نهان نگاری مقاوم تصاویر دیجیتال به کمک تبدیل گرافمحور و الگوریتم ژنتیک
محورهای موضوعی : انرژی های تجدیدپذیرسیدمحمدرضا موسوی 1 , علیرضا نقش 2
1 - دانشجوی کارشناسی ارشد مهندسی برق مخابرات، دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - استادیار، دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: الگوریتم ژنتیک, نهاننگاری, تصاویر دیجیتال, تبدیل گراف محور, مقاومت در برابر نویز, حفظ مالکیت تصاویر,
چکیده مقاله :
به منظور نهاننگاری اطلاعات در تصاویر دیجیتال و همچنین مقاومسازی آنها روشهای متعددی تاکنون معرفی شده است. در این روش از تبدیل گراف محور استفاده شده است و به کمک الگوریتم ژنتیک بهترین ساختار گراف استخراج میشود به طوری که نهاننگاری با بیشترین مقاومت در برابر حملات انجام شود. یکی از روشهای مرسوم در مقاومسازی نهاننگاری استفاده از تبدیل کسینوسی گسسته است. در این تحقیق نشان دادهایم که روش پیشنهادی بسیار قدرتمندتر از تبدیل کسینوسی گسسته است برای آزمایش روش پیشنهادی از تصاویر معروف لنا، باربارا، بابون، قایق و فلفل استفاده شده است و نتایج حاصل از شبیه سازی هر دو تبدیل به خوبی نشان میدهند که روش پیشنهادی مقاومت بیشتری نسبت به روشهای مشابه مانند روشهای مبتنی بر تبدیل کسینوسی گسسته دارد. در این شبیه سازی تصویر نهان نگار یک لوگوی تصادفی با ابعاد 8×8 و 16×16 است. نهاننگاری به کمک معیارهای نرخ خطای بیت، معیار اندازهگیری شباهت ساختاری و نسبت دامنه سیگنال به نویز و حملات نویز گاوسی با شدتهای مختلف، فشرده سازی، فیلترمیانه، تاری، تغییر اندازه، چرخش و برش مورد ارزیابی قرار گرفته است.
Numerous methods have been introduced for digital images watermarking as well as rubosting them. In this method, with using Graph-based transform and extracts the best graph structure with genetic algorithm so that watermarking can be performed with maximum robustness. One of the common methods in watermarking robustness is the use of discrete cosine transform (DCT). In this study, we have shown that the proposed method is much more powerful than DCT. The proposed method is tested on five different color images such as Lena, Barbara, Boat, Baboon, Peppers. Watermark image (logo) is a random binary image with size 16 x 16 and 8 x 8 pixels. This simulation results show that the proposed method is more robust to similar methods such as discrete cosine transforms. Proposing Watermarking has been evaluated using Bit Error Rate (BER), Structural Similarity Index Measuring (SSIM) and Peak signal-to-noise ratio (PSNR) criteria and different strength Gaussian noise attacks, JPEG compression, median filter, bluring, rescaling, rotate and cropping attacks
[1] V. Potdar, E. Chang, “A survey of digital image watermarking techniques”, Proceeding of the IEEE/INDIN, Perth, WA, Australia, Australia, Aug. 2005 (doi:10.1109/INDIN.2005.1560462).
[2] S. M. Mousavi, A. Naghsh, A. A.Manaf, S. A. R. Abu-Bakar, “A robust medical image watermarking against salt and pepper noise for brain MRI images”, Multimedia Tools and Applications, Vol. 76, No. 7, pp. 10313-10342, April 2017 (doi:10.1007/s11042-016-3622-9).
[3] S. M Mousavi, A. Naghsh, S. A. R Abu-Bakar, “A heuristic automatic and robust ROI detection method for medical image warermarking”, Journal of Digital Imaging Vol. 28, No. 4, pp. 417–427, Mar. 2015 (doi: 10.1007/s10278-015-9770-z).
[4] S. Saneie, A. Naghsh, “Introducing a new method of robust digital image watermarking against cropping and salt and pepper noise using sudoku”, Majlesi Journal of Multimedia Processing, Vol. 4, No. 4, pp. 9-15, Dec. 2015.
[5] S. Saneie, A. Naghsh, “Robust digital image watermarking against cropping using sudoku puzzle in spatial and transform domain”, Journal of Intelligent Procedures in Electrical Technology,Vol.7, No.27, pp. 26-13, Nov 2016.
[6] M. S. Goli, A. Naghsh, “Introducing a new method robust against cropattackin digital image watermarking usingtwo-step sudok”, Proceeding of the IEEE/IRRIA, Shahrekord, Iran, April2017 (doi:10.1109/PRIA.2017.7983054).
[7]B. Behravan, A. Naghsh, “Introducing a new method of image reconstruction against crop attack using sudoku watermarking algorithm”, Proceeding of the IEEE/IRRIA, Shahrekord, Iran, April2017 (doi:10.1109/PRIA.2017.7983042).
[8] E. Najafi, “A robust embedding and blind extraction of image watermarking based on discrete wavelet transform”, Mathematical Sciences,Vol.11, No. 4, pp 307–318 2017. Dec2017, (doi:10.1007/s40096-017-0233-1)
[9] R. A. Alotaibi, L. A. Elrefaei, “Text-image watermarking based on integer wavelet transform (IWT) and discrete cosine transform (DCT)”, Applied Computing and Informatics vol.15 , No. 2, pp.191-202, July 2019 (doi:10.1016/j.aci.2018.06.003)
[10] J. Hou, H. Liu, L. Chau, “Graph-based transform for data decorrelation”, Proceeding of the IEEE/DSP, Beijing, China, Oct2016. (doi: 10.1109/ICDSP.2016.7868540).
[11] M. Farzaneh, M. Asgari, R. Toroghi, “Audio compression using graph-based transform”, Proceeding of the IEEE/ISTEL, Dec.2018 (doi:10.1109/ISTEL.2018.8661027).
[12] W. Kim, S. K. Narang, “Graph based transforms for depth video coding, acoustics”, Proceeding of the IEEE/ICASSP), Kyoto, Japan, Mar 2012 (doi:10.1109/ICASSP.2012.6288008).
[13] X. Wen, H.Zhang, X.Xu, J.Quan, “A new watermarking approach based on probabilistic neural network in wavelet domain”, Soft Computing , Vol. 13, No.4 pp. 355–36, Feb 2009 (doi:10.1007/s00500-008-0331-y).
[14] V. Sachnev, H.J. Kim, S.Sundaram S, Y.Q. Shi., “Reversible watermarking algorithm sing sorting and prediction”, IEEE Trans. on Circuits and Systems for Video Technology, Vol. 19, No. 7, pp. 989 – 999, Apr 2009 (doi: 10.1109/TCSVT.2009.2020257).
[15] A. Ansari, S. Hong, G. Saavedra, B. Javidi, M. Martinez-Corral, “Ownership protection of plenoptic images by robust and reversible watermarking”, Optics and Lasers in Engineering, Vol. 107, No. 1, pp.325-334 Aug. 2018 (doi:10.1016/j.optlaseng.2018.03.028).
_||_[1] V. Potdar, E. Chang, “A survey of digital image watermarking techniques”, Proceeding of the IEEE/INDIN, Perth, WA, Australia, Australia, Aug. 2005 (doi:10.1109/INDIN.2005.1560462).
[2] S. M. Mousavi, A. Naghsh, A. A.Manaf, S. A. R. Abu-Bakar, “A robust medical image watermarking against salt and pepper noise for brain MRI images”, Multimedia Tools and Applications, Vol. 76, No. 7, pp. 10313-10342, April 2017 (doi:10.1007/s11042-016-3622-9).
[3] S. M Mousavi, A. Naghsh, S. A. R Abu-Bakar, “A heuristic automatic and robust ROI detection method for medical image warermarking”, Journal of Digital Imaging Vol. 28, No. 4, pp. 417–427, Mar. 2015 (doi: 10.1007/s10278-015-9770-z).
[4] S. Saneie, A. Naghsh, “Introducing a new method of robust digital image watermarking against cropping and salt and pepper noise using sudoku”, Majlesi Journal of Multimedia Processing, Vol. 4, No. 4, pp. 9-15, Dec. 2015.
[5] S. Saneie, A. Naghsh, “Robust digital image watermarking against cropping using sudoku puzzle in spatial and transform domain”, Journal of Intelligent Procedures in Electrical Technology,Vol.7, No.27, pp. 26-13, Nov 2016.
[6] M. S. Goli, A. Naghsh, “Introducing a new method robust against cropattackin digital image watermarking usingtwo-step sudok”, Proceeding of the IEEE/IRRIA, Shahrekord, Iran, April2017 (doi:10.1109/PRIA.2017.7983054).
[7]B. Behravan, A. Naghsh, “Introducing a new method of image reconstruction against crop attack using sudoku watermarking algorithm”, Proceeding of the IEEE/IRRIA, Shahrekord, Iran, April2017 (doi:10.1109/PRIA.2017.7983042).
[8] E. Najafi, “A robust embedding and blind extraction of image watermarking based on discrete wavelet transform”, Mathematical Sciences,Vol.11, No. 4, pp 307–318 2017. Dec2017, (doi:10.1007/s40096-017-0233-1)
[9] R. A. Alotaibi, L. A. Elrefaei, “Text-image watermarking based on integer wavelet transform (IWT) and discrete cosine transform (DCT)”, Applied Computing and Informatics vol.15 , No. 2, pp.191-202, July 2019 (doi:10.1016/j.aci.2018.06.003)
[10] J. Hou, H. Liu, L. Chau, “Graph-based transform for data decorrelation”, Proceeding of the IEEE/DSP, Beijing, China, Oct2016. (doi: 10.1109/ICDSP.2016.7868540).
[11] M. Farzaneh, M. Asgari, R. Toroghi, “Audio compression using graph-based transform”, Proceeding of the IEEE/ISTEL, Dec.2018 (doi:10.1109/ISTEL.2018.8661027).
[12] W. Kim, S. K. Narang, “Graph based transforms for depth video coding, acoustics”, Proceeding of the IEEE/ICASSP), Kyoto, Japan, Mar 2012 (doi:10.1109/ICASSP.2012.6288008).
[13] X. Wen, H.Zhang, X.Xu, J.Quan, “A new watermarking approach based on probabilistic neural network in wavelet domain”, Soft Computing , Vol. 13, No.4 pp. 355–36, Feb 2009 (doi:10.1007/s00500-008-0331-y).
[14] V. Sachnev, H.J. Kim, S.Sundaram S, Y.Q. Shi., “Reversible watermarking algorithm sing sorting and prediction”, IEEE Trans. on Circuits and Systems for Video Technology, Vol. 19, No. 7, pp. 989 – 999, Apr 2009 (doi: 10.1109/TCSVT.2009.2020257).
[15] A. Ansari, S. Hong, G. Saavedra, B. Javidi, M. Martinez-Corral, “Ownership protection of plenoptic images by robust and reversible watermarking”, Optics and Lasers in Engineering, Vol. 107, No. 1, pp.325-334 Aug. 2018 (doi:10.1016/j.optlaseng.2018.03.028).