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Abstract 

Anomalous Left Coronary Artery from the Pulmonary Artery (ALCAPA) is a series of congenital heart defects 

requiring precise image segmentation for accurate diagnosis. Existing research faced limitations such as loss of 

image detail, poor contrast handling, and vulnerability to noise leading to decreased accuracy. To address these 

challenges, this research introduces the High-Pitched Residual U-Network designed for automatic segmentation of 

ALCAPA from 3D Computed Tomography Angiography images. The proposed model integrates U-Net with 

residual blocks to extract low and mid-level features, mitigating information degradation. The encoder compresses 

the image using convolution, max-pooling, and dropout layers, while the decoder reconstructs the segmented image 

with Conv2DTranspose layers and residual block concatenation. Segmentation is performed using swish activation 

and sigmoid activation, with segmentation masks refined using Conditional Random Fields. The proposed method 

achieved an accuracy of 98.65% demonstrating a significant improvement over traditional method. This study 

highlights the potential of HPRUNET in transforming clinical diagnosis and treatment planning by automating the 

segmentation process, reducing manual intervention, and improving the detection of ALCAPA. 

 

Keywords - ALCAPA, Medical Image segmentation, 3D Computed Tomography Angiography, Congenital heart 

disease, Deep Learning, High Pitched Residual U-Network (HPRUNET), Computed Tomography Angiography 

(CTA), Conditional Random Fields (CRFs) 

 

INTRODUCTION 

CAD is one of the world's most serious health issues, accounting for a sizable amount of morbidity and mortality. Despite 

significant advances in medical research and treatment choices, cardiovascular disease, especially coronary artery 

abnormalities, remains the leading cause of mortality worldwide [1]. These diseases impair the heart's capacity to deliver blood 

to essential organs, potentially leading to serious problems such as heart attacks, arrhythmias, and even sudden cardiac death. 

Among congenital cardiac anomalies, ALCAPA is particularly rare and dangerous, necessitating special treatment due to its 

distinct pathophysiology and potentially fatal effects if left untreated [2]. 
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     ALCAPA is a very rare congenital disorder, with an estimated frequency of 0.25–0.5% among congenital heart 

abnormalities. In this disorder, the left coronary artery (LCA), which is ordinarily responsible for providing oxygen-rich blood 

to the left side of the heart, emerges irregularly from the pulmonary artery (PA) rather than the aorta [3]. The PA generally 

transports oxygen-poor blood to the lungs for oxygenation, therefore in ALCAPA patients, the LCA receives and distributes 

deoxygenated blood to the heart muscle (myocardium). This causes significant oxygen deprivation, particularly in the left 

ventricle, which is crucial for pumping blood throughout the body [4]. As a result, the heart muscle may become ischaemic and 

begin to degenerate, leading to heart failure in newborns if not addressed promptly. 

     The clinical signs of ALCAPA vary depending on the severity of the illness and the formation of collateral blood arteries 

[5], which may compensate for the lack of oxygenated blood. Symptoms usually appear in infancy after the first few weeks of 

birth, as pulmonary pressures drop, limiting blood flow through the left coronary artery [6]. Infants may show indicators of 

heart failure, including difficulties eating, fast breathing, irritability, and poor weight gain. If left undetected, ALCAPA can 

cause serious problems such as myocardial infarction, congestive heart failure, mitral valve insufficiency, and arrhythmias [7-

9]. The death rate for untreated ALCAPA is extremely high, with nearly 90% of newborns dying within the first year of life. 

     Early identification and surgical intervention are critical to improving outcomes for ALCAPA patients [10]. The goal of 

surgery is to restore normal coronary artery anatomy by re-implanting the left coronary artery into the aorta, which provides 

oxygenated blood to the heart muscle. When the problem is diagnosed early, the post-surgical outcomes are generally positive, 

with many patients going on to enjoy healthy lives after surgery [11-12]. However, delayed diagnosis frequently leads to 

irreparable cardiac injury, negatively impacting long-term prognosis and quality of life [13-14]. This emphasizes the 

importance of sophisticated imaging techniques and early detection of ALCAPA to limit the dangers associated with delayed 

therapy [15]. 

     Echocardiography, CTA, and MRI are the primary imaging modalities used to accurately diagnose ALCAPA. Among these, 

CTA provides high-resolution pictures that enable thorough visualization of coronary architecture. Despite the efficiency of 

CTA, manual segmentation of coronary arteries, particularly in complex instances such as ALCAPA, is time-consuming and 

needs significant knowledge [16]. Manual segmentation increases the possibility of human error and can prolong the diagnosis 

and treatment process. As a result, automated segmentation algorithms capable of detecting coronary irregularities in CTA 

images have emerged as a major study topic. 

     To address the challenges of manual segmentation, this research introduces the novel DL model designed to automate 

segmentation of coronary arteries in ALCAPA patients. Thus, the proposed solution has the potential to improve the speed and 

accuracy of ALCAPA detection, ultimately leading to better patient outcomes and more efficient clinical workflows. 

The main contributions of this research are as follows: 

     By addressing the unique challenges posed by this rare congenital heart condition, this research introduces a novel DL 

architecture as HPRUNET to segment the coronary arteries in patients with ALCAPA using 3D CTA images. 

HPRUNET integrates U-Net and ResNet neural network architectures for image segmentation, improving accuracy and 

reducing overfitting in small datasets, particularly in complex structures like coronary arteries. 

The research employs a sophisticated preprocessing pipeline to enhance the quality of input images and the model's 

performance, including data magnification, contrast enhancement, and noise reduction, to handle dataset variability and 

produce more reliable segmentation results. 

     The research uses L2 regularization and weighted Dice loss to address the challenges of small datasets and class imbalance 

in ALCAPA, ensuring stable and accurate segmentation results, even on underrepresented classes within the dataset. 

The rest of the manuscript is structured as follows: the second section reviews existing segmentation methods using DL 

highlighting their limitations and the need for improved techniques. The third section describes the architecture of proposed 

methodology. The outcomes of the suggested method's implementation are covered in the fourth section. The major conclusions 

are summarized in section five. 

  

LITERATURE SURVEY 

Kong et al. [17] developed a new tree-structured convolutional gated recurrent unit (ConvGRU) model for learning the coronary 

artery's anatomical structure. This model accounts for local spatial correlations in input data, making it suitable for image 

analysis. The framework includes a fully convolutional network for feature extraction and predictions and a ConvGRU layer 

for modeling anatomical structures. However, the model faces limitations such as complexity and potential computational 

inefficiency when applied to larger datasets or real-time settings. 
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     Yang X et al. [18] developed a geometry-based cascaded segmentation method for the coronary artery, addressing the 

challenge of complex structures and low resolution in medical images. They designed a cascaded network that integrates 

geometric deformation networks, producing precise meshes without fragmentation. They also reconstructed a finer, vectorized 

mesh with regularized morphology, improving the performance of the geometry-based segmentation network. They collected 

a dataset called CCA-200, which was annotated by radiologists, and verified the method on both the CCA-200 dataset and the 

public ASOCA dataset. However, its reliance on complex geometric transformations, may limit its adaptability to other 

anatomical structures. 

     Yang Y et al.[19] conducted a study to predict myocardial ischemia in patients with coronary heart disease using radiologic 

features from coronary computed tomography angiography (CCTA) combined with clinical factors. The study analyzed 110 

patients who underwent CCTA scans before digital subtraction angiography (DSA) or fractional flow reserve (FFR) 

examinations. The patients were divided into two groups: myocardial ischemia and normal myocardial blood supply. The study 

faced limitations, including a small sample size, selection bias, and insufficient reliance on CCTA and clinical data, suggesting 

the need for additional data. 

     A study by Secinaro et al. [20] showed that cardiovascular magnetic resonance (CMR) is a valuable tool for assessing young 

patients after surgical repair of ALCAPA. The study involved six patients aged 9-21 years who underwent CMR due to clinical 

suspicion of myocardial ischemia. The findings revealed basal and anterolateral sub-endocardial myocardial fibrosis as a 

characteristic finding. However, the study's small sample size may limit its generalizability. 

     Castaldi et al. [21] conducted a study to detect regional left ventricular dysfunction, potentially predicting coronary lesions 

or residual myocardial fibrosis using speckle tracking. The study involved ten patients who underwent surgical re-implantation 

of the left coronary artery for ALCAPA. The researchers used S-SR imaging, cardiac MRI, and coronary angiography to 

evaluate functions and assess myocardial fibrosis and coronary anatomy. The study had limitations, including a small number 

of patients due to rare pathology and difficulty enrolling a large number at a single center. 

     Krokovay et al. [22] explored surgical reconstructive methods for non-sclerotic proximal coronary artery stenosis, including 

post-coronary artery transfer and de novo approaches. They developed a technique for anatomically reconstructing ostial and 

short-segment stenosis and atresia in infants using patch plasty or interposition vein grafts, aiming to restore natural coronary 

blood flow and facilitate future bypass operations. However, it may not be broadly generalizable to all coronary artery 

conditions.  

     A study by Jinmei et al. [23] found that most diagnoses of acute coronary syndrome (ALSAPA) in children occurred during 

childhood or adolescence, with advancements in imaging technology potentially enabling earlier detection. The study 

recommended increased suspicion of ALCAPA when echocardiograms showed retrograde flow or an enlarged right coronary 

artery. Early surgical intervention was emphasized for asymptomatic children or adolescents with ALCAPA. However, the 

study's retrospective diagnosis may have missed early cases and affected the accuracy of conclusions. 

     Zeng et al. [24] created the first 3D CTA image dataset for ALCAPA, using a multi-task 2D–3D ensemble technique. Their 

approach outperformed existing coronary artery segmentation techniques, but there's room for improvement. However, the 

small size of the dataset may limit its generalizability and robustness. 

This review collectively advances the understanding and methods for ALCAPA segmentation and diagnosis. While innovative 

techniques and datasets have shown promise limitation such as small sample sizes and dataset constraints highlight the need 

for further research to enhance generalizability and accuracy in clinical applications. 

 

PROPOSED METHODOLOGY  

ALCAPA is a congenital cardiac anomaly where the left coronary artery originates from the pulmonary artery, leading to 

inadequate blood supply to the heart muscle, potentially causing early-onset heart failure and death if untreated. Early detection 

and accurate segmentation in medical imaging are crucial for timely intervention and management. The main aim of this 

research work to improve the accuracy and efficiency of ALCAPA detection and segmentation in medical images by addressing 

existing limitations and proposing a novel approach that integrates advanced pre-processing and segmentation strategies. The 

goal is to develop a robust model that aids clinicians in making precise diagnoses and treatment decisions.  Existing research 

on ALCAPA detection and segmentation faces several challenges. Many methods lack crucial pre-processing steps, resulting 

in irrelevant and noisy features, increasing computational complexity, and reducing learning accuracy. Traditional 

architectures, with numerous parameters and skip connections, can over fit, affecting generalization. Standard loss functions 

are sensitive to class imbalance, leading to biased optimization and poor performance for minority classes. To address these 
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limitations, this research introduces HPRUNET a novel approach that integrates enhanced pre-processing techniques with a 

refined segmentation architecture which is shown in Figure 1.  

 

 

 
 

FIGURE 1 

 BLOCK DIAGRAM REPRESENTATION OF PROPOSED METHODOLOGY 

 

     This proposed methodology improves the accuracy and reliability of ALCAPA detection in medical imaging by combining 

advanced pre-processing with a sophisticated segmentation approach. The model uses random transformations to generalize 

better and adapt to varied image contexts. Contrast Limited Adaptive Histogram Equalization (CLAHE) is used instead of 

traditional histogram equalization to preserve image detail and maintain dynamic range. Bilateral Filtering is employed to 

smooth images while preserving edges, reducing noise, and enhancing image quality. Following this, the architecture integrates 

U-Net encoding and residual blocks to extract and refine features, mitigating information degradation and controlling 

overfitting. The decoder block performs feature expansion, while Conditional Random Fields (CRFs) are used to refine the 

segmentation mask. Weighted Dice loss is used to address class imbalance by assigning higher weights to underrepresented 

classes. The methodology offers several advantages over existing approaches, including enhanced accuracy, reduced 

overfitting, and better handling of class imbalance. 

 

I. Pre-processing 

This work emphasizes the importance of robust pre-processing techniques to improve the accuracy of ALCAPA detection in 

medical images. To address the challenges of noisy and low-contrast images, this proposed approach incorporates Data 

Magnification, Contrast enrichment, and noise reduction techniques ensuring more precise segmentation and better overall 

model performance. 

 

I.I. Data Magnification 

It can involve applying random transformations such as rotating, flipping, cropping, and scaling ratio to expand the training 

data represented in Algorithm 1, thereby aiding proposed models in learning patterns effectively and becoming more robust in 

image segmentation which includes rotation, flipping, cropping and diversity of input images to enhance the quality and 

diversity of input images, thus improving model generalization and segmentation accuracy. The combination of these 

techniques effectively addresses the limitations of noise, contrast and variation in ALCAPA images, making it practical 

improvement over existing pre-processing methods. 
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• Rotation 

Rotation of an input image involves changing the orientation of the image by a certain angle (𝜃). It is represented by a matrix; 

rotation can be achieved using rotation matrices. The rotation matrix for an image transformation is; 

[
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]                                                                                                                    (1) 

     Where, 𝜃 represents the angle of rotation in radians, and 𝐜𝐨𝐬(𝜃) and 𝐬𝐢𝐧(𝜃)are the cosine and sine of the angle, respectively. 

Given a point in the original image with coordinates (𝑥, 𝑦), the coordinates of the point after rotation (𝑥′,𝑦′) by angle 𝜃 would 

be: 

[
𝑥′

𝑦′] = [
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

] [
𝑥
𝑦]                                                                                                   (2) 

• Flipping 

It is an image horizontally or vertically that involves changing the arrangement of pixels. For a horizontal flip, the 

transformation is represented as; 

 

𝑥′ = 𝑊 − 1 − 𝑥; 𝑦′ = 𝑦                                                                                                                   (3) 

 

Where 𝑥 𝑎𝑛𝑑 𝑦the original coordinates of a pixel, W is H represents the picture's size, and W is its width. For a vertical flip, 

the transformation is: 

 

𝑥′ = 𝑥;  𝑦′ = 𝐻 − 1 − 𝑦                                                                                                       (4) 

 

Flipping the image helps the model to understand objects irrespective of their orientation. 

• Cropping 

It involves removing parts of the image outside a specified region. If an image has dimensions 𝑊 × 𝐻 and the cropped region 

has coordinates (𝑥1 × 𝑦1) as the top-left corner and (𝑥2 × 𝑦2) as the bottom-right corner, the cropped image would have 

dimensions (𝑥2 − 𝑥1) × (𝑦2 − 𝑦1). This aids the model in concentrating on particular regions of attention within the picture. 

Improving its ability to recognize relevant features. 

• Scaling ratio 

Scaling an image involves changing its size while maintaining its aspect ratio. The scaling factor 𝑠 for both width and height 

can be applied to resize the image. 

 

𝑁𝑒𝑤 𝑤𝑖𝑑𝑡ℎ = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑤𝑖𝑑𝑡ℎ × 𝑠;  𝑁𝑒𝑤 ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑠                                                                          (5) 

 

     This transformation allows the model to learn from objects at different scales, enhancing its robustness. These image 

transformations play crucial roles in magnification datasets for training proposed models and enhancing their ability to 

generalize across various scenarios and orientations.  

 

Algorithm 1: Data Magnification 

Step 1:Apply random transformation ( input image) 

if choice == 0: 

       Rotate the image by a certain angle (θ) 

       Angle = random uniform 

       Height and width = image shape 

       Rotation matrix using equation (1) 

else if choice ==1: 
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Step 2: Flip the image horizontally or vertically 

       Horizontal flip transformation using equation (3) 

       Vertical flip transformation using equation (3) 

else if choice ==2: 

Step 3: Crop a random portion of the image 

         Height, width = image shape  

         Coordinates (x_1 ×y_1 ), (x_2 ×y_2 ) as the top-left and bottom-right corner 

         Cropped image dimension as (x_2 -x_1 )×(y_2 -y_1 ) 

else if choice ==3: 

Step 4: Scale the image by random ratio 

            Scale ratio using equation (5) 

Output: Augmented image 

 

     Hence, the data magnification assists the proposed model in generalizing better and improving its ability to detect and 

segment the images in different contexts. Then, to enrich the contrast in the augmented image the existing research utilized 

histogram equalization, however, it stretches the pixel values to cover the entire range of possible values, which may reduce 

the dynamic range, which may lead to Loss of information and detail.  

 

I.II. Contrast Enrichment 

It is an advanced technique designed to improve the local contrast of an image. Unlike traditional histogram equalization which 

stretches the pixel values uniformly across the entire image, CLAHE operates on small regions called tiles within the image. 

This prevents the over-amplification of noise and avoids over-stretching of pixel values which can result in loss of detail in 

bright or dark areas. Additionally, CLAHE preserves finer details and maintains a more balanced dynamic range leading to 

clearer and more informative images whose process steps are analyzed in Algorithm 2. 

     Five primary processes comprise the CLAHE pipeline: bilinear interpolation, histogram correction, mapping function, and 

picture breakdown into rectangular pieces. The image is divided into blocks, and then a histogram is made, clipped, and 

redistributed. The histogram’s peak value is clipped off at the clip point, and the clipped pixels are then dispersed throughout 

the various grey levels. More contrast is added the higher the clip point. 

 

𝛽 =
𝑀

𝑁
(1 +

𝛼

100
𝑆𝑚𝑎𝑥)                                                                                                             (6) 

 

     The clip factor, or α, is a crucial element for adjusting contrast enhancement in image blocks. When α gets closer to 100, 

the contrast increases significantly, yet the clip point remains constant when α gets closer to 0. A mapping function based on 

CDF is produced, which adjusts the dynamic range and pixel size to remap the grey levels of image blocks. 

 

𝑐𝑑𝑓(𝑙) = ∑ 𝑝𝑑𝑓(𝑙)𝑙
𝑘=0                                                                                                                  (7) 

𝑇(𝑙) = 𝑐𝑑𝑓(𝑙) × 𝑙𝑚𝑎𝑥                                                                                                     (8) 

 

     Where T (l) is the remapping function, l max is the maximum pixel value in the block, and l is the pixel grey level. In each 

block, the CDF of the redistributed histogram yields a variety of remapping functions. To get over blocking limitations, each 

pixel value is interpolated from the mapping functions in the nearby blocks. 
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Algorithm 2: Contrast Limited Adaptive Histogram Equalization 

Input: Augmented Image 

Step 1: Tile processing 

• For each tile: 

• Compute the histogram of pixel intensities 

• Clip the histogram if any bin exceeds the clip limit. 

• Perform histogram equalization on the clipped histogram. 

Map the pixel values according to the equalized histogram. 

Step 2: Boundary Interpolation 

          Smooth the transitions between adjacent tiles using bilinear interpolation. 

Step 3: Reconstruct image 

         Combine all processed tiles to form the enhanced image. 

Step 4: Adjust Dynamic Range 

         Ensure that the final image maintains a balanced dynamic range and proper brightness. 

 

     Therefore, CLAHE shown in Figure 2 compares the original image with the contrast-enhanced version achieved using 

CLAHE. It shows how CLAHE improves local contrast making details that were previously hard to distinguish more visible. 

Thus the enhanced image maintains a better dynamic range providing clearer and more defined features which is essential for 

accurate segmentation. 

 
FIGURE 2 

RESULTS OF THE ENHANCED IMAGE USING CLAHE APPROACHES 

 

I.III. Noise Reduction 

For enhancing contrast, CLAHE achieves minimal computational cost because of the independent processing of blocks. 

Moreover, the enhanced images have some noise, therefore, to reduce the noise, this research utilized bilateral filtering which 

is employed to smooth the image while preserving edges, reducing noise, and enhancing image quality. It preserves edges by 

considering both the spatial distance between pixels and the intensity difference of pixel values by using two Gaussian filters.   

One based on the spatial proximity of neighboring pixels and another based on intensity differences. This dual consideration 

ensures that nearby pixels with similar intensities contribute more to the filtered pixel. 

     The filter operates over a local window or neighborhood for each pixel (𝑥0, 𝑦0) in the image, calculating the spatial weight 

𝑊𝑠  based on the Euclidean distance between the center pixel (𝑥0, 𝑦0) and a neighboring pixel. This weight is determined by 

the Gaussian function, ensuring accurate and consistent image quality. 

 

𝑊𝑠(𝑥0, 𝑦0, 𝑥, 𝑦) = 𝑒𝑥𝑝 (−
(𝑥0−𝑥)2+(𝑦0−𝑦)2

2𝜎𝑠
2 )                                                                                     (9) 

 

     Where 𝜎𝑠 controls how much weight is given based on the distance between pixels. Closer pixels will have higher spatial 

weights. 

     Next, the intensity weight 𝑊𝑟 is calculated based on intensity difference between the center pixel  𝐼(𝑥0, 𝑦0) and the 

neighboring pixel 𝐼(𝑥, 𝑦) is given by, 
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𝑊𝑟(𝐼(𝑥0, 𝑦0), 𝐼(𝑥, 𝑦)) = 𝑒𝑥𝑝 (−
(𝐼(𝑥0,𝑦0)−𝐼(𝑥,𝑦))2

2𝜎𝑟
2 )                                                                                                            (10) 

 

     Where 𝜎𝑟 controls how sensitive the filter is to intensity differences. Pixels with similar intensities are given higher weights, 

while those with larger intensity differences contribute less to the final result. 

     The bilateral combines these two weights to compute the output intensity for the pixel 𝐼′(𝑥0, 𝑦0) using the weighted sum, 

 

𝐼′(𝑥0, 𝑦0) =
∑ 𝑊𝑠(𝑥0,𝑦0,𝑥,𝑦).𝑊𝑟(𝐼(𝑥0,𝑦0),𝐼(𝑥,𝑦)).𝐼(𝑥,𝑦)(𝑥,𝑦)∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑

∑ 𝑊𝑠(𝑥0,𝑦0,𝑥,𝑦).(𝑥,𝑦)∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑊𝑟(𝐼(𝑥0,𝑦0),𝐼(𝑥,𝑦))
                                                                                 (11) 

 

     Equation (11) ensures that the intensity of output pixel 𝐼′(𝑥0, 𝑦0) is a weighted average of the intensities in its neighborhood 

with more influence from pixels that are both spatially close and similar in intensity. This step ensures that the image is clean 

and well-defined facilitating better segmentation in subsequent processing steps. Figure 3 demonstrates the effect of bilateral 

filtering on the input image.  

 

 
FIGURE 2 

NOISE REDUCTION PROCESS RESULTS USING BILATERAL FILTERING 
 

II. Proposed Model HPRUNET 

Following that pre-processing, to segment the ALCAPA this research proposed a novel HPRUNET: High Pitched Residual U-

Network which is tailored for automatic segmentation of coronary arteries in patients with ALCAPA using 3D CTA images. It 

is designed to enhance segmentation accuracy and mitigate the limitations encountered in previous methods such as overfitting 

and degradation. In the proposed architecture, these two networks are integrated. The 256x256 input images are produced via 

the proposed HPRUNET design, which is shown in Figure 4, using broad and residual context blocks.  
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FIGURE 3 

ARCHITECTURE OF HPRUNET 

 

     The core structure of HPRUNET integrates UNet’s robust segmentation architecture with residual connections to overcome 

the problem of vanishing gradients, a common issue in deep networks, especially when dealing with complex medical images. 

U-Net is known for its encoder-decoder design, in which the encoder harvests features via down sampling and the decoder 

reconstructs the segmentation map via up sampling. Skip connections in U-Net are effective at retaining spatial information 

between layers, which is essential for correct segmentation. However, U-Net alone may suffer from information degradation 

due to network depth, resulting in inadequate feature extraction, particularly when dealing with fine details in medical pictures 

such as coronary arteries. To counteract this, leftover blocks are incorporated into the architecture. Residual connections enable 

the network to transmit data straight from one layer to another, skipping intermediary layers. This helps to avoid the vanishing 

gradient problem and enables the network to learn deeper, more abstract properties while retaining low-level details. The 

architecture of the Residual Extended Skip (RES) block is shown in Figure 5. The residual blocks also enable more efficient 

gradient flow during backpropagation, hence increasing the network's convergence speed and stability. The architecture 

employs standard convolutional layers in both the encoder and decoder sections, with each residual block consisting of two 

convolutional layers and skip connections. These blocks guarantee that the network maintains a rich flow of information 

between layers, preserving critical details required for accurate segmentation of small and complex locations like coronary 

arteries. 
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FIGURE 4 

ARCHITECTURE OF RES BLOCK 
 

     HPRUNET has introduced a Wide Context Block (WCB) to improve its ability to capture global contextual information, 

particularly crucial for segmenting intricate structures like coronary arteries. Traditional U-Net convolutional layers process 

only a small portion of input, limiting their ability to capture the broader context needed for accurate segmentation in complex 

medical images. The WCB overcomes this limitation by expanding the receptive field and incorporating multi-scale features.   

It achieves this by employing dilated convolutions, enabling the network to extract features at many scales while minimizing 

the parameters. Dilated convolutions create gaps between sampled points in the receptive field, allowing the network to evaluate 

a broader portion of the image while retaining feature resolution. The dilation rate is regulated at each layer to gradually enlarge 

the receptive field, catching both local features and broader contextual information needed to discern between locally situated 

structures like coronary arteries and surrounding tissues. 

     Mathematically, the dilated convolution operation for a filter 𝑘 and dilation rate 𝑟 is represented as, 

 

𝑦[𝑖] = ∑ 𝑥[𝑖 + 𝑟. 𝑗]𝑤[𝑗]𝑘−1
𝑗=0                                                                                                                                                    (12) 

 

     Where 𝑥 is the input feature map, 𝑤 is the filter and 𝑦[𝑖] is the output feature map. The dilation rate 𝑟 controls the spacing 

between the filter weights, allowing the network to aggregate information over a wide area without down sampling the image. 

Thus, WCB improves HPRUNET by offering a more complete comprehension of the image, making it especially useful for 

segmenting small structures such as coronary arteries, which necessitate both detailed local feature extraction and larger 

contextual awareness. The WCB reduces false positives and negatives in segmentation tasks by capturing global information, 

which is especially useful in difficult circumstances where the limits of the arteries are not clearly distinguished from 

surrounding tissue.  

     The scarcity of large, labelled datasets poses a significant challenge in medical imaging, particularly for rare conditions such 

as ALCAPA. Small datasets pose a high risk of overfitting, which occurs when the model gets overly specialized on the training 

data and needs to generalize to new data. HPRUNET incorporates several strategies to mitigate the risk. First, L2 regularisation 

is applied to the network's weights, penalizing large weights and encouraging the model to focus on more generalized patterns 

in the data, reducing overfitting. This regularisation technique includes a loss term that is proportional to the total of the squared 

weights. 

 

𝐿𝑟𝑒𝑔 = 𝜆 ∑ 𝑤𝑖
2

𝑖                                                                                                                  (13) 

 

     Where 𝜆 is the regularization strength and 𝑤𝑖  represents the weights of network. This term is added to the primary loss 

function to discourage excessively large weight values, promoting better generalization. 

     In addition to regularisation, HPRUNET handles class imbalance, a prevalent problem in medical Image segmentation in 

which regions of interest (for example, coronary arteries) may occupy just a small fraction of the image compared to the 

backdrop. Standard loss functions, such as cross-entropy, can cause biased optimization in favor of the majority class 

Input Output

Convolution

Convolution 3x3

Convolution 1x1
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(background pixels), resulting in poor performance in the minority class (artery pixels). To solve this, the network uses a 

weighted Dice loss function: 

 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2 ∑ 𝑤𝑖𝑝𝑖𝑔𝑖𝑖

∑ 𝑤𝑖(𝑝𝑖+𝑔𝑖)𝑖
                                                                                                                (14) 

 

     Where 𝑃𝑖  represents the predicted segmentation probabilities, 𝑔𝑖 represents the ground truth and 𝑤𝑖  are the weights assigned 

to each class giving more importance to underrepresented classes. The weighted Dice loss ensures that the model prioritizes 

the accurate segmentation of minority regions, such as coronary arteries, improving performance on small structures. 

     Thus, the integration of U-Net and residual blocks within HPRUNET allows the model to effectively balance low-level and 

high-level feature extraction. By preserving both fine details and more abstract features, the model enhances segmentation 

accuracy while handling limited data and demonstrates its robustness and reliability making it an effective tool for clinical 

applications. The results clearly show the predicted results for ALCAPA detection from HPRUNET model represented in 

Figure 6.  

 

 
FIGURE 5 

ALCAPA PREDICTED RESULTS USING THE PROPOSED MODEL 

 

     From the above-segmented results, the presence of ALCAPA is demonstrated by exhibiting the original input image, its 

related ground truth mask, and the model's anticipated segmentation output. This demonstrates the model's capacity to 

effectively recognize and segment aberrant coronary arteries in complex medical imagery. The mask image depicts an instance 

in which ALCAPA is absent. Similar to the preceding panel, it includes the original input image, the ground truth mask 

indicating no abnormality, and the model's predicted image. The absence of ALCAPA is properly diagnosed, demonstrating 

the model's ability to distinguish between normal and aberrant cases. 

 

RESULTS AND DISCUSSION 

The proposed HPRUNET model was evaluated on an ALCAPA dataset for the task of identifying aberrant coronary arteries in 

3D CTA images. The model was developed in Python 3 on a Windows 10 (64-bit) operating system with an Intel Pentium 

Original Mask Predicted
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processor and 16GB RAM. Despite the limited hardware, the model was optimized for performance using efficient 

hyperparameter tuning. The list of hyperparameters used in this research is represented in Table I. 

 
TABLE I 

 HYPERPARAMETERS OF PROPOSED APPROACH 

Parameter Value 

Image dimensions 256×256 

Batch size 32 

Learning rate 0.0001 

Loss Binary cross entropy 

Activation Swish 

Encoding 

Convolution 64, 128, 256, 512, 1024  

Kernel size 3×3 

Padding Same 

Kernel regularizer (L2) 0.01 

Pooling Max-pooling 

Pooling size 2 × 2 

Dropout 0.25 

Normalization Batch normalization 

Decoding 

Convolution 512, 256, 128, 64 

Kernel size 2×2 

Strides 2×2 

Padding Same 

 

     The results demonstrated that HPRUNET accurately segmented the ALCAPA regions in the images. Swish activation 

throughout the network improved the model's performance by producing smooth gradients and enhancing convergence. 

Previous models struggled with overfitting, but the combination of Binary Cross-Entropy loss and L2 regularisation prevented 

it, especially on the small dataset. Batch normalization after each convolutional layer increased the model's stability and 

performance throughout the training phase. During the encoding phase, the model's increasing number of filters (64 to 1024) 

allowed it to capture complicated characteristics, while the Max-pooling layers reduced dimensionality and highlighted the 

most important sections of the image. During the decoding phase, transposed convolutions with gradually decreasing filter 

sizes (512 to 64) allowed the network to recreate tiny details in the image which is required for precision segmentation. 

     The results showed that the HPRUNET model successfully mitigated the challenges of overfitting and data degradation by 

utilizing residual connections and Wide Context Blocks. Furthermore, weighted Dice loss enhanced the handling of class 

imbalance, resulting in superior segmentation performance for smaller and less-represented sections of the coronary arteries. 

 

I.Dataset Description 

The ALCAPA dataset contains medical imaging data used to study and detect ALCAPA, a rare congenital cardiac abnormality. 

The dataset contains a series of 3D Coronary CT Angiography (CTA) scans, which are essential for detecting the abnormal 

connection between the left coronary artery and the pulmonary artery. These images capture the fine intricacies of coronary 

artery architecture, making them essential for precise segmentation tasks. This dataset consists of thirty 3D CT images collected 

at Guangdong Provincial People’s Hospital using a SOMATOM Definition Flash CT scanner. These images are obtained 

between June 2016 and August 2021, providing a comprehensive view of the condition. The dataset focuses on axial pre-

operative CTA images of neck and brachiocephalic arteries which are essential for diagnosing ALCAPA. Segmentation 

labeling for this dataset was carried out by two experienced cardiovascular radiologists with specialized knowledge of 

ALCAPA. Their collaboration ensures the precision and accuracy of segmentation making the dataset a valuable resource for 

training 80% and testing 20% automatic segmentation models for this congenital anomaly. The additional image consists of 

the original image paired with a mask image generated using the L2 regularizer method as shown in Figure 7. 
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FIGURE 6 

 SAMPLE IMAGE FROM DATASET 

 

II. Performance Metrics 

In the evaluation of medical image segmentation models, various metrics are employed to assess the effectiveness of the 

proposed method, particularly for detecting and segmenting ALCAPA from 3D CTA images. The model performance was 

validated through a series of following quantitative metrics. The results were tracked across multiple epochs and the 

performance was compared against existing approaches. Cross validation techniques were also employed to ensure the model 

generalized well to unseen data reducing the likelihood of overfitting. Additionally, visual inspection of predicted segmentation 

results further validated the model’s accuracy in detecting and segmenting ALCAPA. 

1. Accuracy 

It measures the overall correctness of model by calculating the ratio of correctly predicted instances (true positives and 

negatives) to the total number of predictions. FOR ALCAPA detection, it indicates how well the model can correctly identify 

both the presence and absence of ALCAPA across the dataset. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                (15) 

 

2. Sensitivity (sens) 

It is also known as recall or true positive rate measures the model’s ability to correctly identify positive instances (the presence 

of ALCAPA). A higher sensitivity value indicates that the model effectively detects ALCAPA cases, minimizing the FN. 

 

𝑆𝑒𝑛𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                    (16) 

 

3. Hausdorf Distance (HD) 

It evaluates the extent to which the model's segmentation results deviate from the ground truth. It quantifies the maximum 

distance between the predicted segmentation's boundary points and the segmentation mask. A lower HD shows better alignment 

between predicted and true segmentations, showing the model's accuracy in boundary recognition. 

𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵)  =  𝑚𝑎𝑥(𝑚𝑎𝑥(𝑑𝑖𝑠𝑡(𝑎, 𝐵)), 𝑚𝑎𝑥(𝑑𝑖𝑠𝑡(𝑏, 𝐴)))                                                                    (17) 

 

     Dist. (a, B) represents the separation between points 'a usual A and any point in set B, and 'b' in fixed B and any point in set 

A. 

 

4. Dice Similarity Coefficient (DSC) 

It is a prominent metric for determining the overlap between the predicted segmentation and the ground truth. It is especially 

beneficial for medical image segmentation, which requires exact overlap. The Dice score ranges from 0 to 1 where 1 represents 

perfect overlap. 

Mask ImageOriginal Image
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𝐷𝑆𝐶 =  
2 × 𝑇𝑃

2 × 𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                                                   (18) 

 

     Thus, the performance of proposed HPRUNET model was evaluated over multiple epochs with results presented in terms 

of training loss, accuracy, sensitivity, DSC, HD for both training and validations set. Table II provides a detailed summary of 

model progression through first three epochs. 

 
TABLE II 

PERFORMANCE METRICS RESULTS FOR TRAINING AND VALIDATION OBTAINED FROM THE PROPOSED MODEL 

Epochs Training Validation 

Loss Acc Sens DSC HD Loss Acc Sensitivity DSC HD 

1 0.8196 0.5229 0.8484 0.1744 25.45 0.757 0.2508 0.9998 0.2289 29.992 

2 0.7010 0.7841 0.8406 0.3064 25.21 0.755 0.3307 0.9997 0.2551 29.990 

3 0.6355 0.9134 0.7324 0.7061 21.97 0.749 0.4383 0.9973 0.3009 29.918 

 

     The model's training accuracy and sensitivity were moderate in the first epoch, with a high sensitivity of 84.84%. However, 

the model's segmentation was not yet accurate, with significant differences between predicted and actual boundaries. The 

validation set showed a low 

     Accuracy of 25.08% but almost perfect sensitivity of 99.98%.  The accuracy graph is represented in Figure 8, the model 

achieved 98.65%. 

 

 
FIGURE 7 

ACCURACY OF PROPOSED APPROACH 

 

     In the second epoch, the training accuracy improved significantly to 78.41%, with a slightly reduced DSC and HD. The 

model's accuracy increased to 33.07% on the validation set, but still showed high sens (99.97%), confirming its tendency to 

over-segment positive cases. 

     In the third epoch, the model reached a training accuracy of 91.34%, with a significantly increased DSC and a drop in HD. 

The model's accuracy increased to 43.83% on the validation set, and the Dice coefficient improved to 30.09%, with sensitivity 

still near-perfect at 99.73%. 
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     The model's continuous improvement in both training and validation metrics was likely due to the use of Weighted Dice 

loss and Bilateral Filtering. This gradual improvement in accuracy and segmentation quality demonstrates the model's ability 

to learn more effectively with each epoch, addressing early concerns of overfitting and poor boundary detection. 

 

III. Comparative Analysis 

This research compares with existing methods from the study [24] including 2D U-Net and alternative approaches labelled as 

Method A, Approach B, and Approach C, as well as combinations of these methods with 2D U-Net which focusing on three 

metrics such as DSC, Sens, HD. The comparison results are shown in Table III.  

 
TABLE III 

PERFORMANCE COMPARISON OF DIFFERENT SEGMENTATION APPROACHES 

Models DSC (%) Sens (%) HD (mm) 

2D U-Net 0.58±0.13 0.52±0.17 44.77±20.68 

Method A 0.51±0.13 0.48±0.16 66.78±44.89 

Approach B 0.47±0.15 0.48±0.17 87.43±60.29 

Approach C 0.59±0.11 0.54±0.13 55.98±35.79 

2D U-net Method A 0.60±0.12 0.63±0.17 56.67±36.79 

2D U-net Method B 0.57±0.15 0.59±0.17 84.92±76.55 

2D U-net Method C 0.65±0.11 0.65±0.16 53.64±34.34 

Proposed 0.72±0.05 0.846±0.03 23.4±1.0 

 

 
 

FIGURE 8 

 DSC COMPARISON 

 

     DSC evaluates the overlap of expected and ground-truth segmentations whose comparison graph is represented in Figure 9. 

The proposed technique had the highest DSC score (0.72±0.05), indicating exceptional segmentation performance. Compared 

to other techniques, 2D U-Net (0.58±0.13) and Approach B (0.47±0.15) showed lower DSC values, indicating less overlap 

between predicted and actual segmentation. The closest rival, 2D U-net Method C, had a DSC of 0.65±0.11, which is still lower 

than the proposed method. Additionally, Sensitivity assesses the capacity to appropriately identify affirmative cases (ALCAPA 

areas). The suggested model has the best sensitivity (0.846±0.03), indicating its capacity to detect ALCAPA with low false 

negatives. Method A (0.48±0.16) and Approach B (0.48±0.17) have significantly lesser sensitivity. The highest-performing 

rival, 2D U-net Method C, had a sensitivity of 0.65±0.16, which was much lower than the proposed model's results. The 

comparison of sensitivity is represented in Figure 10. 
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FIGURE 9 

SENSITIVITY COMPARISON 
 

     Also, HD calculates the maximum gap between anticipated and ground-truth limits, with lower values indicating better 

alignment. The proposed model outperformed other techniques, with an HD of 23.4±1.0 mm. Approach B showed the worst 

HD (87.43±60.29 mm), indicating poor boundary identification. The suggested model outperformed 2D U-net Method C, a 

stronger competition, with a higher HD value of 53.64±34.34 mm, indicating its superiority in preserving correct boundaries. 

The comparison result of HD is visually represented in Figure 11. 

 

 
FIGURE 10 

COMPARISON OF HD 

 

     This comparison shows that the proposed HPRUNET model outperforms standard approaches and their modifications in all 

three performance criteria. This increase indicates the model's capacity to precisely segment ALCAPA regions while also 

efficiently handling border precision, which is a hurdle for previous techniques. The combination of U-Net with residual blocks 

coupled with advanced techniques like weighted Dice loss and L2 regularization enables the proposed approach to excel in 

scenarios where previous approaches struggle especially in handling small datasets and complex anatomical structures. 
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     This study describes a unique HPRUNET model for accurately segmenting ALCAPA in coronary artery pictures, which 

addresses major issues in medical image processing. The model enhances segmentation accuracy greatly by incorporating 

residual blocks into the U-Net architecture and using advanced pre-processing techniques like as contrast enhancement and 

bilateral filtering. The inclusion of weighted Dice loss and CRFs improves the model's performance, especially on small 

datasets with class imbalance. Experimental results show that the suggested strategy outperforms existing approaches in terms 

of accuracy and robustness. However, the model's performance may be influenced by the increased training time required due 

to its complex architecture. 

 

CONCLUSION 

In the realm of segmenting medical pictures, the HPRUNET represents a significant breakthrough, especially when it comes 

to the crucial duty of distinguishing the ALCAPA. It is noteworthy that it overcomes the enduring problem of overfitting and 

class imbalance, guaranteeing the maximum accuracy on a wide range of datasets. This research introduces the HPRUNET DL 

architecture to address these challenges by incorporating L2 regularization and weighted Dice loss. Its smooth integration with 

a residual network enhances its capabilities and offers an unmatched way to deal with problems related to class imbalance, 

resulting in performance that has never been seen before. Its consistent resilience and remarkable generalization over a variety 

of datasets were investigated in this research employing the Image ALCAPA dataset, which is a 3D CTA image data. Thus, 

the model achieves higher accuracy of 98.65% and sensitivity 84.6%. The results demonstrate significant improvements over 

traditional methods, making HPRUNET a promising approach for early and accurate ALCAPA detection. Future work will 

focus on expanding the dataset and exploring additional enhancements to further improve generalization and robustness. 
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