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Induction motors (IMs) are widely used in industry including it be an electrical or not. However during 

starting period, their starting currents are so large that can damage equipment. Therefore, this current should 

be estimated accurately to prevent hazards caused by it. In this paper, the artificial neural network (ANN) as 

an intelligent tool is used to evaluate starting current peak of IMs. Both Multilayer Perceptron (MLP) and 

Radial Basis Function (RBF) structures have been analyzed. Six learning algorithms, backpropagation (BP), 

delta-bar-delta (DBD), extended delta-bar-delta (EDBD), directed random search (DRS), quick propagation 

(QP), and levenberg marquardt (LM) were used to train the MLP. The simulation results using MATLAB 

show that most developed ANNs can estimate the starting current peak of IMs with good accuracy. 

However, it is proven that LM and EDBD algorithms present better performance for starting current 

evaluation based on average of relative and absolute errors. 
 

Index Terms: Induction motors, multilayer perceptron, radial basis function, starting current. 

 

Nomenclature 

qsds V,V  direct/quadrature component of stator voltage 

*

qrdr V,V ′′
 

direct/quadrature component of rotor voltage 

qsds i,i  direct/quadrature component of stator current 

qrdr i,i ′′  direct/quadrature component of rotor current 

lss L,R  stator winding resistance and inductance 

lrr L,R ′′  rotor winding resistance and inductance 

mL  magnetizing inductance 

qsds , ϕϕ  direct/quadrature component of stator flux 

qrdr , ϕ ′ϕ ′  direct/quadrature component of rotor flux 

rs L,L ′  total stator and rotor inductances 

eT  electromagnetic torque 

LT  shaft load torque 

mω  angular velocity of the rotor 

mθ  rotor angular position 

rω  electrical angular velocity 

p  number of pole pairs 

J  combined rotor and load inertia coefficient 

B  combined rotor and load viscous friction coefficient 

cc L,R  cable resistance and inductance 
 

*
 Prime signs show that all parameters are referred to the stator. 

 
 

Corresponding Author: Iman Sadeghkhani - Najafabad Branch, Islamic Azad University, i.sadeghkhani@ec.iut.ac.ir



Journal of Intelligent Procedures in Electrical Technology – Vol.5 –No.18- Summer 2014 

 

1. Introduction 
Induction Motor (IM), also called asynchronous 

motor, is the most common motor in various 

sections of the world including industrial, domestic, 

educational sections, etc. [1], [2]. Single phase IMs 

are commonly used in household applications, while 

three-phase ones are widely used in industry. Three-

phase IMs are cheap, robust, efficient and reliable; 

also they have low maintenance cost and high 

starting torque. In addition, their range is wide (from 

a few watts to values on the order of 10000 hp) and 

their speed is nearly constant. In contrast, speed 

control of IMs is not easy and they have low power 

factor (lagging) in the lightly loaded condition. 

Moreover, their starting current may be five to ten 

times the full-load current [3], [4]. 

As mentioned above, IMs are very important 

equipment in the industry. Without induction 

motors, many products cannot be produced by 

manufactures and human’s life is disrupted. But one 

of the disadvantages of IMs is the high starting 

current which can damage stator windings and 

fluctuate grid voltage. Also, there is need to higher 

range of switches and equipment. This high starting 

current is more notable in the high-power IMs. 

Therefore, this current must be estimated accurately 

to prevent above problems. Usually, starting current 

of IMs are estimated based on experimental data 

from the tests or by calculation in the design stage. 

In [5], a genetic algorithm is used to estimate IM 

parameters. Also, parameters of Induction motors 

are estimated using transient stator current in [6]. 

Moreover, stator current discharge is used in [7] to 

estimate parameters of single-phase axial flux 

induction motors. Also, a non-linear optimization 

routine-based method is proposed to estimate IM 

parameters in [8]. In [9], parameters of IM are 

estimated using current envelope. Also, extended 

kalman filtering algorithm is proposed to estimate 

state and parameters of IMs in [10]. 

This paper presents an intelligent approach to 

evaluate starting current of induction motors in the 

design stage or operation situation considering aging 

effects on the equipment (motor and cable) 

parameters. Also, this intelligent estimator includes 

cable effect on the starting current of IMs [5], [6]. 

In this paper power system blockset (PSB), a 

MATLAB/Simulink-based simulation tool, is used 

for calculation of starting current of IMs [7]. In 

order to study various conditions of starting an IM, 

many possible system configurations must be 

considered which needs many time-domain 

simulations resulting in a large amount of 

simulation time. This paper presents a real-time 

estimator for starting current of IMs. The Artificial 

Neural Network (ANN) is used as intelligent tool 

for this purpose. A tool such as proposed in this 

paper that can give the starting current peak will be 

helpful to the manufactures during design stage and 

to the operators during operation condition. The 

ANN is trained with the most common structures. In 

the proposed estimator, we have considered the 

most important aspects which influence the starting 

current peak such as supply voltage, cable resistance 

and reactance, stator/rotor resistance and reactance, 

magnetizing reactance, and switching angle. This 

information will help the companies and operators 

to design and handle IMs safely with starting current 

appearing safe within the limits. Results of the 

studies shows that developed ANNs can estimate 

starting current of induction motors with excellent 

accuracy. 

 

2. Study of System Modelling 

A. Induction Machine 
The electrical section of IM is represented by a 

fourth-order state-space model and the mechanical 

section by a second-order system [8]. All electrical 

variables and parameters are referred to the stator. 

All stator and rotor quantities are in the arbitrary 

two-axis reference frame (d-q frame). Equivalent 

circuit of an induction machine is shown in Fig. (1) 

Electrical equations for the stator and rotor circuits 

of the induction machine described in d- and q-axes 

are as follows. 

 
dsqsqssqs

dt

d
iRV ωϕ+ϕ+=

                                  
 (1) 

qsdsdssds
dt

d
iRV ωϕ−ϕ+=                                    (2) 

drrqrqrrqr )(
dt

d
iRV ϕ′ω−ω+ϕ′+′′=′                        (3) 

qrrdrdrrdr )(
dt

d
iRV ϕ ′ω−ω−ϕ ′+′′=′                        (4) 

)ii(p
2

3
T dsqsqsdse ϕ−ϕ=                                          (5) 

where: 

qrmqssqs iLiL ′+=ϕ                                                    (6) 

drmdssds iLiL ′+=ϕ                                                  
  (7) 

qsmqrrqr iLiL ′+′′=ϕ′                                                    (8) 

dsmdrrdr iLiL ′+′′=ϕ′
                                                  

 (9) 

mlss LLL +=
                                                        

  (10) 

mlrr LLL +′=′
                                                          

(11) 



Evaluation of Starting Current of Induction Motors Using Artificial Neural Network – pp. 61-69 

 

63 

 

 
Fig. (1): Equivalent circuit of induction machine; (a) q-

axis, (b) d-axis 

 

 
Fig. (2): Effect of cable capacitance on the starting 

current peak 

 
Also, mechanical part equations are: 

 

B. Connecting Cable 
Usually cables are modeled using series resistance 

and inductance and parallel capacitance in the 

distributed form or in the PI form [9]. As shown in 

Fig. 2, cable capacitance has negligible effect on the 

starting current peak. Thus, in this work cable 

capacitance has been neglected. This capacitor must 

be used for the long cable or for the transient studies 

of induction machines where it isn’t negligible [10]. 

Therefore, connecting cable is modeled by a series 

equivalent resistance and reactance. 

 

3. Study of Stating Current 
The electric motive force (EMF) induced in the 

rotor depends on relative speed of rotor shaft and 

synchronous speed. Since in the starting condition 

the motor is standstill, this relative speed has its 

maximum value and therefore large EMF is induced 

in the rotor. When an induction motor is stationary, 

it behaves like a transformer which its secondary 

winding is short circuited. This causes low 

impedance to the system voltage and hence IM 

draws a high current from the gird, typically 5-10 

times full-load current. 

Motor load doesn’t affect starting current peak; 

although the inertia of the motor and load must be 

overcome. If inertia is big, the motor takes more 

time to reach full speed. When the motor 

accelerates, part of the starting current power 

overcomes this inertia and is converted to kinetic 

energy. The remaining power of the starting current 

heats the rotor, up to possibly 250°C for a "long" 

starting (20 seconds). 

The sample system considered for explanation of 

the  proposed methodology consists a high-power 

induction motor which produces notable starting 

current. This system is shown in Fig. 3. For this 

purpose, induction motor KHV355-2 from 

VALIADIS company was considered [11]. It is a 

200 kW (270 hp), 3300 V induction motor which is 

in the high-power/medium-voltage category. 

Parameters of this motor were calculated using no-

load test, locked-rotor test, and DC test [12]. This 

motor is fully simulated in the MATLAB software 

[7]. Fig. 4 shows stator currents of this motor. 
 

 
Fig. (3): Sample system for the starting current study 

 

In practical system a number of factors affect the 

starting current peak. In this paper following 

parameters were considered: 
 

•   Supply Voltage (V ) 

•   Equivalent resistance of the connecting cable (Rc) 

•   Equivalent reactance of the connecting cable (Xc) 

•   Stator resistance (Rs) 

•   Stator reactance ( Xls) 

•   Rotor resistance (R
'
r) 

•   Rotor reactance ( X''lr) 

•   Magnetizing reactance ( Xm) 

•   Switching angle ( S.A.) 
 

Stator reactance affects the starting current. Fig. 5 

shows the effect of stator reactance on the starting 

current peak at different rotor resistance. Starting 

current peak is the maximum of stator current peaks 

between all three phases. Fig. 6 shows the effect of 

cable resistance on the starting current peak at 

different supply voltage. Fig. 7 presents effect of 

stator resistance on the starting current peak at 

different rotor reactance. Fig. 8 shows the effect of 

magnetizing reactance on the starting current peak at 

different stator resistance. Finally, effect of 

switching angle on the starting current peak has 

been shown in Fig. 9. 
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Fig. (5): Starting current peak as stator reactance while 

supply voltage 1 p.u., cable resistance 0.004 p.u., cable 

reactance 0.0126 p.u., stator resistance 0.012 p.u., 

referred rotor reactance 0.1 p.u., magnetizing reactance 2 

p.u., and switching angle 0° 

 

 
Fig. (6): Starting current peak as cable resistance 

while cable reactance 0.0126 p.u., stator resistance 

0.012 p.u., stator reactance 0.08 p.u., referred rotor 

resistance 0.01 p.u., referred rotor reactance 0.1 p.u., 

magnetizing reactance 2.2 p.u., and switching angle 

0°. 

 
Fig. (4): Stator currents of an induction motor 

 

 
Fig. (7): Starting current peak as stator resistance while 

supply voltage 0.9 p.u., cable resistance 0.006 p.u., cable 

reactance 0.0063 p.u., stator reactance 0.12 p.u., referred 

rotor resistance 0.008 p.u., magnetizing reactance 2.3 

p.u., and switching angle 0° 

 
Fig. (8): Starting current peak as magnetizing reactance 

while supply voltage 1 p.u., cable resistance 0.002 p.u., 

cable reactance 0.0063 p.u., stator reactance 0.1 p.u., 

referred rotor resistance 0.012 p.u., referred rotor 

reactance 0.1 p.u., and switching angle 0° 
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Fig. (9): Starting current peak as switching angle while 

supply voltage 1 p.u., cable resistance 0.004 p.u., stator 

resistance 0.012 p.u., stator reactance 0.1 p.u., referred 

rotor resistance 0.014 p.u., referred rotor reactance 0.1 

p.u., and magnetizing reactance 2 p.u 

 

4. The Artificial Neural Network 
There are many types of neural networks for various 

applications available in the literature [13-17]. 

Multilayer Perceptrons (MLPs) and Radial Basis 

Functions (RBFs) are examples of feed-forward 

networks and both universal approximators. In spite 

of being different networks in several important 

respects, these two neural network architectures are 

capable of accurately mimicking each other. 

In this work, different algorithms were used to train 

MLP structure: Back Propagation (BP), Delta-Bar-

Delta (DBD), Extended Delta-Bar-Delta (EDBD), 

Directed Random. Search (DRS), Quick 

Propagation (QP), and Levenberg–Marquardt (LM). 

Because of space limitation, these structures and 

related algorithms are not described here; detailed 

structure of BP, DBD, EDBD, DRS, QP, and RBF 

are presented in [13], and LM algorithm is fully 

discussed in [18]. The basic structure of developed 

artificial neural network is shown in Fig. 10. 
 

a) Training of Artificial Neural Network 

Parameters listed in Section 3 are adopted as ANN 

inputs and starting current peak is ANN output. To 

train ANNs, all experiments have been repeated for 

different system parameters. For producing learning 

and testing sets, ANN inputs were varied in 

different steps (depend on the parameter). 10% of 

these sets were used for ANN learning and 90% of 

these sets were used for ANN testing. Each ANN is 

trained with the goal of mean square error (MSE) 

1e-6. Fig. 11 shows the training of developed neural 

networks. Specifications of ANNs are presented in 

Table 1. After learning, all parameters of the trained 

networks have been frozen and then used in the 

retrieval mode for testing the capabilities of the 

system on the data not used in learning. The testing 

data samples have been generated through the PSB 

program by placing the parameter values not used in 

learning, by applying different parameters. A large 

number of testing data have been used to check the 

proposed solution in the most objective way at 

practically all possible parameters variation. 

Relative error is calculated by the difference of PSB 

output and ANN output: 
 

100
I

II
(%)Er

PSB

PSBANN

Relative ×
−

=                       (14) 

 

and absolute error is calculated as: 
 

PSBANNAbsolute IIEr −=
                                   

   (15) 
 

where IANN is starting current peak calculated by 

ANN, and IPSB refers to starting current peak 

calculated by PSB. 
 

 
Fig. (10): Basic structure of developed artificial neural 

network 
 

Table (1): Specifications of developed ANNs 
 

ANN 

model 

Number of neurons in the 

hidden layer 

Training time 

[epochs] 

BP 5 178 

DBD 7 1189 

EDBD 8 315 

DRS 6 109 

LM 6 286 

QP 7 975 

RBF 5 354 

 

 
Fig. (11): Squared error against epoch curve for 

developed ANNs 
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Fig. 12 shows relative errors for LM algorithm. 

Moreover, results for a sample test data for all 

developed ANNs are presented in Table 2 and Figs. 

13-15. Calculated errors for different ANNs in 

Table 2 are relative errors. Fig. 13 shows starting 

current peak against the supply voltage, Fig. 14 

presents starting current peak against the cable 

reactance, and Fig. 15 shows starting current peak 

against the stator resistance. 

 

5. Discussion 
In this paper, starting current peak was evaluated using 

BP, DBD, EDBD, DRS, QP, LM and RBF neural 

networks. To select best approach for starting current 

evaluation, a comparison has been made. Table 3 presents 

a comparison between these methods based on average of 

relative and absolute errors for Table 2 sample data. It 

can be seen from Table 3 that LM and EDBD algorithms 

have better performance (smaller relative and absolute 

errors) to evaluate starting current peak in the induction 

motors. 

 

6. Conclusion 
This paper presents an artificial neural network-

based approach to evaluate starting current peak of 

induction motors including cable effect. Both MLP 

and RBF structures have been employed for this 

purpose. MLP is trained with BP, DBD, EDBD, 

DRS, QP, and LM algorithms. Simulation results 

show that most developed ANNs can estimate 

starting current; however LM and EDBD algorithms 

present better accuracy. This technique can help the 

companies and operators to evaluate starting current 

peak during both design and operation stages in 

real-time. 
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Table (3): Average of Relative and Absolute Errors for 

Table (2) Sample Data 
ANN 

Model 

Average of Relative 

Error [%] 

Average of Absolute 

Error [A] 

LM 0.0922 0.4034 

EDBD 0.1272 0.5797 

BP 0.1824 0.7716 

DBD 0.2114 0.9137 

QP 0.4066 1.7282 

RBF 0.7624 3.3372 

DRS 1.9902 8.9127 

 

 

 

 
Fig. (12): Relative errors of learning and testing sets for LM algorithm 
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Table (2): Some Sample Testing Data and Output 

V 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1 1 1 1 1.1 1.1 1.1 1.1 

cR  0.6 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.6 0.3 0.3 0.3 0.3 

cX  
0.031

4 

0.031

4 

0.031

4 

0.031

4 

0.018

9 

0.025

1 

0.031

4 

0.037

7 

0.025

1 

0.025

1 

0.025

1 

0.025

1 

0.031

4 

0.031

4 

0.031

4 

0.031

4 

sR  0.5 0.4 0.4 0.5 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.5 0.6 0.7 

lsX  4 4 4 4 3 4 5 6 5 5 5 5 4 4 4 4 

rR ′  0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.4 0.4 0.5 0.6 0.7 0.6 0.6 0.6 0.6 

lrX′  3 4 5 6 5 5 5 5 5 5 5 5 3 3 3 3 

mX  110 110 110 110 90 100 110 120 100 100 100 100 110 110 110 110 

][ S.A. °

 
10 10 10 10 30 30 30 30 55 55 55 55 80 80 80 80 

PSB 
409.3

465 

381.9

27 

354.2

365 

327.2

188 

459.0

562 

398.8

71 

368.4

783 

344.4

66 

420.7

591 

411.5

882 

403.1

649 

395.2

277 

581.0

046 

573.7

519 

566.5

372 

559.3

91 

LM 
409.5

152 

382.5

548 

354.1

394 

326.7

324 

458.6

114 

398.1

558 

368.4

264 

344.7

404 

420.8

398 

412.3

009 

403.1

615 

394.6

765 

580.1

499 

572.8

548 

566.4

511 

559.7

936 

Error 
0.041

216 

0.164

401 

0.027

428 

0.148

647 

0.096

902 

0.179

304 

0.014

072 

0.079

682 

0.019

197 

0.173

142 

0.000

834 

0.139

484 

0.147

115 

0.156

365 

0.015

198 

0.071

961 

EDB

D 

408.9

137 

382.0

169 

354.7

666 

327.6

04 

458.2

575 

399.5

689 

369.0

665 

344.4

949 

420.8

314 

411.2

594 

403.6

999 

395.8

744 

581.5

967 

572.5

757 

567.5

547 

560.7

457 

Error 
0.105
721 

0.023
557 

0.149
631 

0.117
731 

0.173
987 

0.174
972 

0.159
633 

0.008
401 

0.017
202 

0.079
9 

0.132
716 

0.163
611 

0.101
905 

0.204
995 

0.179
59 

0.242
162 

BP 
408.3

079 
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378 
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442 
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499 
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07 

369.1

933 

344.6
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815 
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355 
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688 

396.3

045 

579.4

9 

573.1

488 
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388 

559.5

571 

Error 
0.253

722 

0.055

194 

0.284

454 

0.326

658 

0.169

76 

0.291

813 

0.194

049 

0.051

068 

0.065
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0.134

295 

0.247
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0.272
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0.260
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0.105

113 

0.176

241 

0.029
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DBD 
409.0

761 

383.1

141 

352.9

714 

327.6

894 

460.3

465 

399.3

52 

369.2

799 

343.2

903 

419.7

283 

412.1

541 

402.6

703 

395.9

611 

579.9

978 

574.5

978 

567.8

341 

561.0

941 

Error 
0.066

065 

0.310

826 

0.357

156 

0.143

818 

0.281

07 

0.120

601 

0.217

558 

0.341

294 

0.244

971 

0.137

478 

0.122

682 

0.185

563 

0.173

285 

0.147

439 

0.228

911 

0.304

444 

QP 
411.2

067 

379.5

639 

351.7

518 

325.8

739 

462.3

51 

400.4

607 

367.1
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02 
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0.411

004 

0.717
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0.398
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13 
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0.309
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0.051

147 

0.639
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0.046

536 

0.314

053 

0.595

173 

0.284

065 

RBF 
407.6

599 

380.9

65 

358.8

303 

326.9

064 

462.7

908 

395.3

13 

371.8

38 

348.6

356 

421.0

887 

416.2

951 

400.1

795 

399.0

697 

579.2

769 

569.3

88 

572.1

093 

551.9

008 

Error 
0.412

024 

0.251

881 

1.296

812 

0.095

453 

0.813

531 

0.892

012 

0.911
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Fig. (13): Starting current peak vs. supply voltage simulated by ANNs and PSB while cable resistance 0.006 p.u., cable 

reactance 0.0188 p.u., stator resistance 0.012 p.u., stator reactance 0.06 p.u., referred rotor resistance 0.012 p.u., referred 

rotor reactance 0.1 p.u., magnetizing reactance 2.2 p.u., and switching angle 0° 
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Fig. (14): Starting current peak vs. cable reactance simulated by ANNs and PSB while supply voltage 1 p.u., cable 

resistance 0.004 p.u., stator resistance 0.01 p.u., stator reactance 0.08 p.u., referred rotor resistance 0.008 p.u., referred 

rotor reactance 0.1 p.u., magnetizing reactance 2.4 p.u., and switching angle 0° 

 

 
Fig. (15): Starting current peak vs. stator resistance simulated by ANNs and PSB while supply voltage 0.9 p.u., cable 

resistance 0.002 p.u., cable reactance 0.0188 p.u., stator reactance 0.1 p.u., referred rotor resistance 0.012 p.u., referred 

rotor reactance 0.1 p.u., magnetizing reactance 2.2 p.u., and switching angle 0° 
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