یک مبدل باک سه گانه با گذر ولتاژ صفر مبتنی بر سلف های میانی
محورهای موضوعی : انرژی های تجدیدپذیریاسین باستان 1 , علی نجاتی 2 , پرویز امیری 3
1 - دانشجوی دکتری – دانشکده مهندسی برق، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
2 - کارشناس ارشد – دانشکده مهندسی برق، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
3 - استادیار – دانشکده مهندسی برق، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران
کلید واژه: مبدل باک, گذر ولتاژ صفر, سلف میانی, رزونانس, سوئیچینگ,
چکیده مقاله :
در این مقاله یک مبدل باک سه گانه با گذر ولتاژ صفر ارائه شده است. ساختار ارایه شده، از سه مبدل باک با آرایش موازی برای افزایش قابلیت اطمینان تشکیل شده است که از سه سلف میانی برای اتصال بین طبقات استفاده شده است تا تلفات ناشی از سوئیچینگ سخت را کاهش دهد. همچنین گذر ولتاژ صفر توسط رزونانس بین خازن پارازیتی کلیدهای قدرت و سلف معادل از دید هر خازن انجام می شود. تحلیل مدار پیشنهادی در حالتهای عملکردی مختلف انجام شده است. مبدل باک پیشنهادی در محیط سیمولینک متلب شبه سازی شده است. نتایج به دست آمده ثابت میکند که تلفات سوئیچینگ و همچنین تلفات دیودهای هرزگرد میتواند توسط روش گذر ولتاژ صفر سوئیچ های قدرت بسیار کاهش یابد و یک مبدل با عملکرد بالا طراحی کرد. نتایج شبیه سازی نشان میدهد که خروجی بعد از 0.6ms به مقدار نهایی 40V میرسد و تغییرات ولتاژ خروجی 0.5V است و در نتیجه ریپل خروجی برابر %1.25 است.
A triple-buck converter with zero voltage transient is presented in this paper. The proposed structure is formed by three parallel buck converter to increase the reliability which is utilized three interleaved inductors for connecting the stages to reduce the losses caused by hard switching. The zero voltage transistor is also performed by resonance between the parasitic capacitance of the power switches and the equivalent inductor seen from each capacitor. The proposed circuit analysis has been performed in different operating modes. The proposed Buck converter is simulated in the Matlab/Simulink environment. The simulation results prove that the switching losses as well as the loss of diodes can be reduced by zero voltage switching of the power switches and designed high-performance converter. The simulation results show that the output reaches its final value of 40 V after 0.6 ms and the output voltage variations is 0.5 V the output ripple is achieved 1.25%.
[1] A. Ajami, H. Ardi, A. Farakhor, "A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications", IEEE Trans. on Power Electronics, Vol. 30, No. 8, pp. 4255-4263, Aug. 2015 (doi:10.1109/TPEL.2014.2360495).
[2] C. Basso, "A power-efficient reconfigurable output-capacitor-less low-drop-out regulator for low-power analog sensing front-end", IEEE Trans. on Circuits and Systems I: Regular Papers, Vol. 64, No. 6, pp. 1318-1327, 2017 (doi:10.1109/TCSI.2016.2561638).
[3] Peng, L. Liu, P. Chang, T. Wang, H. Li, "Switching-converter dynamic analysis with fast analytical techniques: overview and applications", IEEE Power Electronics Magazine, Vol. 4, No. 3, pp. 41-52, Sep. 2017 (doi:10.1109/MPEL.2017.2718238).
[4] V. Yousefzadeh, E. Alarconm, D. Maksimovic, "Three-level buck converter for envelope tracking in RF power amplifiers", Proceeding of the IEEE/APEC, Vol. 3, Austin, TX, USA, March2005.
[5] C. Moo, T. Wu, C. Hou, Y. Hsieh, "Balanced discharging of power bank with buck-boost battery power modules", Proceeding of the IEEE/IPEC, Hiroshima, Japan, May 2014.
[6] F. Antritter, P. Maurer, J. Reger, "Flatness based control of a buck-converter driven dc motor", IFAC Proceedings Volumes, Vol. 39, No. 16, pp. 36-41, 2006 (doi:10.3182/20060912-3-DE-2911.00010).
[7] J. Chen, Y. Hwang, H. Chai, Y. Ku, C. Yu, "A sub-1-μs ultrafast-response buck converter with improved analog-voltage-dynamic-estimation techniques", IEEE Trans. on Industrial Electronics, Vol. 65, No. 2, pp. 1695-1699, Feb. 2018 (doi:10.1109/TIE.2017.2733444).
[8] M. Jinno, P. Y. Chen, Y. C. Lai, K. Harada, “Investigation on the ripple voltage and the stability of SR buck converters with high output current and low output volt”, IEEE Trans. on Industrial Electronics , Vol. 57, No. 3, pp. 1008– 1016, Mar. 2010 (doi:10.1109/TIE.2009.2029510).
[9] H. Mao, O. Abdel-Rahman, I. Batarseh, “Zero-voltage-switching DC–DC converters with synchronous rectifiers,” IEEE Trans. on Power Electronics, Vol. 23, No. 1, pp. 369–378, Jan. 2008 (doi:10.1109/TPEL.2007.911768).
[10] B. W. Williams, S. J. Finney, “Passive snubber energy recovery for a GTO thyristor inverter bridge leg”, IEEE Trans. on Industrial Electronics, Vol. 47, No. 1, pp. 2–8, Feb. 2000 (doi:10.1109/41.824016).
[11] X. Wu, J. Zhang, X. Ye, Z. Qian, “Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell”, IEEE Trans. on Industrial Electronics, Vol. 55, No. 2, pp. 773–781, Feb. 2008 (doi:10.1109/TIE.2007.907675).
[12] E. Adib, H. Farzanehfard, “Zero-voltage-transition PWM converters with synchronous rectifier”, IEEE Trans. on Power Electronics, Vol. 25, No. 1, pp. 105–110, Jan. 2010 (doi: 10.1109/TPEL.2009.2024153).
[13] Y. Li, F. C. Lee "A generalized zero-current-transition concept to simplify multilevel ZCT converters", IEEE Trans. on Industry Applications, vol. 42, Sep./Oct. 2006 (doi:10.1109/TIA.2006.880846).
[14] C. S. Moo, M., Y. J. Chen, H. L. Cheng, Y. C. Hsieh, "Twin-buck converter with zero-voltage transition", IEEE Trans. on Industrial Electronics, Vol. 58, No. 6, June 2011 (doi:10.1109/TIE.2010.2069072).
[15] P. Giacomini, J. Scholtz, M. Mezaroba, “Step-up/step-down dc–dc ZVS PWM converter with active clamping”, IEEE Trans. on Industrial Electronics, Vol. 55, No. 10, pp. 3635–3643, Oct. 2008 (doi:10.1109/TIE.2008.927234).
[16] Y. Gu, Z. Lu, Z. Qian, X. Gu, L. Hang, “A novel ZVS resonant reset dual switch forward dc–dc converter”, IEEE Trans. on Power Electronics, Vol. 22, No. 1, pp. 96–103, Jan. 2007 (doi:10.1109/TPEL.2006.886612).
[17] X. Ruan, W. Chen, L. Cheng, C. K. Tse, Y. Hong, Z. Tao, “Control strategy for input-series–output-parallel converters”, IEEE Trans. on Industrial Electronics, Vol. 56, No. 4, pp. 1174–1185, April 2009 (doi:10.1109/TIE.2008.2007980).
[18] R. Ramos, D. Biel, E. Fossas, F. Guinjoan, “Interleaving quasisliding- mode control of parallel-connected buck-based inverters”, IEEE Trans. on Industrial Electronics, Vol. 55, No. 11, pp. 3865–3873, Nov. 2008 (doi:10.1109/TIE.2008.2006016).
[19] A. S. Muela, S. Petibon, C. Alonso, J. L. Chaptal, “Practical implementation of a high-frequency current-sense technique for VRM”, IEEE Trans. on Industrial Electronics, Vol. 55, No. 9, pp. 3221–3230, Sep. 2008 (doi:10.1109/TIE.2008.927968).
[20] B. R. Lin, C. L. Huang, “Interleaved ZVS converter with ripple-current cancellation”, IEEE Trans. on Industrial Electronics, Vol. 55, No. 4, pp. 1576–1585, April 2008 (doi:10.1109/TIE.2008.917069).
[21] M. Ilic, D. Maksimovic, “Interleaved zero-current-transition buck converter”, IEEE Trans. on Industry Applications, vol. 43, no. 6, pp. 1619–1627, Nov./Dec. 2007 (doi:10.1109/TIA.2007.908175).
_||_