مروری بر شبکه توزیع کلید کوانتومی در فیبرنوری
محورهای موضوعی : انرژی های تجدیدپذیرمعصومه شیریچیان 1 , رضا صباغی ندوشن 2 * , محبوبه هوشمند 3 , منیره هوشمند 4
1 - گروه مهندسی برق- واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مهندسی برق- واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه مهندسی کامپیوتر- واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
4 - گروه مهندسی برق- دانشگاه بینالمللی امام رضا (ع)، مشهد، ایران
کلید واژه: رمزنگاری کوانتومی, شبکه توزیع کلید کوانتومی, شبکه گرههای نوری, ادغام شبکه توزیع کلید کوانتومی با شبکه مبتنی بر نرمافزار, شبکه گرهها قابلاعتماد,
چکیده مقاله :
شبکههای مخابراتی، مسلماً یکی از سنگ بناهای جامعه اطلاعاتی مدرن و یکی از محرکهای اصلی اقتصاد هستند و زمینهای را فراهم میکنند که بسیاری از فعالیتهای روزمره بر آن تکیه نماید. همچنین فناوری های جدید مانند اینترنت اشیا، هوش مصنوعی، خودروهای خودران، G۵ و ... به پتانسیل کامل خود نمیرسند مگر این که یک شبکه ارتباطی زیربنایی نیازهای آنها را برآورده کند که برای زیرساخت و خدمات آنها امنیت موضوعی بسیار حیاتی است. از سوی دیگر پیشرفت فناوری محاسبات کوانتومی در سالهای اخیر و ساخت رایانههای کوانتومی با توان پردازش بسیار بالا و حل مسائل بسیار پیچیده با سرعتی بیشتر از رایانههای فعلی باعث شده که امنیت سایبری، امنیت رایانهها و وسایل ارتباطی به یک مسئله حیاتی و مورد توجه دولتها تبدیل گردد. با این حال با پیشرفت فناوری کوانتومی میتوان با استفاده از روشهای کوانتومی برای توزیع کلیدها از این تهدیدات جلوگیری نمود، لذا رمزنگاری کوانتومی بهعنوان جایگزین روشهای کلاسیک در مقابل رایانههای کوانتومی و حملات سایبری در نظر گرفته شده است. توزیع کلید کوانتومی معروفترین زیرشاخه رمزنگاری کوانتومی است که امروزه نمونههای تجاری آن نیز در بازار موجود است. استفاده از رمزنگاری کوانتومی در زیرساخت شبکههای کلاسیک کنونی منجر به برقراری امنیت بیقید و شرط در ارتباطات بلند برد گردیده که در این مقاله به آن پرداخته شده است. نقطه تمایز این مقاله ارائه مروری بر جدیدترین تحقیقات در زمینه پیادهسازی شبکههای توزیع کلید کوانتومی در فیبرنوری است. همچنین شبکههای توزیع کلید کوانتومی پیادهسازی شده در دنیا بررسی و مقایسه گردیده و رویکرد کشورهای مختلف در این زمینه را مورد مطالعه قرار میدهد.
Telecommunication networks are certainly one of the cornerstones of the modern information society and one of the main drivers of the economy and provide a basis on which many daily activities can rely. Also, new technologies such as the Internet of Things, artificial intelligence, self-driving cars, 5G, etc. will not reach their full potential unless an infrastructure communication network meets their needs. Security is critical to their infrastructure and services. On the other hand, the development of quantum computing technology in recent years and the construction of quantum computers with very high processing power and solving very complex problems faster than current computers has made cybersecurity, computer security and communication devices a vital and important issue for governments. However, with the advancement of quantum technology, these threats can be prevented by using quantum methods to distribute keys, so quantum cryptography is considered as an alternative to classical methods against quantum computers and cyberattacks. Quantum key distribution is the most popular sub-branch of quantum cryptography, and commercial examples are now available in the market. However, the implementation of quantum key distribution networks in fiber optics, which is discussed in this paper, is one of the solutions that provide unconditional security through quantum cryptography to establish secure communication. The distinguishing point of this article is to provide an overview of the latest research in the field of implementation of quantum key distribution networks in fiber optics. In addition, the quantum key distribution networks implemented in the world are reviewed and compared and the approach of different countries in this field is studied.
[1] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S.J. Glaser, F. Jelezko, S. Kuhr, "The quantum technologies roadmap: a European community view", New Journal of Physics, vol. 20, no. 8, Article Number: 080201, Aug. 2018 (doi: 10.1088/1367-2630/aad1ea).
[2] National Academies of Sciences, Engineering, Medicine, "Quantum computing: Progress and prospects", National Academies Press, April 2019 (ISBN: 978-0-309-47969-1).
[3] D. Gottesman, H.K. Lo, N. Lutkenhaus, J. Preskill, "Security of quantum key distribution with imperfect devices", Proceeding of the IEEE/ISIT, Chicago, IL, USA, June/July 2004 (doi: 10.48550/arXiv.quant-ph/0212066).
[4] M. Shirichian, S. Tofighi, "Protocol for routing entanglement in the quantum ring network", Proceeding of the IEEE/IST, pp. 658-663, Tehran, Iran, Dec. 2018 (doi: 10.1109/ISTEL.2018.8661126).
[5] A. Ahmadian, M. Ashrafi, M. Afsari, M. Bathayi, N.T. Bordbar, S. Tofighi, L. Chehreghani,S. Khademi, M. Shirichian, F. Farman, A. Mani, M. Nikayeen, M. Hashemi, M. Houshmand, "An Introduction of quantum communication", In Atinegar (first Edition), 2020 (https://ketab.ir/book/294ae030-5b0f-4ac5-83ea-af77f85a79e5) (ISBN: 978-622-7571-29-5) (in Persian).
[6] C.H. Bennett, G. Brassard, "An update on quantum cryptography", Proceeding of the Springer/TACT, pp. 475-480, Berlin, Heidelberg, Aug. 1984 (doi: 10.1007/3-540-39568-7_39).
[7] H.W. Li, C.M. Zhang, M.S. Jiang, Q.Y. Cai. "Improving the performance of practical decoy-state quantum key distribution with advantage distillation technology", Communications Physics, vol. 5, Article Number: 53, Mar. 2022 (doi: 10.1038/s42005-022-00831-4).
[8] Y. Zhao, B. Qi, X. Ma, H.K. Lo, L. Qian "Experimental quantum key distribution with decoy states", Physical Review Letters, vol. 96, no. 7, pp. 2094-2098, Feb. 2006 (doi: 10.48550/ARXIV.QUANT-PH/0503192).
[9] C.Z. Peng, J. Zhang, D. Yang, W.B. Gao, H.X. Ma, H. Yin, H.P. Zeng, T. Yang, X.B. Wang, J.W. Pan, "Experimental long-distance decoy-state quantum key distribution based on polarization encoding", Physical Review Letters, vol. 98, no. 1, Article Number: 010505, Jan. 2007 (doi: 10.48550/arXiv.quant-ph/0607129).
[10] D. Rosenberg, J.W. Harrington, P.R. Rice, P.A. Hiskett, C.G. Peterson, R.J. Hughes, A.E. Lita, S.W. Nam, J.E. Nordholt, "Long-distance decoy-state quantum key distribution in optical fiber", Physical Review Letters, vol. 98, no. 1, Article Number: 010503, Jan. 2007 (doi: 10.1103/PhysRevLett.98.010503).
[11] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J.G. Rarity, A. Zeilinger, "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km", Physical Review Letters, vol. 98, no. 1, Article Number: 010504, Jan. 2007 (doi: 10.1103/PhysRevLett.98.010504).
[12] Z.L. Yuan, A.W. Sharpe, A.J. Shields, "Unconditionally secure one-way quantum key distribution using decoy pulses", Applied Physics Letters, vol. 90, no.1, Article Number: 011118, Jan. 2007 (doi: 10.1063/1.2430685).
[13] Z.Q. Yin, Z.F. Han, W. Chen, F.X. Xu, Q.L. Wu, G.C. Guo, "Experimental decoy quantum key distribution up to 130km fiber", arXiv preprint arXiv:0704.2941, April 2007 (doi:10.1088/0256-307X/25/10/008)
[14] Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z.F. Han, G.C. Guo, A. Karlsson, "Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source", Physical Review Letters, vol. 100, no. 9, Article Number: 090501, Mar. 2008 (doi: 10.1103/PhysRevLett.100.090501)
[15] A.R. Dixon, Z.L. Yuan, J.F. Dynes, A.W. Sharpe, A.J. Shields, "Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate", Optics Express, vol. 16, no. 23, pp. 18790-18797, Nov. 2008 (doi: 10.1364/OE.16.018790).
[16] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, "The SECOQC quantum key distribution network in Vienna", New Journal of Physics, vol. 11, no. 7, Article Number: 075001, July 2009 (doi: 10.1364/OFC.2009.OThL2).
[17] D. Rosenberg, C.G. Peterson, J.W. Harrington, P.R. Rice, N. Dallmann, K.T. Tyagi, K.P. McCabe, S. Nam, B. Baek, R.H. Hadfield, R.J. Hughes, "Practical long-distance quantum key distribution system using decoy levels", New Journal of Physics, vol. 11, no. 4, Article Number: 045009, April 2009 (doi: 10.48550/arXiv.0806.3085).
[18] Z.L. Yuan, A.R. Dixon, J.F. Dynes, A.W. Sharpe, A.J. Shields, "Practical gigahertz quantum key distribution based on avalanche photodiodes", New Journal of Physics, vol. 11, no. 4, Article Number: 045019, April 2009 (doi: 10.1088/1367-2630/11/4/045019).
[19] T.Y. Chen, H. Liang, Y. Liu, W.Q. Cai, L. Ju, W.Y. Liu, J. Wang, H. Yin, K. Chen, Z.B. Chen, C.Z. Peng, "Field test of a practical secure communication network with decoy-state quantum cryptography", Optics Express, vol. 17, no. 8, pp. 6540-6549, April 2009 (doi: 10.1364/OE.17.006540).
[20] Y. Liu, T.Y. Chen, J. Wang, W.Q. Cai, X. Wan, L.K. Chen, J.H. Wang, S.B. Liu, H. Liang, L. Yang, C.Z. Peng, "Decoy-state quantum key distribution with polarized photons over 200 km", Optics Express, vol. 18, no. 8. pp. 8587-8594, April 2010 (doi: 10.1364/OE.18.008587).
[21] T.Y. Chen, J. Wang, H. Liang, W.Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.Q. Cai, L. Ju, L.K. Chen, "Metropolitan all-pass and inter-city quantum communication network", Optics Express, vol. 18, no. 26, pp. 27217-27225, Dec. 2010 (doi: 10.1364/OE.18.027217).
[22] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, "Field test of quantum key distribution in the Tokyo QKD network", Optics Express, vol. 19, no.11, pp. 10387-10409, May 2011 (doi: 10.1364/OE.19.010387).
[23] J.Y. Wang, B. Yang, S.K. Liao, L. Zhang, Q. Shen, X.F. Hu, J.C. Wu, S.J. Yang, H. Jiang, Y.L. Tang, B. Zhong, "Direct and full-scale experimental verifications towards ground–satellite quantum key distribution", Nature Photonics, vol. 7, no. 5, pp. 387-393, April 2013 (doi: 10.1038/nphoton.2013.89).
[24] B. Fröhlich, J.F. Dynes, M. Lucamarini, A.W. Sharpe, Z. Yuan, A.J. Shields, "A quantum access network", Nature, vol. 501, no. 7465, pp. 69-72, Sept. 2013 (doi: 10.48550/arXiv.1309.6431).
[25] M. Lucamarini, K.A. Patel, J.F. Dynes, B. Fröhlich, A.W. Sharpe, A.R. Dixon, Z.L. Yuan, R.V. Penty, A.J. Shields, "Efficient decoy-state quantum key distribution with quantified security", Optics Express, vol. 21, no. 21, pp. 24550-24565, Oct. 2013 (doi: 10.1364/OE.21.024550)
[26] B. Fröhlich, M. Lucamarini, J.F. Dynes, L.C. Comandar, W.W. Tam, A. Plews, A.W. Sharpe, Z. Yuan, A.J. Shields, "Long-distance quantum key distribution secure against coherent attacks", Optica, vol. 4, no. 1 pp.163-167, Jan. 2017 (doi: 10.1364/OPTICA.4.000163).
[27] S.K. Liao, W.Q. Cai, W.Y. Liu, L. Zhang, Y. Li, J.G. Ren, J. Yin, Q. Shen, Y. Cao, Z.P. Li, F.Z. Li, "Satellite-to-ground quantum key distribution", Nature, vol. 549, no. 7670, pp. 43-47, Aug. 2017 (doi: 10.48550/arXiv.1707.00542).
[28] Z. Yuan, A. Plews, R. Takahashi, K. Doi, W. Tam, A.W. Sharpe, A.R. Dixon, E. Lavelle, J.F. Dynes, A. Murakami, M. Kujiraoka, "10-Mb/s quantum key distribution", Journal of Lightwave Technology, vol. 36, no. 16, pp. 3427-3433, July 2018 (doi: 10.1109/JLT.2018.2843136).
[29] A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert, M. Caloz, M. Perrenoud, G. Gras, F. Bussières, M.J. Li, D. Nolan, "Secure quantum key distribution over 421 km of optical fiber", Physical Review Letters, vol. 121, no. 19, Nov. 2018 (doi: 10.1103/PhysRevLett.121.190502).
[30] H.L. Yin, P. Liu, W.W. Dai, Z.H. Ci, J. Gu, T. Gao, Q.W. Wang, Z.Y. Shen. "Experimental composable security decoy-state quantum key distribution using time-phase encoding", Optics Express, vol. 28, no. 20, pp. 29479-29485, Sept. 2020 (doi:10.1364/OE.401829).
[31] C.Q. Hu, Z.Q. Yan, J. Gao, Z.M. Li, H. Zhou, J.P. Dou, X.M. Jin. "Decoy-state quantum key distribution over a long-distance high-loss air-water channel", Physical Review Applied, vol. 15, no. 2, Article Number: 024060, Feb. 2021 (doi: 10.48550/arXiv.2004.06708).
[32] A.K. Ekert, "Quantum cryptography based on Bell’s theorem", Physical Review Letters, vol. 67, no. 6, pp. 661-663, Aug. 1991 (doi:10.1103/PhysRevLett.67.661).
[33] F. Xu, X. Ma, Q. Zhang, H.K. Lo, J.W. Pan,"Secure quantum key distribution with realistic devices", Reviews of Modern Physics, vol. 92, no. 2, Article Number: 025002, May 2020 (doi: 10.1103/RevModPhys.92.025002).
[34] M. Lucamarini, Z.L. Yuan, J.F. Dynes, A.J. Shields, "Overcoming the rate–distance limit of quantum key distribution without quantum repeaters", Nature, vol. 557, no. 7705, pp. 400-403, May 2018 (doi: 10.1038/s41586-018-0066-6).
[35] J.P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X.L. Hu, J.Y. Guan, Z.W. Yu, H. Xu, J. Lin, M.J. Li, "Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km", Physical Review Letters, vol. 124, no. 7, Article Number: 070501, Feb. 2020 (doi: 10.1103/PhysRevLett.124.070501).
[36] A. Rubenok, J.A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel, "Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks", Physical Review Letters, vol. 111, no. 13, Article Number: 130501, Sept. 2013 (doi:10.1103/PhysRevLett.111.130501).
[37] Y. Liu, T.Y. Chen, L.J. Wang, H. Liang, G.L. Shentu, J. Wang, K. Cui, H.L. Yin, N.L. Liu, L. Li, X. Ma, "Experimental measurement-device-independent quantum key distribution", Physical Review Letters, vol. 111, no.13, Article Number: 130502, Sept. 2013 (doi:10.1103/PhysRevLett.111.130502).
[38] T.F. Da Silva, D. Vitoreti, G.B. Xavier, G.C. Do Amaral, G.P. Temporão, J.P. Von Der Weid, "Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits", Physical Review A, vol. 88, no. 5, Article Number: 052303, Nov. 2013 (doi: 10.1103/PhysRevA.88.052303).
[39] Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, H.K. Lo, "Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution", Physical Review Letters, vol. 112, no.19, Article Number: 190503, May 2014 (doi: 10.1103/PhysRevLett.112.190503).
[40] Y.L. Tang, H.L. Yin, S.J. Chen, Y. Liu, W.J. Zhang, X. Jiang, L. Zhang, J. Wang, L.X. You, J.Y. Guan, D.X. Yang, "Measurement-device-independent quantum key distribution over 200 km", Physical Review Letters, vol. 113, no. 19, Article Number: 190501, Nov. 2014 (doi: 10.1103/PhysRevLett.113.190501).
[41] C. Wang, X.T. Song, Z.Q. Yin, S. Wang, W. Chen, C.M. Zhang, G.C. Guo, Z.F. Han, "Phase-reference-free experiment of measurement-device-independent quantum key distribution", Physical Review Letters, vol. 115, no. 16, Article Number: 160502, Oct. 2015 (doi: 10.1103/PhysRevLett.115.160502).
[42] R. Valivarthi, I. Lucio-Martinez, P. Chan, A. Rubenok, C. John, D. Korchinski, C. Duffin, F. Marsili, V. Verma, M.D. Shaw, J.A. Stern, "Measurement-device-independent quantum key distribution: from idea towards application", Journal of Modern Optics, vol. 62, no. 14, pp. 1141-1150, Aug. 2015 (doi: 10.48550/arXiv.1501.07307).
]43] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S.L. Braunstein, S. Lloyd, T. Gehring, C.S. Jacobsen, U.L. Andersen, "High-rate measurement-device-independent quantum cryptography", Nature Photonics, vol. 9, no. 6, pp. 397-402, June 2015 (doi: 10.1038/nphoton.2015.83).
[44] Y.L. Tang, H.L. Yin, Q. Zhao, H. Liu, X.X. Sun, M.Q. Huang, W.J. Zhang, S.J. Chen, L. Zhang, L.X. You, Z. Wang, "Measurement-device-independent quantum key distribution over untrustful metropolitan network", Physical Review X, vol. 6, no. 1, Article Number: 011024, Mar. 2016 (doi: 10.1103/PhysRevX.6.011024).
[45] H.L. Yin, T.Y. Chen, Z.W. Yu, H. Liu, L.X. You, Y.H. Zhou, S.J. Chen, Y. Mao, M.Q. Huang, W.J. Zhang, H. Chen, "Measurement-device-independent quantum key distribution over a 404 km optical fiber", Physical Review Letters, vol. 117, no. 19, Article Number: 190501, Nov. 2016 (doi: 10.1103/PhysRevLett.117.190501).
[46] G.Z. Tang, S.H. Sun, F Xu, H Chen, C.Y. Li, L.M. Liang, "Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution", Physical Review A, vol. 94, no. 3, Article Number: 032326, Sept. 2016 (doi: 10.1103/PhysRevA.94.032326).
[47] L.C. Comandar, M. Lucamarini, B. Fröhlich, J.F. Dynes, A.W. Sharpe, S.B. Tam, Z.L. Yuan, R.V. Penty, A.J. Shields, "Quantum key distribution without detector vulnerabilities using optically seeded lasers", Nature Photonics, vol. 10, no. 5, Article Number: 312, May 2016 (doi: 10.1038/nphoton.2016.50).
[48] F. Kaneda, F. Xu, J. Chapman, P.G. Kwiat, "Quantum-memory-assisted multi-photon generation for efficient quantum information processing", Optica, vol. 4, no. 9, pp. 1034-1037, Sept. 2017 (doi: 10.1364/OPTICA.4.001034).
[49] C. Wang, Z.Q. Yin, S. Wang, W. Chen, G.C. Guo, Z.F. Han, "Measurement-device-independent quantum key distribution robust against environmental disturbances", Optica, vol. 4, no. 9, pp. 1016-1023, Sept. 2017 (doi: 10.1364/OPTICA.4.001016).
[50] R. Valivarthi, Q. Zhou, C. John, F. Marsili, V.B. Verma, M.D. Shaw, S.W. Nam, D. Oblak, W. Tittel, "A cost-effective measurement-device-independent quantum key distribution system for quantum networks", Quantum Science and Technology, vol. 2, no. 4, Article Number: 04LT01, Sept. 2017 (doi: 10.48550/arXiv.1702.05155).
[51] Y. Liu, Q. Zhao, M.H. Li, J.Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.Z. Liu, C. Wu, X. Yuan, H. Li, "Device-independent quantum random-number generation", Nature, vol. 562, no. 7728, pp. 548-551, Oct. 2018 (doi: 10.1038/s41586-018-0559-3).
[52] H. Liu, W. Wang, K. Wei, X.T. Fang, L. Li, N.L. Liu, H. Liang, S.J. Zhang, W. Zhang, H. Li, L. You, "Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels", Physical Review Letters, vol. 122, no. 16, Article Number: 160501, April 2019 (doi: 10.1103/PhysRevLett.122.160501).
[53] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T.Y. Chen, "High-speed measurement-device-independent quantum key distribution with integrated silicon photonics", Physical Review X, vol. 10, no. 3, Article Number: 031030, Aug. 2020 (doi: 10.1103/PhysRevX.10.031030).
[54] M. Razavi, "An introduction to quantum communications networks", Morgan & Claypool Publishers, May 2018 (ISBN: 978-1-6817-4652-4).
[55] M. Minder, M. Pittaluga, G.L. Roberts, M. Lucamarini, J.F. Dynes, Z.L. Yuan, A.J. Shields, "Experimental quantum key distribution beyond the repeaterless secret key capacity", Nature Photonics, vol. 13, no. 5, pp. 334-338, May 2019 (doi: 10.1038/s41566-019-0377-7).
[56] S. Wang, D.Y. He, Z.Q. Yin, F.Y. Lu, C.H. Cui, W. Chen, Z. Zhou, G.C. Guo, Z.F. Han, "Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system", Physical Review X, vol. 9, no. 2, Article Number: 021046, June 2019 (doi: 10.1103/PhysRevX.9.021046).
[57] Y. Liu, Z.W. Yu, W. Zhang, J.Y. Guan, J.P. Chen, C. Zhang, X.L. Hu, H. Li, C. Jiang, J. Lin, T.Y. Chen, "Experimental twin-field quantum key distribution through sending or not sending", Physical Review Letters, vol. 123, no. 10, Article Number: 100505, Sept. 2019 (doi: 10.1103/PhysRevLett.123.100505).
[58] X. Zhong, J. Hu, M. Curty, L. Qian, H.K. Lo, "Proof-of-principle experimental demonstration of twin-field type quantum key distribution", Physical Review Letters, vol. 123, no. 10, Article Number: 100506, Sept. 2019 (doi: 10.1103/PhysRevLett.123.100506).
[59] X.T. Fang, P. Zeng, H. Liu, M. Zou, W. Wu, Y.L. Tang, Y.J. Sheng, Y. Xiang, W. Zhang, H. Li, Z. Wang, "Implementation of quantum key distribution surpassing the linear rate-transmittance bound", Nature Photonics, vol. 14, no. 7, pp. 422-425, July 2020 (doi: 10.1038/s41566-020-0599-8).
[60] M. Pittaluga, M. Minder, M. Lucamarini, M. Sanzaro, R.I. Woodward, M.J. Li, Z. Yuan, A.J. Shields, “600-km repeater-like quantum communications with dual-band stabilization”, Nature Photonics, vol. 15, no. 7, pp. 530–535, July 2021 (doi: 10.48550/arXiv.2012.15099)
[61] S. Kent, R. Atkinson, "RFC2401: Security architecture for the internet protocol", Browse RFC, 1998 (doi: 10.17487/RFC2401).
[62] D. Harkins, D. Carrel. "The internet key exchange (IKE)", RFC 2409, Nov. 1998 (doi: 10.17487/RFC2409).
[63] C. Elliott, "Building the quantum network", New Journal of Physics, vol. 4, no.1, Article Number: 46, July 2002 (doi: 10.1088/1367-2630/4/1/346).
[64] C. Elliott, D. Pearson, G. Troxel, "Quantum cryptography in practice", Proceedings of the ATAPCC, pp. 227-238, Karlsruhe Germany, Aug. 2003 (doi: 10.1145/863955.863982).
[65] A. Herman, I. Friedson, "Quantum Computing: How to address the national security risk", Hudson Institute, Aug. 2018.
[66] M. Dianati, R. Alléaume, M. Gagnaire, X. Shen."Architecture and protocols of the future European quantum key distribution network", Security and Communication Networks, vol. 1, no.1, pp. 57-74, Jan. 2008 (doi: 10.1002/sec.13).
[67] B. Fröhlich, M. Lucamarini, J.F. Dynes, L.C. Comandar, W.W. Tam, A. Plews, A.W. Sharpe, Z. Yuan, A.J. Shields. "Long-distance quantum key distribution secure against coherent attacks", Optica, vol. 4, no.1, pp. 163-167, Jan. 2017 (doi:10.1364/OPTICA.4.000163).
[68] A.M. Lewis, M.Travagnin, "A Secure Quantum Communications Infrastructure for Europe: Technical background for a policy vision", Publications Office of the European Union, 2022 (doi: 10.2760/180945)
[69] I. Garcia-Cobo, H.D. Menéndez. "Designing large quantum key distribution networks via medoid-based algorithms", Future Generation Computer Systems, no. 115, pp. 814-824, Feb. 2021 (doi: 10.1016/j.future.2020.09.037).
[70] Y. Yu, J. Zhang, Y. Zhao, X. Cao, X. Lin, W. Gu, "The first single-link exact model for performance analysis of flexible grid WDM networks", Proceeding of the NFOEC, Anaheim, California, United States, Mar. 2013 (doi: 10.1364/NFOEC.2013.JW2A.68).
[71] Y. Zhao, B. Chen, J. Zhang, X. Wang, "Energy efficiency with sliceable multi-flow transponders and elastic regenerators in survivable virtual optical networks", IEEE Trans. on Communications,vol. 64, no.6, pp. 2539-2550, April 2016 (doi: 10.1109/TCOMM.2016.2554110).
[72] N. Skorin-Kapov, M. Furdek, S. Zsigmond, L. Wosinska, "Physical-layer security in evolving optical networks", IEEE Communications Magazine, vol. 54, no. 8, pp. 110-117, Aug. 2016 (doi: 10.1109/MCOM.2016.7537185).
[73] H.M. Salim, "Cyber safety: A systems thinking and systems theory approach to managing cyber security risks", PhD Thesis, Massachusetts Institute of Technology, 2014.
[74] P. Eraerds, N. Walenta, M. Legré, N. Gisin, H. Zbinden, "Quantum key distribution and 1 Gbps data encryption over a single fibre", New Journal of Physics, vol. 12, no. 6, Article Number: 063027, June 2010 (doi: 10.1088/1367-2630/12/6/063027).
[75] L.J. Wang, L.K. Chen, L. Ju, M.L. Xu, Y. Zhao, K. Chen, Z.B. Chen, T.Y. Chen, J.W. Pan, "Experimental multiplexing of quantum key distribution with classical optical communication", Applied Physics Letters, vol. 106, no. 8, Article Number: 081108, Feb. 2015 (doi:10.1063/1.4913483).
[76] S. Bahrani, M. Razavi, J.A. Salehi, "Wavelength assignment in hybrid quantum-classical networks", Scientific reports, vol. 8, no. 1, pp. 1-13, Feb. 2018 (doi:10.48550/arXiv.1701.08270).
[77] G.B. Xavier, G. Lima. "Quantum information processing with space-division multiplexing optical fibres", Communications Physics, vol. 3, no. 1, pp. 1-11, Jan. 2020 (doi: 10.1038/s42005-019-0269-7).
[78] P. Wright, C. White, R.C. Parker, J.S. Pegon, M. Menchetti, J. Pearse, A. Bahrami, A. Moroz, A. Wonfor, R.V. Penty, T.P. Spiller. "5G network slicing with QKD and quantum-safe security", Journal of Optical Communications and Networking, vol. 13, no. 3, pp. 33-40, Mar. 2021 (doi:10.48550/arXiv.2007.03377).
[79] S. Guo, S. Shao, Y. Wang, H. Yang, "Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services", Optical Fiber Technology, vol. 37, pp. 61-68, Sept. 2017 (doi: 10.1016/j.yofte.2017.07.001).
[80] F. Sadeghi, A. Avokh, "Load‐balanced data gathering in Internet of Things using an energy‐aware cuckoo‐search algorithm", International Journal of Communication Systems, vol. 33, no. 9, Article Number: e4385, June 2020 (doi: 10.1002/dac.4385).
[81] P. Afsharlar, A. Deylamsalehi, J.M. Plante, J. Zhao, V.M. Vokkarane, "Routing and spectrum assignment with delayed allocation in elastic optical networks", Journal of Optical Communications and Networking, vol. 9, no. 3, pp. B101-B111, Mar. 2017 (doi: 10.1364/JOCN.9.00B101).
[82] B.C. Chatterjee, S. Ba, E. Oki, "Fragmentation problems and management approaches in elastic optical networks: A survey", IEEE Communications Surveys & Tutorials, vol. 20, no.1, pp. 183-210, Nov. 2017 (doi: 10.1109/COMST.2017.2769102).
[83] E.E. Moghaddam, H. Beyranvand, J.A. Salehi "Resource allocation in space division multiplexed elastic optical networks secured with quantum key distribution", IEEE Journal on Selected Areas in Communications, vol. 39, no. 9, pp. 2688-2700, Mar. 2021 (doi: 10.1109/JSAC.2021.3064641).
[84] R. Goścień, M. Kucharzak, "On the efficient optimization of unicast, anycast and multicast flows in survivable elastic optical networks", Optical Switching and Networking, vol. 31, pp. 114-126, Jan. 2019 (doi: 10.1016/j.osn.2018.10.010).
[85] M.S. Aboomasoudi, A. Avokh, "Improving acceptance rate of QoS-guaranteed point-to-multipoint traffic flows in elastic optical networks", Optical Fiber Technology, vol. 59, Article Number: 102327, Oct. 2020 (doi: 10.1016/j.yofte.2020.102327).
[86] E.E. Moghaddam, H. Beyranvand, J.A. Salehi "Resource allocation in space division multiplexed elastic optical networks secured with quantum key distribution", IEEE Journal on Selected Areas in Communications, vol. 39, no. 9, pp. 2688-2700, Mar. 2021 (doi: 10.1109/JSAC.2021.3064641).
[87] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh. "Current status of the DARPA quantum network", Quantum Information and computation III, SPIE, vol. 5815, pp. 138-149, May 2005 (doi: 10.48550/arXiv.quant-ph/0503058).
[88] P. Toliver, R.J. Runser, T.E. Chapuran, M.S. Goodman, J. Jackel, S. McNown, R.J. Hughes, C.G. Peterson, K. McCabe, J.E. Nordholt, K. Tyagi, "Demonstration of 1550 nm QKD with ROADM-based DWDM Networking and the Impact of Fiber FWM", Proceeding of the Conference on Lasers and Electro-Optics, Baltimore, Maryland, United States, May 2007 (doi: 10.1109/CLEO.2007.4452689).
[89] S. Tibuleac, M. Filer. "Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers", Journal of Lightwave Technology, vol. 28, no. 4, pp. 557-568, Feb. 2010 (doi: 10.1109/JLT.2009.2037832).
[90] T.E. Chapuran, P. Toliver, N.A. Peters, J. Jackel, M.S. Goodman, R.J. Runser, S.R. McNown, N. Dallmann, R.J. Hughes, K.P. McCabe, J.E. Nordholt, "Optical networking for quantum key distribution and quantum communications", New Journal of Physics, vol. 11, no. 10, Article Number: 105001, Oct. 2009 (doi: 10.1088/1367-2630/11/10/105001).
[91] R. Wang, R.S. Tessinari, E. Hugues-Salas, A. Bravalheri, N. Uniyal, A.S. Muqaddas, R.S. Guimaraes, T. Diallo, S. Moazzeni, Q. Wang, G.T. Kanellos, "End-to-end quantum secured inter-domain 5G service orchestration over dynamically switched flex-grid optical networks enabled by a q-ROADM", Journal of Lightwave Technology, vol. 38, no. 1, pp. 139-149, Oct. 2019 (doi: 10.1109/JLT.2019.2949864).
[92] T.A. Eriksson, T. Hirano, B.J. Puttnam, G. Rademacher, R.S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, M. Sasaki, "Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels", Communications Physics, vol. 2, no. 1, pp. 1-8, Jan. 2019 (doi: 10.1038/s42005-018-0105-5).
[93] K.A. Patel, J.F. Dynes, M. Lucamarini, I. Choi, A.W. Sharpe, Z.L. Yuan, R.V. Penty, A.J. Shields, "Quantum key distribution for 10 gb/s dense wavelength division multiplexing networks", Applied Physics Letters, vol. 104, no. 5, Article Number: 051123, Feb. 2014. (doi: 10.1063/1.4864398).
[94] R. Lin, A. Udalcovs, O. Ozolins, X. Pang, L. Gan, L. Shen, M. Tang, S. Fu, S. Popov, C. Yang, W. Tong, "Telecom Compatibility Validation of Quantum Key Distribution Co-Existing with 112 Gbps /λ/core Data Transmission in Non-Trench and Trench-Assistant Multicore Fibers", Proceeding of the IEEE/ECOC, pp. 1-3, Roma, Italy, Sept. 2018 (doi: 10.1109/ECOC.2018.8535406).
[95] E. Hugues-Salas, O. Alia, R. Wang, K. Rajkumar, G.T. Kanellos, R. Nejabati, D.Simeonidou, "11.2 tb/s classical channel coexistence with dv-qkd over a 7-core multicore fiber", Journal of Lightwave Technology, vol. 38, no. 18, pp. 5064-5070, Sept. 2020 (doi: 10.1109/JLT.2020.2998053).
[96] A. Aguado, V. Martin, D. Lopez, M. Peev, J. Martinez-Mateo, J.L. Rosales, F. de la Iglesia, M. Gomez, E. Hugues-Salas, A. Lord, R. Nejabati "Quantum-aware software defined networks", 7th International Conference on Quantum Cryptography (QCrypt), United Kingdom, Sept. 2016.
[97] Y. Peng, C. Wu, B. Zhao, W. Yu, B. Liu, S. Qiao "QKDFlow: QKD based secure communication towards the openflow interface in SDN", International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, pp. 410-415, Hong Kong, China, Nov. 2016 (doi: 10.1007/978-981-10-3969-0_45).
[98] J.M. Merolla, Y. Mazurenko, J.P. Goedgebuer, W.T. Rhodes."Single-photon interference in sidebands of phase-modulated light for quantum cryptography", Physical Review Letters, vol. 82, no. 8, Article Number: 1656, Feb. 1999 (doi:10.1103/PhysRevLett.82.1656).
[99] A.V. Glejm, A.A. Anisimov, L.N. Asnis, Y.B. Vakhtomin, A.V. Divochiy, V.I. Egorov, V.V. Kovalyuk, A.A. Korneev, S.M. Kynev, Y.V. Nazarov, R.V. Ozhegov. "Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s", Bulletin of the Russian Academy of Sciences: Physics, vol. 78, no. 3, pp. 171-175, Mar. 2014 (doi: 10.3103/S1062873814030095).
[100] A.V. Gleim, V.I. Egorov, Y.V. Nazarov, S.V. Smirnov, V.V. Chistyakov, O.I. Bannik, A.A. Anisimov, S.M. Kynev, A.E. Ivanova, R.J. Collins, S.A. Kozlov. "Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference", Optics Express, vol. 24, no. 3, pp. 2619-2633, Feb. 2016 (doi: 10.1364/OE.24.002619).
[101] J. Mora, W. Amaya, A. Ruiz-Alba, A. Martinez, D. Calvo, V.G. Muñoz, J. Capmany, "Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON", Optics Express, vol. 20, no. 15, pp. 16358-16365, July 2012 (doi: 10.1364/OE.20.016358).
[102] V.V. Chistyakov, O.L. Sadov, A.B. Vasiliev, V.I. Egorov, M.V. Kompaniets, P.V. Fedchenkov, O.I. Lazo, A.E. Shevel, N.V. Buldakov, A.V. Gleim, S.E. Khoruzhnikov, "Software-defined subcarrier wave quantum networking operated by OpenFlow protocol", arXiv preprint arXiv:1709.09081, Sept. 2017 (doi:10.48550/arXiv.1709.09081).
[103] A. Aguado, E. Hugues-Salas, P.A. Haigh, J. Marhuenda, A.B. Price, P. Sibson, J.E. Kennard, C. Erven, J.G. Rarity, M.G. Thompson, A. Lord, "First Experimental demonstration of secure NFV orchestration over an SDN-controlled optical network with time-shared quantum key distribution", Proceeding of the 42nd European Conference on Optical Communication (ECOC), pp. 1-3, Düsseldorf, Germany, Sept. 2016 (doi:10.48550/arXiv.1604.05861).
[104] Y. Cao, Y. Zhao, C. Colman-Meixner, X. Yu, J. Zhang, "Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD)", Optics Express, vol. 25, no. 22, pp. 26453-26467, Oct. 2017 (doi: 10.1364/OE.25.026453).
[105] H. Wang, Y. Zhao, Y. Li, X. Yu, J. Zhang, C. Liu, Q. Shao, "A flexible key-updating method for software-defined optical networks secured by quantum key distribution", Optical Fiber Technology,vol. 45, pp. 195-200, Nov. 2018 (doi:10.1016/j.yofte.2018.07.005).
[106] Cao Y, Zhao Y, Yu X, Wu Y,"Resource assignment strategy in optical networks integrated with quantum key distribution", Journal of Optical Communications and Networking, vol. 9, no. 11, pp. 995-1004, Nov. 2017 (doi: 10.1364/JOCN.9.000995).
[107] A. Aguado, E. Hugues-Salas, P.A. Haigh, J. Marhuenda, A.B. Price, P. Sibson, J.E. Kennard, C. Erven, J.G. Rarity, M.G. Thompson, A. Lord, "Secure NFV orchestration over an SDN-controlled optical network with time-shared quantum key distribution resources", Journal of Lightwave Technology, vol. 35, no. 8, pp. 1357-1362, April 2017 (doi: 10.1109/JLT.2016.2646921).
[108] Y. Zhao, Y. Cao, W. Wang, H. Wang, X. Yu, J. Zhang, M. Tornatore, Y. Wu, B. Mukherjee. "Resource allocation in optical networks secured by quantum key distribution", IEEE Communications Magazine, vol. 56, no. 8, pp. 130-137, Aug. 2018 (doi: 10.1109/MCOM.2018.1700656).
[109] E. Hugues-Salas, F. Ntavou, D. Gkounis, G.T. Kanellos, R. Nejabati, D. Simeonidou, "Monitoring and physical-layer attack mitigation in SDN-controlled quantum key distribution networks", Journal of Optical Communications and Networking, vol. 11, no. 2, pp. A209-A218, Feb. 2019 (doi: 10.1364/JOCN.11.00A209).
[110] A. Aguado, V. Lopez, J. Martinez-Mateo, M. Peev, D. Lopez, V. Martin, "Virtual network function deployment and service automation to provide end-to-end quantum encryption", Journal of Optical Communications and Networking, vol. 10, no. 4, pp. 421-430, April 2018 (doi: 10.1364/JOCN.10.000421).
[111] Y. Cao, Y. Zhao, X. Yu, J. Zhang, "Secure virtual optical network embedding over optical networks integrated with quantum key distribution", Proceeding of the IEEE/ACP, pp. S4C-4. Guangzhou, Guangdong, China, Nov. 2017 (doi: 10.1364/ACPC.2017.S4C.4).
[112] K. Dong, Y. Zhao, X. Yu, A. Nag, J. Zhang, "Auxiliary graph based routing, wavelength, and time-slot assignment in metro quantum optical networks with a novel node structure", Optics Express, vol. 28, no. 5, pp. 5936-5952, Mar. 2020 (doi:10.1364/OE.380329).
[113] X. Yu, Y. Wang, L. Lu, Y. Zhao, H. Zhang, J. Zhang "VON embedding in elastic optical networks (EON) integrated with quantum key distribution (QKD)", Optical Fiber Technology, vol. 63, Article Number: 102486, May 2021 (doi: 10.1016/j.yofte.2021.102486).
[114] C. Elliott, "The DARPA quantum network", Quantum Communications and Cryptography, CRC Press, pp. 91-110, Oct. 2018 (doi: 10.1201/9781420026603.ch4).
[115] A. Poppe, M. Peev, O.Maurhart, "Outline of the SECOQC quantum-key-distribution network in Vienna", International Journal of Quantum Information, vol. 6, no. 02, pp. 209-218, April 2008 (doi: 10.48550/arXiv.0804.0122).
[116] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, "Using quantum key distribution for cryptographic purposes: a survey", Theoretical Computer Science, vol. 560, pp. 62-81, Dec. 2014 (doi: 10.48550/arXiv.quant-ph/0701168).
[117] M. Dianati, R. Alléaume, "Transport layer protocols for the secoqc quantum key distribution (QKD) network", Proceeding of the IEEE/LCN, pp. 1025-1034, Dublin, Ireland Oct. 2007 (doi: 10.1109/LCN.2007.107).
[118] W. Chen, Z.F. Han, T. Zhang, H. Wen, Z.Q. Yin, F.X. Xu, Q.L. Wu, Y. Liu, Y. Zhang, X.F. Mo, Y.Z. Gui, "Field experiment on a “star type” metropolitan quantum key distribution network", IEEE Photonics Technology Letters, vol. 21, no. 9, pp. 575-577, Feb. 2009 (doi: 10.1109/LPT.2009.2015058).
[119] A. Mirza, F. Petruccione, "Realizing long-term quantum cryptography", JOSA B, vol. 27, no. 6, pp. A185-A188, June 2010 (doi:10.1364/JOSAB.27.00A185).
[120] D. Stucki, M. Legre, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat. "Long-term performance of the SwissQuantum quantum key distribution network in a field environment", New Journal of Physics, vol. 13, no. 12, Article Number: 123001, Dec. 2011 (doi:10.48550/arXiv.1203.4940).
[121] D. Lancho, J. Martinez, D. Elkouss, M. Soto, V. Martin, "QKD in standard optical telecommunications networks", Proceeding of the Springer/Quantum Comunication and Quantum Networking, pp. 142-149 Berlin, Heidelberg, Oct. 2009 (doi: 10.48550/arXiv.1006.1858).
[122] F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zhao, H. Li, D. Liu, Z. Han. "Field experiment on a robust hierarchical metropolitan quantum cryptography network", Chinese Science Bulletin, vol. 54, no. 17, pp. 2991-2997, Sept. 2009 (doi: 10.1007/s11434-009-0526-3).
[123] S. Wang, W. Chen, Z.Q. Yin, Y. Zhang, T. Zhang, H.W. Li, F.X. Xu, Z. Zhou, Y. Yang, D.J. Huang, L.J. Zhang, "Field test of wavelength-saving quantum key distribution network", Optics Letters, vol. 35, no. 14 pp. 2454-2456, July 2010 (doi:10.1364/OL.35.002454).
[124] M. Travagnin, A. Lewis, "Quantum Key Distribution in-field implementations", Publications Office of the European Union, 2019 (doi: 10.2760/38407).
[125] S. Wang, W. Chen, Z.Q. Yin, H.W. Li, D.Y. He, Y.H. Li, Z. Zhou, X.T. Song, F.Y. Li, D. Wang, H. Chen."Field and long-term demonstration of a wide area quantum key distribution network", Optics Express, vol. 22, no. 18, pp. 21739-21756, Sept. 2014 (doi:10.1364/OE.22.021739).
[126] R.Courtland "China's 2,000-km quantum link is almost complete [News]", IEEE Spectrum, vol. 53, no. 11, pp. 11-12, Oct. 2016 (doi: 10.1109/MSPEC.2016.7607012).
[127] V. Martin, A. Aguado, P. Salas, A.L. Sanz, J.P. Brito, D.R. Lopez, V. López, A. Pastor, J. Folgueira, H.H. Brunner, S. Bettelli, "The Madrid quantum network: a quantum-classical integrated infrastructure", Proceeding of the Photonic Networks and Devices, pp. QtW3E-5, Burlingame, California, United States, Jul/Aug. 2019 (doi: 10.1364/NETWORKS.2019.QtW3E.5).
[128] Y.L. Tang, H.L. Yin, Q. Zhao, H. Liu, X.X. Sun, M.Q. Huang, W.J. Zhang, S.J. Chen, L. Zhang, L.X. You, Z. Wang, "Measurement-device-independent quantum key distribution over untrustful metropolitan network", Physical Review X, vol. 6, no. 1, Article Number: 011024, Mar. 2016 (doi: 10.1103/PhysRevX.6.011024).
[129] T. Hirano, T. Ichikawa, T. Matsubara, M. Ono, Y. Oguri, R. Namiki, K. Kasai, R. Matsumoto, T. Tsurumaru, "Implementation of continuous-variable quantum key distribution with discrete modulation", Quantum Science and Technology, vol. 2, no. 2, Article Number: 024010, June 2017 (doi: 10.1088/2058-9565/aa7230).
[130] V. Martín, A. Aguado, J.P. Brito, A.L. Sanz, P. Salas, D.R. López, V. López, A. Pastor-Perales, A. Poppe, M. Peev. "Quantum aware SDN nodes in the Madrid quantum network", Proceeding of the IEEE/ICTON, pp. 1-4, Angers, France, July 2019 (doi: 10.1109/ICTON.2019.8840338).
[131] Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li "Continuous-variable QKD over 50 km commercial fiber", Quantum Science and Technology, vol. 4, no. 3, Article Number: 035006, May 2019 (doi:10.48550/arXiv.1709.04618).
[132] T.Y. Chen, X. Jiang, S.B. Tang, L. Zhou, X. Yuan, H. Zhou, J. Wang, Y. Liu, L.K. Chen, W.Y. Liu, H.F. Zhang, K. Cui, H. Liang, X.G. Li, Y. Mao, L.J. Wang, S.B. Feng, Q. Chen, Q. Zhang, L. Li, N.L. Liu, C.Z. Peng, X. Ma, Y. Zhao, J.W. Pan, “Implementation of a 46-node quantum metropolitan area network,” npj Quantum Inf, vol. 7, no. 134, Sept. 2021 (doi: 10.1038/s41534-021-00474-3).
[133] J. F. Dynes, A. Wonfor, W. W.S. Tam, A. W. Sharpe, R. Takahashi, M. Lucamarini, A. Plews, Z. L. Yuan, A. R. Dixon, J. Cho, Y. Tanizawa, J.P. Elbers, H. Greißer, I. H. White, R. V. Penty, A. J. Shields, “Cambridge quantum network”, npj Quantum Inf, vol. 5, no. 101, Nov. 2019 (doi: 10.1038/s41534-019-0221-4).
[134] A. Wonfor, C. White, A. Bahrami, J. Pearse, G. Duan, A. Straw, T. Edwards, T. Spiller, R. Penty, A. Lord, “Field trial of multi-node, coherent-one-way quantum key distribution with encrypted 5x100G DWDM transmission system”, Proceeding of the IEEE/ ECOC 2019, Dublin, Ireland, Sept. 2019 (doi: 10.1049/cp.2019.0962)
[135] N. Gisin, R.Thew, "Quantum communication", Nature photonics, vol. 1, no. 3, pp. 165-171, Mar. 2007 (doi: 10.48550/arXiv.quant-ph/0703255)
[136] M. Lucamarini, K.A. Patel, J.F. Dynes, B. Fröhlich, A.W. Sharpe, A.R. Dixon, Z.L. Yuan, R.V. Penty, A.J. Shields. "Efficient decoy-state quantum key distribution with quantified security", Optics Express, vol. 21, no. 21, pp. 24550-24565, Oct. 2013 (doi:10.1364/OE.21.024550).
[137] C.Z. Peng, J. Zhang, D. Yang, W.B. Gao, H.X. Ma, H. Yin, H.P. Zeng, T. Yang, X.B. Wang, J.W. Pan "Experimental long-distance decoy-state quantum key distribution based on polarization encoding", Physical Review Letters, vol. 98, no. 1, Article Number: 010505, Jan. 2007 (doi: 10.48550/arXiv.quant-ph/0607129).
[138] X. Ma, C.H. Fung, H.K. Lo, "Quantum key distribution with entangled photon sources", Physical Review A, vol. 76, no. 1, July 2007 (doi: 10.48550/arXiv.quant-ph/0703122).
[139] I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, "Free-space quantum key distribution with entangled photons", Applied Physics Letters, vol. 89, no. 10, Article Number: 101122, Sept. 2006 (doi: 10.48550/arXiv.quant-ph/0606072).
[140] X. Liu, X. Yao, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, W. Zhang, "Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km", Applied Physics Letters, vol. 114, no. 14, Article Number: 141104, April 2019 (doi:10.48550/arXiv.1901.06662).
[141] X. Liu, X. Yao, R. Xue, H. Wang, H. Li, Z. Wang, L. You, X. Feng, F. Liu, K. Cui, Y. Huang, "An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution", APL Photonics, vol. 5, no. 7, Article Number: 076104, July 2020 (doi:10.1063/5.0002595).
[142] S. Wehner, D. Elkouss, R. Hanson, "Quantum internet: A vision for the road ahead", Science, vol. 362, no. 6412, Article Number: eaam9288, Oct. 2018 (doi: 10.1126/science. aam9288).
[143] S. Wengerowsky, S.K. Joshi, F. Steinlechner, H. Hübel, R. Ursin. "An entanglement-based wavelength-multiplexed quantum communication network", Nature, vol. 564, no. 7735, pp. 225-228, Dec. 2018 (doi:10.48550/arXiv.1801.06194).
[144] I. Ali-Khan, C.J. Broadbent, J.C. Howell, "Large-alphabet quantum key distribution using energy-time entangled bipartite states", Physical Review Letters, vol. 98, no. 6, Article Number: 060503, Feb. 2007 (doi:10.1103/PhysRevLett.98.060503).
[145] D. Bunandar, Z. Zhang, J.H. Shapiro, D.R. Englund, "Practical high-dimensional quantum key distribution with decoy states", Physical Review A, vol. 91, No. 2, Article Number: 022336, Feb. 2015 (doi:10.48550/arXiv.1411.1070).
[146[ J. Mower, Z. Zhang, P. Desjardins, C. Lee, J.H. Shapiro, "High-dimensional quantum key distribution using dispersive optics", Physical Review A, vol. 87, no. 6, Article Number: 062322, June 2013 (doi:10.48550/arXiv.1210.4501).
[147] C. Lee, Z. Zhang, G.R. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. Wang, X. Hu, R.D. Horansky, V.B. Verma, A.E. Lita, "Entanglement-based quantum communication secured by nonlocal dispersion cancellation", Physical Review A, vol. 90, no. 6, Article Number: 062331, Dec. 2014 (doi:10.1103/PhysRevA.90.062331).
[148] X. Liu, R. Xue, Y. Huang, W. Zhang, "Fully connected entanglement-based quantum communication network without trusted node", Proceeding of the OFC, pp. F4E-4, Washington, DC, United States, June. 2021 (doi: 10.1364/OFC.2021.F4E.4).
[149] J.Y. Liu, X. Liu, W. Zhang, Y.D. Huang, "Impact of fiber dispersion on the performance of entanglement-based dispersive optics quantum key distribution", Journal of Electronic Science and Technology, vol. 19, no. 4, Article Number: 100119, Dec. 2021 (doi: 10.1016/j.jnlest.2021.100119).
[150] R. Sabbaghi-Nadooshan, "Evolutionary QCA Universal and Testable Gate", International Journal of Smart Electrical Engineering, vol. 9, no. 02, pp. 83-88, June 2020 (doi: 20.1001.1.22519246.2020.09.02.6.0).
[151] M. Shirichian, R. Akbari-Hasanjani, R. Sabbaghi-Nadooshan, "Energy Analysis of Metal QCA Circuits Behavior Based on Particle-Wave Duality", IETE Journal of Research, pp. 1-11, Mar. 2022 (doi: 10.1080/03772063.2022.2048701).
[152] A. Navidi, R. Sabbaghi-Nadooshan, M. Dousti, "Introducing an Innovative D Flip-Flop for Designing Quaternary QCA Register", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 49, pp. 91-101, May 2021 (doi: 20.1001.1.23223871.1401.13.49.6.5).
[153] SS. Hashemipour, K. Navi, "A Smart Four-Input Minority Gate Based on QCA Technology", International Journal of Smart Electrical Engineering, vol. 10, No. 01, pp. 33-37, Mar. 2021 (doi: 10.30495/IJSEE.2021.682521).
[154] Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S.X. Ng, L. Hanzo, "The evolution of quantum key distribution networks: On the road to the qinternet", IEEE Communications Surveys and Tutorials, vol. 24, no. 2, pp. 839-894, Jan. 2022 (doi: 10.1109/COMST.2022.3144219)
[155] Quantum networking: deployment, components and opportunities, Inside Quantum Technology, 2017.
_||_