ایجاد یک بستر نرمافزاری برای شبیهسازی روش نوسانسنجی در اندازهگیری فشار خون با توجه به اثرات فشار خارجی بر سطح مقطع رگ
محورهای موضوعی : انرژی های تجدیدپذیرفرنوش شفیعی 1 , ندا بهزادفر 2 *
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات پردازش دیجیتال و بینایی ماشین- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: فشار خون, سیستول, دیاستول, نوسانسنجی,
چکیده مقاله :
فشار خون بالا از عوامل خطرساز بیماری های عروق کرونر قلب است که به بدن آسیب جدی می رساند. تشخیص به موقع بیماری فشار خون می تواند فرد را از عوارض این بیماری مصون دارد. از روش های غیرتهاجمی اندازه گیری فشار خون، روش نوسان سنجی است. این روش با اندازه گیری نوسانات ایجاد شده از تقابل فشار شریان و فشار کاف پیچیده شده به دور بازو، اقدام به تخمین مقادیر فشار خون می نماید.در این پژوهش هدف ایجاد یک بستر نرم افزاری برای شبیه سازی رفتار رگ و کاف است که بتوان از آن برای بررسی عملکرد الگوریتم های مختلف اندازه گیری فشار خون به روش اسیلومتریک استفاده کرد. در این راستا، تمام اجزاء اعم از کاف، شریان بازویی، چگونگی استخراج نوسانات از منحنی فشار خون و تخمین فشارهای سیستول و دیاستول مدل سازی خواهند شد. با پیاد ه سازی مدل سازی در نرم افزار متلب می توان بدون نیاز به محیط کلینیکی، اندازه گیری فشار خون را مورد ارزیابی قرار داد. با وارد نمودن مشخصات اصلی فشار شریان به عنوان ورودی، می توان در خروجی پارامترهای فشار خون را به دست آورد.خروجی مدل سازی با نمونه های واقعی 50 مورد اندازه گیری شده مورد مقایسه و دقت تخمین فشارهای سیستول و دیاستول به ازای دو الگوریتم حداکثر نوسان و حداکثر/حداقل شیب با در نظر گرفتن مقادیر واقعی بررسی شد. نتایج حاصل از مقایسه عملکرد مدل سازی با مقادیر اندازه گیری شده حاکی از آن است که الگوریتم حداکثر نوسان، عملکرد مناسب تری نسبت به الگوریتم حداکثر/حداقل شیب دارد. مقدار متوسط خطا در الگوریتم حداکثر نوسان برای فشار حداکثر نوسان (MAP)، سیستول و دیاستول به ترتیب برابر با 64/0±9/1، 82/0±6/1 و1/5±8/6 به دست آمده است.
High blood pressure is one of the risk factors for coronary heart disease, which causes severe damage to the body. A timely diagnosis of blood pressure disease can protect a person from the complications of this disease. A noninvasive method for measuring blood pressure is oscillometric. Accordingly, the blood pressure is estimated by measuring the oscillations created by the opposition of the arterial pressure and the pressure of the cuff wrapped around the arm. In this research, the main goal is to create a software platform for simulating the behavior of veins and cuffs, which can be used to check the performance of different blood pressure measurement algorithms by the Oscillometric method. In this regard, all components including the cuff, and brachial artery, how to extract oscillations from the blood pressure curve, and estimate systolic and diastolic pressures will be modeled. By modeling in MATLAB, the blood pressure measurement can be evaluated without the need for a clinical condition. The output of blood pressure parameters can be obtained by entering the main characteristics of arterial pressure as input. The output of modeling with real samples of 50 measured cases and the accuracy of estimating systolic and diastolic pressures according to two algorithms of maximum oscillation and The maximum/minimum slope were checked considering the actual values. The results of comparing the modeling performance with the measured values indicate that the maximum oscillation algorithm has a better performance than the maximum/minimum slope algorithm. The mean error value in the maximum oscillation algorithm for maximum amplitude pressure, systole, and diastole is 0.64 ± 1.9, 0.82 ± 1.6, and 5.1 ± 6.8, respectively.
[1] M. Forouzanfar, H.R. Dajani, V.Z. Groza, M. Bolic, S. Rajan, I. Batkin, "Oscillometric slood pressure estimation: Past, present, and future", IEEE Reviews in Biomedical Engineering, vol. 8, pp. 44-63, May 2015 (doi: 10.1109/RBME.2015.2434215).
[2] M. Sadaghiani, G. Mashayekhi, N. Behzadfar, A. Yaghoobzadeh, T. Babaee, "Validation of the Saadat NIBP module according to the ANSI/AAMI-SP10 protocol", Proceeding of the IEEE/ICBME, pp. 199-202, Tehran, Iran, Dec. 2013 (doi: 10.1109/ICBME.2013.6782218).
[3] A. Voss, A. Seeck, M. Baumert, "Altered interacttions of heart rate and blood pressure during normal and abnormal pregnancy", Proceeding of the IEEE/IEMBS, pp. 1695-1698, Buenos Aires, Argentina, Sept. 2010 (doi: 10.1109/IEMBS.2010.5626838).
[4] S. Lalan, D. Blowey, “Comparison between oscillometric and intra-arterial blood pressure measureements in ill preterm and full-term neonates”, Journal of the American Society of Hypertension, vol. 8, no. 1, pp. 36–44, Jan. 2014 (doi: 10.1016/j.jash.2013.10.003 ).
[5] A. Argha, A., B.G. Celler, & N.H.Lovell "Artificial intelligence based blood pressure estimation from auscultatory and oscillometric waveforms: A methodological review", IEEE Reviews in Biomedical Engineering, vol. 15, pp. 152-168, Nov. 2020 (doi: 10.1109/RBME.2020.3040715).
[6] A.S. Alghamdi, K. Polat, A. Alghoson, A.A. Alshdadi, & A.A. Abd El-Latif, “A novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methods”, Applied Acoustics, vol. 164, Article Number: 107279, July 2020 (doi: 10.1016/j.apacoust.2020.107279).
[7] C.R. Taylor, C. Lillis, P. LeMone, P. Lynn, "Study guide for fundamentals of nursing: The art and science of nursing care", 7th Edition, Baltimore, MD, USA: Lippincott Williams and Wilkins, 2010.
[8] G.M. Drzewiecki, L.F. Moubarak, “Transmural pressure-area relation for veins and arteries”, Proceeding of the IEEE/NEBC, pp. 269-272, Durham, NH, USA, March 1988 (doi: 10.1109/NEBC.1988.19403).
[9] G.M. Drzewiecki, E. Karam, V. Bansal, R. Hood, H. Apple, “Mechanics of the occlusive arm cuff and its application as a volume sensor”, IEEE Trans. on Biomedical Engineering, vol. 40, no.7, pp. 704-708, July 1993 (doi: 10.1109/10.237700).
[10] G.M. Drzewiecki, R. Hood, H. Apple, “Theory of the oscillometric maximum and the systolic and diastolic detection ratios”, Annals of Biomedical Engineering, vol. 22, no. 1, pp. 88-96, Jan./Feb. 1994 (doi: 10.1007/BF02368225).
[11] P.D. Baker, D.R. Westenskow, K. Kuck, "Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure", Medical and Biological Engineering and Computing, vol. 35, pp. 271–278, May 1997 (doi: 10.1007/BF02530049).
[12] J.S.R. Jang, C.T. Sun, E. Mizutani, "Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence [Book Reviews] ", IEEE Trans. on Automatic Control, vol. 42, no. 10, pp. 1482-1484, 1997 (doi: 10.1109/TAC.1997.633847).
[13] G.W. Mauck, C.R. Smith, L.A. Geddes, J.D. Bourland, "The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure- Part II", Journal of Biomechanical Engineering, vol. 102, no. 1, pp. 28–33, Feb. 1980 (doi: 10.1115/1.3138195).
[14] F.K. Forster, D. Turney, "Oscillometric determination of diastolic, mean, and systolic blood pressure- A numerical model", Journal of Biomechanical Engineering, vol. 108, pp. 359–364, Nov. 1986 (doi: 10.1115/1.3138629).
[15] S. Lee, M. Bolic, V.Z. Groza, H.R. Dajani, S. Rajan, "Confidence interval estimation for oscillometric blood pressure measurements using bootstrap approaches", IEEE Trans. on Instrumentation and Measurement, vol. 60, pp. 3405–3415, Oct. 2011 (doi: 10.1109/TIM.2011.2161926).
[16] G.M. Drzewiecki, "Noninvasive arterial blood pressure and mechanics", The Biomedical Engineering Handbook, 3rd ed, 2000.
[17] M. James, "Simplified model for the design of an oscillometric blood pressure measuring system", Ph.D. Dissertation, University of Guelph, Guelph, Canada, 2012.
[18] H. Lan, A.M. AI-Jumaily, A. Lowe, "An investigation into the upper arm deformation under inflatable cuff", Proceeding of the ASME/IMECE, pp. 621–624, Boston, Massachusetts, USA, Oct./Nov. 2008 (doi: 10.1115/IMECE2008-67009).
[19] H. Lan, A.M. Al-Jumaily, A. Lowe, W. Hing, “Effect of tissue mechanical properties on cuff-based blood pressure measurements”, Medical Engineering and Physics, vol. 33, no. 10, pp. 1287–1292, Dec. 2011 (doi: 10.1016/j.medengphy.2011.06.006).
[20] J.S. Clark, S. Sun, “Total compliance method and apparatus for noninvasive arterial blood pressure measurement”, U.S. Patent, US5423322A, 1995.
[21] C.F. Babbs, "Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model", Biomedical Engineering Online, vol. 11, no.1, Aug. 2012 (doi: 10.1186/1475-925X-11-56).
[22] M. Forouzanfar, B. Balasingam, H.R. Dajani, V. Groza, M. Bolic, S. Rajan, E.M. Petriu, “Mathematical modeling and parameter estimation of blood pressure oscillometric waveform”, Proceeding of the IEEE/MeMeA, pp. 1-6, Budapest, Hungary, May 2012 (doi: 10.1109/MeMeA.2012.6226639).
[23] M. Forouzanfar, H.R. Dajani, V. Groza, M. Bolic, "Model-based oscillometric blood pressure estimation", Proceeding of the IEEE/MeMeA, pp. 1-6, Lisboa, Portugal, June 2014 (doi: 10.1109/MeMeA.2014.6860103).
[24] M. Forouzanfar, H.R. Dajani, V.Z. Groza, M. Bolic, S. Rajan, I. Batkin, "Ratio-independent blood pressure estimation by modeling the oscillometric waveform envelope", IEEE Trans. on Instrumentation and Measurement, vol. 63, no. 10, pp. 2501–2503, Oct. 2014 (doi: 10.1109/TIM.2014.2332239).
[25] L. Soojeong, J. Chang, "Deep belief networks ensemble for blood pressure estimation", IEEE Access, vol. 5, pp. 9962-9972, May 2017 (doi: 10.1109/ACCESS.2017.2701800).
[26] L. Soojeong, J. Chang. "Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation", Computer Methods and Programs in Biomedicine, vol. 151, pp. 1-13, Nov. 2017 (doi: 10.1016/j.cmpb.2017.08.005).
[27] L. Soojeong, A. Ahmad, G. Jeon, "Combining bootstrap aggregation with support vector regression for small blood pressure measurement". Journal of Medical Systems, vol. 42, no. 4, Article Number: 63, Feb. 2018 (doi:10.1007/s10916-018-0913-x).
[28] S. Lee, C. Park, J. Chang, S. Member, “Improved gaussian mixture regression based on pseudo feature generation using bootstrap in blood pressure estimation”, IEEE Trans. on Industrial Informatics, vol. 12, no.6, pp. 2269–2280, Dec. 2016 (doi: 10.1109/TII.2015.2484278).
[29] J. Liu, J. Hahn, R. Mukkanala, "Model-based error analysis of the oscillometric fixed-ratio blood pressure measurement method", Proceeding of the IEEE/EMBC, San Diego, USA, Sept. 2012 (doi: 10.1109/EMBC.2012.6346011).
[30] L.E. Fields, V.L. Burt, J.A. Culter, J. Hughes, E.J. Roccella, P. Sorlie, "The burden of adult hypertension in the united states 1990 to 2000: A rising tide", Journal of Hypertension, vol. 44, no. 4, pp. 398–404, Aug. 2004 (dpi: 10.1161/01.HYP.0000142248.54761.56).
[31] S. Alpert Bruce, D. Quinn, D. Gallick, "Oscillometric blood pressure: a review for clinicians", Journal of the American Society of Hypertension, vol. 12, no. 12, pp. 930–938, Dec. 2014 (doi: 10.1016/j.jash.2014.08.014).
[32] I. Koohi, S. Ahmad, I. Batkin, V. Groza, S. Shirmohammadi, R. Hilmi Dajani. "Dynamic threshold algorithm to evaluate trustworthiness of the estimated blood pressure in oscillometry", IEEE Instrumentation and Measurement Magazine, vol. 19, no. 5, pp. 26-35, Oct. 2016 (doi: 10.1109/MIM.2016.7579067).
[33] S. Lewington, R. Clarke, N. Oizilbash, R. Peto, R. Collins, "Age specific relevance of usual blood pressure to vascular mortality: A met analysis of individual data for one million adults in 61 prospective studies", Lacent, vol. 360, no. 9366, pp. 1391-1392, Dec. 2002 (doi: 10.1016/s0140-6736(02)11911-8).
[34] H. Smulyan, M.E. Safar, "Blood pressure measurement: Retrospective and prospective views", American Journal of Hypertension, vol. 24, no. 6, pp. 628–634, June 2011 (doi: 10.1038/ajh.2011.22).
[35] K. Soueidan, S. Chen, H.R. Dajani, M. Bolic, V.Z. Groza, "Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability", Physiological Measurement, vol. 33, no. 6, pp. 881–899, June 2012 (doi: 10.1088/0967-3334/33/6/881).
[36] R. Padwal, A. Jalali, D. Mclean, S. Anwar, K. Smith, P. Raggi, J. Ringrose, "Accuracy of oscillometric blood pressure algorithms in healthy adults and in adults with cardiovascular risk factors", Blood Pressure Monitoring, vol. 24, no. 1, pp. 33-37, Feb. 2019 (doi: 10.1097/MBP.0000000000000356).
[37] S. Chen, "Improving algorithms for oscillometric blood pressure estimation by suppressing breathing effects", Master’s Thesis, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada, 2010 (doi: 10.20381/ruor-13720).
[38] H. Lan, A.M. AI-Jumaily, W. Hing, A. Lowe, "Biomechanical basis of oscillometric blood pressure measuring technique", Proceeding of the ASME/IMECE, pp. 481–483, Florida, USA, 2009.
[39] I. Koohi, I. Batkin, V.Z. Groza, S. Shirmohammadi, H R. Dajani, S. Ahmad, "Metrological characterrization of a method for blood pressure estimation based on arterial lumen area model", IEEE Trans. on Instrumentation and Measurement, vol. 66, no.4, pp. 734-745, April 2017 (doi: 10.1109/TIM.2017.2657978).
_||_