طراحی و پیاده سازی شمارندۀ فرکانس بالای هوشمند با معماری بهینه شده بر روی تراشۀ FPGA ارزان قیمت XC6SLX9-2FTG256C
محورهای موضوعی : انرژی های تجدیدپذیرسید حسین کیهمایون 1 , مهدی آمون 2 *
1 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: دقت اندازهگیری, پالسهای ساعت دارای اختلاف فاز, آرایه-دریچه برنامهپذیر میدانی ارزان قیمت, مبدل زمان به دیجیتال,
چکیده مقاله :
برای پیادهسازی شمارندههای فرکانس بالا از روشهای مبتنی بر تراشههای ASIC و یا مبتنی بر پردازندهها استفاده میشود. هر کدام از این روشها در قالب یک معماری پیادهسازی میشوند. با توجه به مزایا و معایب هر کدام از این روشها و معماری-ها و همچنین نوع کاربرد شمارنده، روش و معماری مناسب انتخاب میشود. در این مقاله، با استفاده از معماری کلاکهای دارای اختلاف فاز، شمارندهای با فرکانس GHz ۲ (تفکیکپذیری ps ۵۰۰) بر روی تراشهی ارزانقیمت XC6SLX9-2FTG256C از خانوادهی Spartan6 پیادهسازی شده است. از آنجا که منابع سختافزاری موجود در تراشهی یادشده برای پیادهسازی این طرح کافی نیست و همچنین تأخیرهای ذاتی منابع سختافزاری داخل تراشه در حد چند نانوثانیه است. دستیابی به دقت یادشده اهمیت زیادی دارد و معماری استفاده شده نیز باید بهینهسازی شود. برای دستیابی به دقت یادشده، لازم است شمارندههایی با فرکانس کلاک بالا، لرزش و کجی کم و بدون وابستگی به زمانهای نگهداشت و تنظیم، طراحی و پیادهسازی شوند. همچنین برای جبران کمبود منابع سختافزاری مورد نیاز جهت پیادهسازی مسیرهای روتینگ کلاک، از منابع سختافزاری جایگزین استفاده شده است.
In this paper, a 2 GHz counter is implemented on a low-cost XC6SLX9-2FTG256C field-programmable gate array (FPGA) chip from the Spartan6 family with a 500 ps resolution. Since the hardware resources contained in this chip are not sufficient to implement this design, and also the inherent delays of the hardware resources inside the chip are about few nanoseconds, achieving this accuracy is very important. The architecture used in this research is based on the phase difference clocks that has been implemented after optimization. To achieve this accuracy, it is necessary to design and implement counters with high clock frequency, low jitter and low skew, without dependence on hold time and setup time. Alternative hardware resources have also been used to compensate for the lack of hardware resources required to implement routing clocks.
[1] M. Abbas, K. Khalil, “A 23ps resolution time-to-digital converter implemented on low-cost FPGA platform”, Proceeding of the IEEE/ISSCS, pp. 1-4, Iasi, Romania, July 2015 (doi:10.1109/ISSCS.2015.7203949).
[2] S.M.A. Zanjani, M. Aalipour, M. Parvizi, "Design of a low power temperature sensor based on sub-threshold performance of carbon nanotube transistors with an inaccuracy of 1.5ºC for the range of -30 to 125ºC", Journal of Intelligent Procedures in Electrical Technology, vol. 13, no. 50, pp. 115-122, Sept. 2022 (dor: 20.1001.1.23223871.1401.13.50.7.8) (in Persian).
[3] O. Sharifi Tehrani, M. Ashorian, P. Moallem, “Hardware implementation of LMS-based adaptive noise cancellation core with low resource utilization”, Journal of Intelligent Procedures in Electrical Technology, vol. 2, no. 7, pp. 68-73, Dec. 2011(dor: 20.1001.1.23223871.1390.2.7.8.6) (in Persian).
[4] Y. Wang, P. Kuang, C. Liu, "A 256-channel multi-phase clock sampling-based time-to-digital converter implemented in a Kintex-7 FPGA", Proceeding of the IEEE/I2MTC, Taipei, Taiwan, pp. 1-5, May 2016 (doi: 10.1109/I2MTC.2016.7520401).
[5] S.Y. Xie, X.F. Zhang, J. Yang, L.G. Liu, Q. Wang, N.C. Yuan, "FPGA-based ultra-fast and wideband instantaneous frequency measurement receiver", IEICE Electronics Express, vol. 11, no. 12, Article Number: 11.20140263, 2014 (doi:10.1587/elex.11.20140263).
[6] C. Triveni, P. Sudhakara Reddy, "Implementation of phase shifter using CORDIC on FPGA for RADAR application", International Journal of Advanced Research in Electronics and Communication Engineering, vol. 5, no. 6, pp. 1655-1659, June 2016 (doi: 10.1145/275107.275139).
[7] R. Machado, J. Cabral, F.S. Alves, "Recent developments and challenges in FPGA-based time-to-digital converters", IEEE Trans. on Instrumentation and Measurement, vol. 68, no. 11, pp. 4205-4221, Nov. 2019 (doi: 10.1109/TIM.2019.2938436).
[8] R. Szplet, K. Klepacki, "A two-stage time-to-digital converter based on cyclic pulse shrinking", Proceeding of the IEEE/FREQ, pp. 1133-1136, Besancon, France, April 2009 (doi: 10.1109/FREQ.2009.5168374).
[9] J. Yu, F. F. Dai, "A 3-dimensional vernier ring time-to-digital converter in 0.13 µm CMOS", in IEEE Custom Integrated Circuits Conference, pp. 1-4, Sept. 2010 (doi:10.1109/CICC.2010.5617431).
[10] H. Huang, "A 0.1 ps resolution coarse-fine time-to-digital converter with 2.21 ps single-shot precision", Ph.D. Thesis, University of Texas At Dallas, May 2018.
[11] M. Maamoun, I. Arami, R. Beguenane, A. Benbelkacem, A. Meraghni, "A 3 ps resolution time-to-digital converter in low-cost FPGA for laser rangefinder", Proceeding of the WEC, pp. 7-11, July 2017 (doi:10.1109/TIM.2011.2115390).
[12] M. Parsakordasiabi, I. Vornicu, R. Carmona-Galán, Á. Rodríguez-Vázquez, "A survey on FPGA-based high-resolution TDCs", Porceeding of the ICDSC, pp. 1-2, Sept. 2019 (doi:10.1145/3349801.3357129).
[13] T. Xiang, L. Zhao, X. Jin, T. Wang, S. Chu, C. Ma, S. Liu, Q. An, "A 56-ps multi-phase clock time-to-digital convertor based on Artix-7 FPGA", Proceeding of the IEEE/RTC, pp. 1-4, Nara, Japan, May 2014 (doi:10.1109/RTC.2014.7097544).
[14] C.C. Chen, C.S. Hwang, Y. Lin, G.H. Chen, "Note: All-digital pulse-shrinking time-to-digital converter with improved dynamic range", Review of Scientific Instruments, vol. 87, p. 046104, April 2016 (doi: 10.1063/1.4947461).
[15] AX309, xilinx spartan-6 development board users manual: Logifind Co.
[16] Spartan-6 FPGA clocking resources, User Guide, ug382 (v1.10), p17, June 2015.
[17] T. Suwada, F. Miyahara, K. Furukawa, M. Shoji, M. Ikeno, M. Tanaka, "Wide dynamic range FPGA-based TDC for monitoring a trigger timing distribution system in linear accelerators", Nuclear Instruments and Methods in Physics Research, vol. 786, pp. 83-90, June 2015 (doi: 10.1016/j.nima.2015.03.019).
[18] Y. Sano, Y. Horii, M. Ikeno, O. Sasaki, M. Tomoto, T. Uchida, "Subnanosecond time-to-digital converter implemented in a Kintex-7 FPGA", Nuclear Instruments and Methods in Physics Research Section, vol. 874, pp. 50-56, Jan. 2017 (doi:10.1016/j.nima.2017.08.038).
[19] S.M. Ramzy, K. Hares, "High resolution time-to-digital converter using low resources FPGA for time-of-flight measurement", Microelectronics Journal, vol. 101, Article Number: 104822, July 2020 (doi: 10.1016/j.mejo.2020.104822).
[20] R. Machado, L.A. Rocha, J. Cabral, "A novel synchronizer for a 17.9 ps nutt time-to-digital converter implemented on FPGA", Proceeding of the IEEE/AEIT, pp. 1-6, Bari, Italy, Oct. 2018 (doi: 10.23919/AEIT.2018.8577365).
[21] T. Suwada, K. Furukawa, F. Miyahara, "Development of FPGA-based TDC with wide dynamic range for monitoring the trigger timing distribution system at the KEKB injector linac", Proceeding of the IBIC, pp. 70-74, Melbourne, Australia, Mar. 2015 (doi:10.1016/j.nima.2015.03.019).
_||_