ایجاد یک جهش در الگوریتم گرگ خاکستری برای حل مسئله توزیع اقتصادی-زیستمحیطی نیروگاههای ادغام شامل حرارتی و بادی
محورهای موضوعی : انرژی های تجدیدپذیرمهدی افروزه 1 , حمیدرضا عبدالمحمدی 2 , محمداسماعیل نظری 3
1 - گروه مهندسی برق- واحد خمین، دانشگاه آزاد اسلامی، خمین، ایران
2 - گروه مهندسی برق و کا مپیوتر- دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان
3 - گروه مهندسی برق و کا مپیوتر- دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان
کلید واژه: اثر شیر بخار, الگوریتم گرگ خاکستری جهش یافته, توزیع اقتصادی زیستمحیطی, مزرعههای بادی,
چکیده مقاله :
در این مقاله نسخه جهش یافته دینامیکی الگوریتم بهینه سازی گرگ خاکستری برای حل مسئله پخش بار اقتصادی- زیست محیطی سیستم قدرت استاندارد 40 واحدی به همراه دو مزرعه بادی پیشنهاد شده است. لذا تابع هدفی جامع از هزینه های بهره برداری که ترکیبی از هزینه های مستقیم انرژی باد، هزینه جریمه تخمین بیش از حد، هزینه جریمه تخمین کمتر از حد، هزینه واحد حرارتی و هزینه آلایندگی، ارائه شده است. با توجه به ماهیت تصادفی سرعت باد توان تولیدی توسط توربین های بادی غیرقابل پیش بینی است، بنابراین از تابع توزیع احتمال ویبول برای مدل سازی توان مزرعه های باد در این مقاله استفاده شده است. هزینه بهره برداری مزرعه بادی به صورت احتمالاتی در نظر گرفته شده است تا سناریوهای باد با احتمال پایین تاثیر کمتری در هزینه نهایی داشته باشند. شبیه سازی ها در قالب سه بخش انجام شده است و به منظور اعتبارسنجی با مرجع های دیگر مورد مقایسه واقع شده است. نتایج حاصل شده از بهینه سازی ها در هر سه سناریو و مقایسه آن با الگوریتم های هوشمند تائیدی بر عملکرد بهتر و دقت بالاتر الگوریتم پیشنهادی نسبت به نسخه اصلی الگوریتم گرگ خاکستری و همچنین سایر الگوریتم ها دارد.
In this paper, a dynamic mutant version of the gray wolf optimization algorithm (MGWO) is proposed to solve the economic-environmental dispatch (E-ED) problem of a standard 40-unit power system with two wind farms. Thus, a comprehensive objective function of operating costs is presented, which is a combination of wind energy costs, over-estimated penalty costs, under-estimated penalty costs, thermal unit costs and emission costs. Due to the random nature of wind speed, the power generated by wind turbines is unpredictable. Therefore, the Weibull probability distribution function has been used to model the wind farm power in this paper. The cost of operating a wind farm is considered probabilistic so that low-probability wind scenarios have less effect on the total operation cost. The simulations are performed in the form of three section and the optimization results are compared with several meta-heuristic algorithm results for validation. The results of the optimizations in all three scenarios and its comparison with other algorithms confirm the better performance and higher accuracy of the proposed MGWO algorithm than the original version of the gray wolf algorithm (GWO) as well as other algorithms.
[1] K.V. Santos, E.C. Finardi, "Piecewise linear approximations for hydropower production function applied on the hydrothermal unit commitment problem", International Journal of Electrical Power and Energy Systems, vol. 135, Article Number: 107464, Feb. 2022 (doi: 10.1016/j.ijepes.2021.107464).
[2] M.J. Abdollahi, M. Moazzami, "Day-ahead coordination of vehicle-to-grid operation and wind power in security constraints unit commitment (SCUC)", Journal of Intelligent Procedures in Electrical Technology, vol. 6, no. 22, pp. 49-56, Sep. 2015 (dor: 20.1001.1.23223871.1394.6.22.5.1).
[3] L. Montero, A. Bello, J. Reneses, "A review on the unit commitment problem: Approaches, techniques, and resolution methods", Energies, vol. 15, no. 4, Article Number: 1296, Feb. 2022 (doi: 10.3390/en15041296).
[4] B. Knueven, J. Ostrowski, J.P. Watson, "A novel matching formulation for startup costs in unit commitment", Mathematical Programming Computation, vol. 12, no. 2, pp. 225-248, Jun. 2020 (doi: 10.1007/s12532-020-00176-5).
[5] M.R. Gholami Dehbalaee, G.H. Shaeisi, M. Valizadeh, "A novel exclusive binary search algorithm to solve the nonlinear economic dispatch problem", Journal of Energy Management and Technology, vol. 4, no. 3, pp. 48-56, Sep. 2020 (doi:10.22109/jemt.2020.207784.1207(.
[6] B. Fu, C. Ouyang, C. Li, J. Wang, E. Gul, "An improved mixed integer linear programming approach based on symmetry diminishing for unit commitment of hybrid power system", Energies, vol. 12, no. 5, Article Number: 833, Mar. 2019 (doi: 10.3390/en12050833).
[7] J. Zou, S. Ahmed, X.A. Sun, "Multistage stochastic unit commitment using stochastic dual dynamic integer programming", IEEE Trans. on Power Systems, vol. 34, no. 3, pp. 1814-1823, Nov. 2018 (doi: 10.1109/TPWRS.2018.2880996).
[8] J. Alemany, L. Kasprzyk, F. Magnago, "Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets", Electric Power Systems Research, vol. 160, pp. 429-438, July. 2018 (doi: 10.1016/j.epsr.2018.03.019).
[9] D. Putz, D. Schwabeneder, H. Auer, B. Fina, "A comparison between mixed-integer linear programming and dynamic programming with state prediction as novelty for solving unit commitment", International Journal of Electrical Power and Energy Systems, vol. 125, Article Number: 106426, Feb. 2021 (doi: 10.1016/j.ijepes.2020.106426).
[10] M.A. El-Shorbagy, A.A. Mousa, M. Farag, "Solving nonlinear single-unit commitment problem by genetic algorithm-based clustering technique", Review of Computer Engineering Research, vol. 4, no. 1, pp. 11-29, Mar. 2017 (doi: 10.18488/journal.76.2017.41.11.29).
[11] B.O. Anyaka, J.F. Manirakiza, K.C. Chike, P.A. Okoro, "Optimal unit commitment of a power plant using particle swarm optimization approach", International Journal of Electrical and Computer Engineering, vol. 10, no. 2, pp. 1135-1141, April. 2020 (doi: 10.11591/ijece.v10i2.pp1135-1141).
[12] J.S. Dhaliwal, J.S. Dhillon, "Profit based unit commitment using memetic binary differential evolution algorithm", Applied Soft Computing, vol. 81, Article Number: 105502, Aug. 2019 (doi: 10.1016/j.asoc.2019.105502).
[13] V. Kumar, D. Kumar, "Binary whale optimization algorithm and its application to unit commitment problem", Neural Computing and Applications, vol. 32, no. 7, pp. 2095-2123, April. 2020 (doi: 10.1007/s00521-018-3796-3).
[14] K.S. Reddy, L.K. Panwar, B.K. Panigrahi, R. Kumar, "A new binary variant of sine–cosine algorithm: development and application to solve profit-based unit commitment problem”, Arabian Journal for Science and Engineering, vol. 43, no. 8, pp. 4041-4056, Aug. 2018 (doi: 10.1007/s13369-017-2790-x).
[15] S.S. Sakthi, R.K. Santhi, N.M. Krishnan, S. Ganesan, S. Subramanian, "Wind integrated thermal unit commitment solution using grey wolf optimizer", International Journal of Electrical and Computer Engineering, vol. 7, no. 5, pp. 2088-8708, Oct. 2017 (doi: 10.11591/ijece.v7i5.pp2309-2320).
[16] R. Ponciroli, N.E. Stauff, J. Ramsey, F. Ganda, R.B. Vilim, "An improved genetic algorithm approach to the unit commitment/economic dispatch problem", IEEE Trans. on Power Systems, vol. 35, no. 5, pp. 4005-4013, April. 2020 (doi: 10.1109/TPWRS.2020.2986710).
[17] M. Zhou, B. Wang, T. Li, J. Watada, "A data-driven approach for multi-objective unit commitment under hybrid uncertainties", Energy, vol. 164, pp. 722-733, Dec. 2018 (doi: 10.1016/j.energy.2018.09.008).
[18] H. Ye, Y. Ge, M. Shahidehpour, Z. Li, "Uncertainty marginal price, transmission reserve, and day-ahead market clearing with robust unit commitment”, IEEE Trans. on Power Systems, vol. 32, no. 3, pp. 1782-1795, July 2016 (doi: 10.1109/TPWRS.2016.2595621).
[19] M. Rouholamini, M. Rashidinejad, A. Abdollahi, H. Ghasemnejad, "Frequency reserve within unit commitment considering spinning reserve uncertainty”, International Journal of Energy Engineering, vol. 2, no. 4, pp. 177-183, Feb. 2012 (doi: 10.5923/j.ijee.20120204.10).
[20] W.V. Ackooij, E.C. Finardi, G.M. Ramalho, "An exact solution method for the hydrothermal unit commitment under wind power uncertainty with joint probability constraints”, IEEE Trans. on Power Systems, vol. 33, no. 6, pp. 6487-6500, June 2018 (doi: 10.1109/TPWRS.2018.2848594).
[21] Y. Zhang, K. Liu, X. Liao, L. Qin, X. An, "Stochastic dynamic economic emission dispatch with unit commitment problem considering wind power integration”, International Trans. on Electrical Energy Systems, vol. 28, no. 1, Article Number: e2472, Jan. 2018 (doi: 10.1002/etep.2472).
[22] M. Isuru, M. Hotz, H.B. Gooi, W. Utschick, "Network-constrained thermal unit commitment for hybrid AC/DC transmission grids under wind power uncertainty”, Applied Energy, vol. 258, Article Number: 114031, Jan. 2020 (doi: 10.1016/j.apenergy.2019.114031).
[23] B. Dey, B. Bhattacharyya, S. Raj, R. Babu, "Economic emission dispatch on unit commitment-based microgrid system considering wind and load uncertainty using hybrid MGWOSCACSA”, Journal of Electrical Systems and Information Technology, vol. 7, no. 1, pp. 1-26, Dec. 2020 (doi: 10.1186/s43067-020-00023-6).
[24] K.H. Jo, M.K. Kim, "Improved genetic algorithm-based unit commitment considering uncertainty integration method”, Energies, vol. 11, no. 6, Article Number: 1387, May. 2018 (doi: 10.3390/en11061387).
[25] S. Abedi, G.H. Riahy, S.H. Hosseinian, A. Alimardani, "Risk-constrained unit commitment of power system incorporating PV and wind farms”, International Scholarly Research Notices, vol. 2011, Article Number: 309496, Sept. 2011 (doi: 10.5402/2011/309496).
[26] K. Sundar, H. Nagarajan, L. Roald, S. Misra, R. Bent, D. Bienstock, "Chance-constrained unit commitment with N-1 security and wind uncertainty”, IEEE Trans. on Control of Network Systems, vol. 6, no. 3, pp. 1062-1074, May. 2019 (doi: 10.1109/TCNS.2019.2919210).
[27] C. Wang, X. Li, Y. Zhang, Y. Dong, X. Dong, M. Wang, "Two stage unit commitment considering multiple correlations of wind power forecast errors”, IET Renewable Power Generation, vol. 15, no. 3, pp. 574-585, Feb. 2021 (doi: 10.1049/rpg2.12037).
[28] J. Olamaei, M.E. Nazari, S. Bahravar, "Economic environmental unit commitment for integrated CCHP-thermal-heat only system with considerations for valve-point effect based on a heuristic optimization algorithm”, Energy, vol. 159, pp. 737-750, Sept. 2018 )doi: 10.1016/j.energy.2018.06.117(.
[29] M. Neyestani, M. Hatami, S. Hesari, "Combined heat and power economic dispatch problem using advanced modified particle swarm optimization", Journal of Renewable and Sustainable Energy, vol. 11, no. 1, Article Number: 015302, Jan. 2019 (doi: 10.1063/1.5048833).
[30] M.E. Nazari, M.M, Ardehali, "Optimal scheduling of coordinated wind-pumped storage-thermal system considering environmental emission based on GA based heuristic optimization algorithm”, International Journal of Smart Electrical Engineering, vol. 6, no. 04, pp. 135-142, Dec. 2017 (dor: 20.1001.1.22519246.2017.06.04.2.9).
[31] X.Q. Zhang, Z.F. Ming, "An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application", Frontiers of Information Technology and Electronic Engineering, vol. 18, no. 11, pp. 1705-1719, Nov. 2017 (doi: 10.1631/FITEE.1601555).
[32] M.T. Hagh, S.M.S. Kalajahi, N. Ghorbani, "Solution to economic emission dispatch problem including wind farms using exchange market algorithm method", Applied Soft Computing, vol. 88, Article Number: 106044, Mar. 2020 (doi: 10.1016/j.asoc.2019.106044).
[33] A.Y. Abdelaziz, E.S. Ali, S.M. Abd Elazim, "Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems", Energy, vol. 101, pp. 506-518, April. 2016 (doi: 10.1016/j.energy.2016.02.041).
[34] S. Jiang, Z. Ji, Y. Wang, "A novel gravitational acceleration enhanced particle swarm optimization algorithm for wind–thermal economic emission dispatch problem considering wind power availability", International Journal of Electrical Power and Energy Systems, vol. 73, pp. 1035-1050, Dec. 2015 (doi: 10.1016/j.ijepes.2015.06.014).
_||_