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Fig. (14): Fourth output of WNN model

Also, the MSE Comparison for the TDNN and the WNN
model are shown in Figs. 15-18 and the results are
summarized in Table 2.
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Fig. (15): MSE for the first output
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Fig. (17): MSE for the third output
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Fig. (18): MSE for the fourth output

Table (2): MSE comparison
TDNN WNN
Output 1 | 1.9980e-02 | 4.0218e-03
Output 2 | 2.8653e-02 | 5.0163e-03
Output 3 | 2.2862¢-02 | 4.3359¢-03
Output 4 | 2.1473¢-02 | 4.1305¢-03

Simulation results show that WNN model has a higher
accuracy than TDNN model in identification of the steam
generator. It is because of some intrinsic characteristics of
wavelet functions such as localization in both time and
frequency domains, having compact support and
oscillating behavior and also the multi-resolution analysis
in which wavelets with coarse resolution capture the
global behavior while the wavelets with fine resolution
capture the local behavior of the function accurately.
These characteristics lead to the high accuracy of the
WNN model.

7. Conclusion

In this paper, identification of the industrial steam
generator was carried out using a TDNN model and a
WNN model. First we preprocessed data using DWT and
then fed them as inputs to the models. The TDNN was
trained with LMBP algorithm and compared the results
with results of WNN trained with BPM algorithm.
Combined advantages of wavelets and abilities of NNs
have effectively estimated system dynamics and plant
nonlinearities using data from the plant which contained
disturbances and noise. Simulation results show
remarkable consistence between estimated and actual
measured outputs, and we concluded that the WNN
model can more accurately capture the local nonlinear
system dynamics and is more precise to estimate the plant
outputs than the TDNN model due to wavelet functions
characteristics.
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After data decomposition, the approximated denoised
signals are normalized and divided into three parts: 60%
for training dataset, 20% for validation dataset and 20%
for test dataset. The training dataset is used during the
supervised training process to adjust the network
parameters to minimize the error between the network’s
outputs and the plant outputs. The validation dataset is
used to periodically check the generalization ability of the
network and avoid from over-fitting. The test dataset is
used as a final measure to see how the network performs
on unseen data. The number of inputs and outputs of the
networks are determined by the problem, and as stated
before the plant has 4 inputs and 4 outputs. We used a try
and error based procedure to determine the number of
hidden nodes, as it is dependent on the complexity of the
relationships in the dataset. The networks parameters are
initialized to small random values and we started to train
the networks with one hidden node and gradually
increased the number of hidden nodes, periodically
stopping the training process to observe the training and
validation errors, until increasing the number of hidden
nodes result in decreasing error in training data set while
validation error remained relatively constant. Finally the
optimum number of hidden nodes to minimize the MSE
criterion for the TDNN and WNN was found 14 and 8
respectively. The TDNN model has a 4-14-4 structure
which is trained with LMBP learning algorithm. The
WNN model has a 4-8-4 structure which is trained with
BPM learning algorithm. In order to compare the ability
of these two models, estimated outputs in comparison
with actual outputs for TDNN model and WNN model
are shown in Figs. 7-10 and Figs. 11-14 respectively. The
dashed lines show estimated outputs and solid lines show
actual outputs of the plant.
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Fig. (7):First output of TDNN model
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Fig. (8): Second output of TDNN model
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Fig. (9): Third output of TDNN model
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Fig. (10): Fourth output of TDNN model
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Fig. (11): First output of WNN model

=== simated
— measured

Oxygen Level(%)__ .
E & ]

. i ; | i ; i ;
8000 8200 8400 8600 8800 9000 00 9400 9600
Data Samples
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for j=1,...,m; k=1,...,n
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]
Where 7 and p denote the learning rate and momentum
factor respectively and n is the number of outputs.
Adding momentum improves the convergence speed and
helps network from being trapped in a local minimum.

5.Proposed Method for Steam Generator Identification
In order to identify the steam generator described in
section (2), the input-output data set was taken from
DalSy Database [20]. Since the data set is recorded from
a real industrial steam generator and it contains noise, it is
important to have data preprocessing. First the DWT of
the signals is taken using symlet wavelets of order 4
(sym4) at level 5. Then we normalize the approximated
denoised signals and feed them as inputs to the NN
models. The TDNN model has a 4-14-4 structure which
uses hyperbolic tangent and linear activation functions in
the hidden and output layer respectively and is trained
with LMBP learning algorithm. The WNN model has a 4-
8-4 structure which uses Morlet wavelet and linear
activation functions in the hidden and output layer
respectively and is trained with BPM learning algorithm.
These two models are used to identify the plant. The
block diagram of the proposed method is shown in Fig. 5
and more details are described in the next section.
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Fig. (5): Block diagram of the proposed method

6. Simulation Results and Discussion

As described earlier the steam generator has 4 inputs and
4 outputs and the real industrial input-output data is taken
from DalSy Database. We use DWT to remove the noise
of the signals. Different decomposition level and different
wavelet function were used, we have the best results in
denoising with symlets of order 4 (sym4) at level 5, as
shown in Fig. 6. The wavelet transform is a multi-
resolution approximation technique in which the original
signal is decomposed into two types of components,
approximation and details of the signal. The DWT uses a
series of high-pass and low-pass filters, low-pass filters
are used to analyze the low frequencies and are capable
of providing coarser approximation of the signal and high-
pass filters are used to analyze the high frequencies and
are capable of providing finer approximation of the signal.
The outputs of the low-pass filters are the approximation
coefficients {a;, a,...,as} which contain approximate
information about low frequency components and retain
the main features of the original signal. The outputs of the
high-pass filters are detail coefficients {d;, dj, ..., ds}
which retain detail information about the high frequency
components such as noise.
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Fig. (6):Data decomposition for first input using DWT
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In this work, Levenberg—Marquart back propagation
(LMBP) algorithm is used to train the TDNN which
weight update rule is defined as:

Wk+D)=W(k)-JT+u "'I7e (6)
Where J is the Jacobian matrix, p is the learning rate, I is
the identity matrix and e describes the error vector. The
error is defined between the output of the network and the
desired output. The advantage of using this algorithm is
the rapid execution of the trained network. During
training, the estimated output is compared with the
desired output, and the mean square error (MSE) which is
defined in equation (7), is calculated.

P

MSE = lZ(y“l - 92 ™
P k ~ Yk
i=1

y is kth desired output and §, is kth estimated output
and P is the number of elements of the training set. If the
MSE is more than a prescribed limiting value, it is back
propagated from output to input, and weights are further
modified till the error or number of iterations is within a
prescribed limit.

4. Wavelet Theory

4.1. Wavelet Transform

Wavelet transform is a time-scale representation of a
signal associated with building a model for signals using
a family of wavelets, which are scaled and shifted
versions of the mother wavelet [18]. The wavelet family
is defined by scale and shift parameters (a,b) as in
equation (8).

o) = 1 <x - b) 8
lIJa,b X) = \/alp a ( )
The operation of the dilation and translation parameters
causes the wavelet superior location performance in both
time and frequency. The wavelet transform is called
continuous if the scaling and translation parameters, a
and b are continuous. The continuous wavelet transform
has two drawbacks, redundancy and impracticality. These
problems are solved by discretizing the transform
parameters (a, b) as expressed:

a=a, b=kbya, 9

The discrete wavelet transform (DWT) is defined as:

XG, k) = Z x(0) () (10)
nez

where

=j ; .
P () = a, /2 Y(a,n—kb,) jk€Z,a, (11D
One of the simplest choice is a, = 2 and by = 1. So the

scale and translation parameter are expressed as powers
of 2. This type of DWT is called as dyadic DWT.

4.2. Wavelet Neural Network

WNN inspired by both FFNN and wavelet analysis have
received considerable attention and become a popular
tool for function approximation and system identification
[11],[13].WNNs are FFNNs using wavelets as activation
function. They have been used in classification and
identification problems with more accuracy caused by
combining of the time-frequency localization properties
of wavelets and the global learning abilities of neural
network. In this paper, the WNN is designed as a three-

Y\
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layer structure consisting of an input layer, a hidden layer
and an output layer as shown in Fig. 3. The activation
functions of the wavelet nodes in the hidden layer are
derived from a mother wavelet, ¥(x) € L?(R), which
[2(R) implies the space of all square integrable
functions on R, that has limited duration and zero mean
value and satisfying the admissibility condition:

+00 ‘i’((l))
I Ll do < (12)
- O

2

Where P (w) indicates the Fourier transform of ¥(x).
Then, the function of  ¥(x) can become the mother

wavelet with a dilation(a) and a translation (b). In this
study Morlet wavelet function is adopted as the activation
function of the wavelet nodes in hidden layer which is
shown in Fig. 4 and is expressed in equation (13).

Input Layer Hidden Layer Output Layer

Fig. (3): Structure of WNN
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Fig. (4): Morlet wavelet function
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a 2a;
The output layer activation function is linear and the kth
output of the WNN is calculated as:

u=Y wWigW;(0) (14)

Where wy; denote the weights connecting the hidden
layer and output layer and m is the number of hidden
neurons. The task of WNN training involves estimating
the parameters of the network by minimizing a cost
function. Here we used MSE as the cost function which
was defined in equation (7). As described earlier, the
wavelet family can be constructed by translating and
dilating the mother wavelet. Therefore, the weights
between layers, the translation and dilation parameters
need to be computed. The basic steps of the standard BP
algorithm have been described in [19]. Adjusting each
parameter of the network using BP with momentum
(BPM) learning algorithm can be defined by equations
(15-17).
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2. Nonlinear Multivariable Steam Generator

A boiler or steam generator is an industrial unit, which is
used for generating steam and hot water for industrial
process and electrical energy generation. Boiler operation
is a complex operation in which hot water must be
delivered to a turbine at constant rate, pressure and
temperature in order to ascertain reliable operation. An
efficient boiler should generate maximum amount of
steam at a required pressure and temperature and quality
with minimum fuel consumption and should be able to
cope with fluctuating demands of steam supply [14], [15].
In this work we consider an industrial benchmark, the
steam generator in operation at Abbott Power Plant
generation unit located in Champaign, IL, USA. It is a
dual fuel (oil/gas) fired unit used for heating and
generating electric power. The plant has 4 inputs and 4
outputs which are described in Table-1. The plant is rated
at 22.096 kg/s of steam at 22.4 MPa (325psi) of pressure.
The plant has dynamics of high order, as well as
nonlinearities, instabilities, and time delays. Fig. 1 shows
the structure of the plant [1].

u; ~FEEDWATER FLOWRATE  _ GTEAM PRESSURE

E 4 — STEAM FLOW RATE
———

Yo =EXCESS OXYGEN

Fig. (1): Architecture of the steam generator [1]

3. Time-Delay Neural Network

TDNN is a feed-forward neural network (FFNN) capable
of using a fixed number of previous system inputs to
predict the following outputs of the system. TDNN is a
variant of the multi-layer perceptron (MLP) which uses

WA flaae = o235l90 o )lads = poms Jlo = 3 Caxio ;o diadien slods,

time-delayed inputs to the hidden layer. In the input layer
each neuron is presented a total number of D delayed
values in addition to the current value, for each input to
the network [16], [17]. The input vector X;(t) and the
weight vector Wj; (t) are defined as follows:

X (0 =[x, (0,%; (t =D, (t=D)" ey
Wji(t) = [Wji(O),Wji(l),.,,, Wji(D)] )

Table (1):Inputs and outputs of the steam generator

Inputs Outputs

uy: Fuel flow rate y1: Steam pressure

y,: Excess oxygen in exhaust

u,: Air flow rate
gases

u;: Feed water flow rate y3: Drum water level

u,: Changes in steam demand y4: Steam flow rate

The output is a weighted sum of past-delayed values of
the input, expressed as:

$,0= > W, (DX, (t=1)+b, 3)

i=l 1=0
Where W;; denotes the weights connecting the inputs and
hidden layer and b; is the bias and R is the number of
inputs. When the neurons in the hidden layer use the
hyperbolic tangent activation function, the output of each
neuron j is calculated as follows:
1—exp(—2s.(t
Oj (t) = M
1+exp(=2s;(t))
When the output layer neurons use a linear activation
function kth output of the network is calculated as:

(D= vio,(1)+b, (5)

“)

Where vy; denotes the weights connecting the hidden
layer and output layer and b, is the bias vector for the
output layer and m is the number of hidden neurons. A
TDNN with one hidden layer is shown in Fig. (2), where
z~1 is delay operator.

Fig. (2):TDNN structure with one hidden layer
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One of the most effective strategies for steam generator efficiency enhancement is to improve the control system. For
such an improvement, it is essential to have an accurate model for the steam generator of power plant. In this paper, an
industrial steam generator is considered as a nonlinear multivariable system for identification. An important step in
nonlinear system identification is the development of a nonlinear model. In recent years, artificial neural networks have
been successfully used for identification of nonlinear systems in many researches. Wavelet neural networks (WNNs)
also are used as a powerful tool for nonlinear system identification. In this paper we present a time delay neural network
model and a WNN model in order to identify an industrial steam generator. Simulation results show the effectiveness of
the proposed models in the system identification and demonstrate that the WNN model is more precise to estimate the

plant outputs.

Index Terms: System identification, time delay neural network, discrete wavelet transform, wavelet neural network.

1. Introduction

In heat generation process at a power unit, performance
improvement is a critical factor and one of the most
effective strategies for steam generator efficiency
enhancement is to improve the control system. To
achieve this objective it is essential to have a valid model
of the steam generator of power plant [1]. The model of a
system can be represented by a mathematical model
based on the physics laws that govern the problem, or by
using the experimental data measured in the system
which is called system identification. In the first case, the
model is defined from well known physical principles,
which allow a well defined mathematical model. In the
case of identification, the methods do not need previous
knowledge of the system, so they are known as black-box
process identifi—cation [2]. The modeling based on
experimental data is an important issue in the area of
identification and control. The problem of identification
consists of choosing an identification model and
adjusting the parameters such that the response of the
model approximates the response of the real system to the
same input [3]. Nowadays, soft computing techniques
such as artificial neural networks and wavelet neural
networks (WNNs) have become very effective tools for
identification of nonlinear plants [4-6]. Neural network

YY)

(NN) models have proven to be successful nonlinear
black-box model structures in many applications. NNs
offer a framework for nonlinear modeling and control,
based on their ability to learn complex nonlinear
functional mappings [7]. The characte-ristics of NN
consists of distributed parallel processing, nonlinear
mapping and self-adaptive learning which cause
increasingly successful applications in system identifi—
cation, handling large amounts of dynamic, noisy and
non-linear data [8], [9]. Recently WNN has been used as
a powerful tool for identification of unknown plants [10],
[11]. A wavelet neural network has a nonlinear regression
structure that uses localized basis functions in the hidden
layer to achieve the desired input-output mapping. The
integration of the localization properties of wavelets and
the learning abilities of NN cause the superiority of WNN
over NN for complex nonlinear system modeling [12],
[13]. In this paper we present a time delay neural network
(TDNN) model and a WNN model in order to identify an
industrial steam generator. Simulation results show
remarkable consistence between estimated and actual
outputs of the plant, and it is shown that the WNN model
can more accurately capture the local nonlinear system
dynamics and is more precise to estimate the plant
outputs than the TDNN model.



