
, t).

In view of Lemma 2.8, for every n ∈ N there exists a unique quadratic mapping Qn such
that

N(Qn(x)− f(x), 15t) ⩾ N(
α

n
, 5t) (15)

for all x ∈ E and all t > 0. Since N(Q1(x) − f(x), 15t) ⩾ N(α, 5t) and N(Qn(x) −
f(x), 15t) ⩾ N(αn , 5t) ⩾ N(α, 5t) by the uniqueness of Q1, we conclude that Qn = Q1

for all n ∈ N. Now, tending with n to infinity in (15), we deduce that f = Q1 and hence
f is quadratic. ■
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3. Superstability of higher derivations in multi-fuzzy Banach algebras

In this section, we define the notion of a (ϕ, ϕ′)-approximate strongly higher derivation in
multi-fuzzy Banach algebras. Our scope is obtaining the superstability of strongly higher
derivations under the frame of multi-fuzzy Banach algebras. To achieve our goal, we give
the following result which can be proved by a similar argument to that in Lemma 2.6.

Lemma 3.1 Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space, {(F k, Nk), k ∈ N}
be a multi-fuzzy Banach space and ϕ : E → F be a map such that ϕ(2x) = 1

2ϕ(x) for all
x ∈ E. Let f : E → F be a mapping such that f(0) = 0 and

Nk

((
f(µx1 + y1)− µf(x1)− f(y1), . . . , f(µxk + yk)− µf(xk)− f(yk)

)
, t
)

⩾ Nk

((
ϕ(x1 + y1), . . . , ϕ(xk + yk)

)
, t
)
,

for all µ ∈ T, all x1, . . . , xk, y1, . . . , yk ∈ E and all t > 0. Then there exists a unique
linear mapping T : E → F such that

Nk

((
f(x1)− T (x1), . . . , f(xk)− T (xk)

)
, 2t

)
⩾ Nk

((
ϕ(x1), . . . , ϕ(xk)

)
, t
)

for all x1, . . . , xk ∈ E and all t > 0.

Note that in the above lemma T (x) := N − lim
n→∞

f(2nx)

2n
for each x ∈ E.

Definition 3.2 Let A be an algebra and {(Ak, Nk), k ∈ N} be a multi-fuzzy normed
space. Then {(Ak, Nk), k ∈ N} is said to be a multi-fuzzy normed algebra if for every
k ∈ N, a1, . . . , ak, b1, . . . , bk ∈ A and t, s ∈ R

Nk

((
(a1, . . . , ak)(b1, . . . , bk)

)
, ts

)
= Nk

((
a1b1, . . . , akbk

)
, ts

)
⩾ max

{
Nk

((
a1, . . . , ak

)
, t
)
, Nk

((
b1, . . . , bk

)
, s
)}
.

Further, the multi-fuzzy normed algebra {(Ak, Nk), k ∈ N} is said to be a multi-fuzzy
Banach algebra if {(Ak, Nk), k ∈ N} is a multi-fuzzy Banach space.

Definition 3.3 Let {(Ak, Nk), k ∈ N} be a multi-fuzzy Banach algebra, ϕ : A → A be
a map such that ϕ(2a) = 1

2ϕ(a) for all a ∈ A and let ϕ′ : A×A×R → [0, 1] be a control
function such that

ϕ′(2ma, 2nb, t) ⩾ ϕ′(a, b,
t

βm+n
),

for some 0 < β < 1, all nonnegative numbers m,n, all a, b ∈ A and all t > 0.
Moreover, assume that ϕ′(a, b, .) is an increasing function of R, lim

t→0
ϕ′(a, b, t) = 0 and

lim
t→∞

ϕ′(a, b, t) = 1 for all a, b ∈ A. A (ϕ, ϕ′)-approximate strongly higher derivation of

rank n0 is a sequence {fj}n0

j=0 of mappings fj : A → A with fj(0) = 0, f0 = idA and
such that



M. Khanehgir et al. / J. Linear. Topological. Algebra. 05(02) (2016) 67-81. 79

Nk

((
fj(µx1 + y1)− µfj(x1)− fj(y1), . . . , fj(µxk + yk)− µfj(xk)− fj(yk)

)
, t
)

⩾ Nk

((
ϕ(x1 + y1), . . . , ϕ(xk + yk)

)
, t
)
, (16)

for all 0 ⩽ j ⩽ n0, all µ ∈ T, all x1, . . . , xk, y1, . . . , yk ∈ A and all t > 0 and also

N
(
fj(ab)−

j∑
l=0

fl(a)fj−l(b), t
)
⩾ ϕ′(a, b, t), (17)

for all 0 ⩽ j ⩽ n0, all a, b ∈ A and all t > 0.

Theorem 3.4 Every (ϕ, ϕ′)-approximate strongly higher derivation in a multi-fuzzy
Banach algebra is a higher derivation.

Proof. Let {(Ak, Nk), k ∈ N} be a multi-fuzzy Banach algebra and let {fj}n0

j=0 be a

(ϕ, ϕ′)-approximate higher derivation. According to Lemma 3.1, for each j = 0, . . . , n0,

there is a linear mapping Dj defined by Dj(a) := N - lim
n→∞

fj(2
na)

2n
(a ∈ A) such that

N(Dj(a)− fj(a), 2t) ⩾ N(ϕ(a), t),

for all a ∈ A and all t > 0. Trivially D0 = f0 = idA. Making use of (17), it follows that

N
(fj(4nab)

4n
−

j∑
l=0

fl(2
na)fj−l(2

nb)

4n
, t
)
⩾ ϕ′(2na, 2nb, 4nt) ⩾ ϕ′(a, b,

t

β2n
),

for all 0 ⩽ j ⩽ n0, all a, b ∈ A and all t > 0. Now on taking limit as n→ ∞, we deduce

N
(fj(4nab)

4n
−

j∑
l=0

fl(2
na)fj−l(2

nb)

4n
, t
)
→ 1.

On the other hand, we have

N
(
Dj(ab)−

j∑
l=0

Dl(a)Dj−l(b), 3t
)
⩾ min

{
N
(
Dj(ab)−

fj(4
nab)

4n
, t
)
,

N
(fj(4nab)

4n
−

j∑
l=0

fl(2
na)fj−l(2

nb)

4n
, t
)
,

min
{
N
(fl(2na)fj−l(2

nb)

4n
−Dl(a)Dj−l(b),

t

j + 1

)
,

l = 0, . . . , n0
}}
.
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Letting n→ ∞, we derive Dj(ab) =

j∑
l=0

Dl(a)Dj−l(b). Thus {Dj}n0

j=0 is a strongly higher

derivation. In what follows, we show that fj = Dj for all j = 1, . . . , n0. On using (16),
(17) and Lemma 3.1, we obtain

N
(
f1(2

ma)− 2mf1(a), 4t
)
⩾ N

(
2nf1(2

ma)− 2m+nf1(a), 4t
)

⩾ min
{
N
(
f1((2

n1)(2ma))− 2n1f1(2
ma)− f1(2

n1)2ma, 2t
)
,

N
(
f1((2

n1)(2ma))− f1(2
n1)2ma− 2n+m1f1(a), 2t

)}
⩾ min

{
ϕ′
(
a, 1,

2t

βm+n

)
, N

(
f1((2

n1)(2ma))−D1((2
n1)(2ma)), t

)
,

N
(
D1((2

n1)(2ma))− 2n+m1f1(a)− f1(2
n1)2ma, t

)}
⩾ min

{
ϕ′
(
a, 1,

2t

βm+n

)
, N

(
ϕ(a),

2n+mt

2

)
,

N
(
D1((2

n1)(2ma))− f1(2
n1a)2m,

t

2

)
,

N
(
f1(2

n1a)2m − f1(2
n1)2ma− 2n+m1f1(a),

t

2

)}
⩾ min

{
ϕ′(a, 1,

2t

βm+n
), N

(
ϕ(a), 2n+m−1t

)
,

N
(
ϕ(a),

t

2m−n+2

)
, ϕ′

(
1, a,

t

2m+1βn
)}
,

for all nonnegative integers m,n and all t > 0. Fix m and let n tends to infinity in the
above inequality, thus f1(2

ma) = 2mf1(a) for all m and all a ∈ A. Hence D1(a) = N -

lim
m→∞

f1(2
ma)

2m
= f1(a) for all a ∈ A. By utilizing induction on j, one obtains that Dj = fj

for all j = 1, . . . , n0. This completes the proof. ■
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