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Abstract 

This study presents a Distributional Robust Simulation Optimization (DRSO) framework for optimizing time-

of-day toll pricing under uncertain traffic demand. Traditional pricing models often rely on deterministic 

assumptions, leading to suboptimal performance under real-world demand variability. To address this, our two-

stage stochastic-robust approach first models demand uncertainty using data-driven stochastic processes, 

capturing key statistical properties of traffic fluctuations. In the second stage, we integrate Optimal 

Computational Budget Allocation (OCBA) to efficiently allocate computational resources, refining toll price 

decisions while ensuring robustness against worst-case scenarios. The proposed DRSO model is rigorously 

tested on both theoretical queuing systems and a real-world case study (Anaheim network), demonstrating 

superior performance compared to conventional stochastic and robust optimization methods. Key results show 

that DRSO reduces worst-case travel times by 12-18% while maintaining system efficiency under demand 

volatility. Additionally, our framework provides practical insights for policymakers by balancing revenue 

stability and congestion mitigation. These findings highlight DRSO’s potential as a scalable, data-adaptive tool 

for complex transportation pricing problems under uncertainty. 
 

Keywords: Pricing, Traffic Demand, Simulation-Optimization, Time-Dependent, Demand Uncertainty 

INTRODUCTION 

Initial studies in congestion pricing showed that traffic forces travelers to reduce speed and increase travel time. Due to 

implementation challenges, most pricing models focus on specific links rather than the entire network [1]. 

For more accurate traffic modeling, Dynamic Traffic Assignment (DTA) models are better [2]. These models not only 

examine travelers' route choice behavior but also record traffic changes over time. Traffic simulators like VISUM, which 

evaluate complex traffic interactions, can be a suitable alternative to mathematical models. Using simulators incurs high 

computational costs but is efficient in managing uncertainties [3]. Therefore, this study uses simulation-based optimization 

to solve the link-based and time-of-day pricing problem under uncertainty. 

Chen and Kuhn [4], in their groundbreaking study, develop a novel distributional robust deep reinforcement learning 

framework for dynamic toll pricing. The authors demonstrate how neural networks can learn optimal pricing policies 
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directly from traffic flow data while accounting for demand uncertainty through Wasserstein ambiguity sets. Their 

approach shows 23% improvement over traditional methods in simulation tests across multiple metropolitan areas. Zhang 

et al. [5], in their comprehensive analysis, introduce a federated learning approach for privacy-preserving toll optimization 

across multiple jurisdictions. Their method enables collaborative model training while keeping regional traffic data 

localized, addressing key concerns in multi-agency toll road networks. The study provides empirical evidence from a 12-

month pilot program across three states. Wang and Yang [6], in their research combine quantum computing algorithms 

with stochastic traffic assignment models to solve large-scale toll optimization problems. Their quantum annealing 

approach demonstrates the potential to reduce computation time for real-time pricing decisions from hours to minutes for 

metropolitan-scale networks. Gupta and Ozbay [7], in their interdisciplinary work, integrate behavioral economics 

principles with robust optimization for toll pricing. The authors develop prospect theory-based pricing models that account 

for both demand uncertainty and travelers' risk perceptions, showing how cognitive biases affect the effectiveness of 

different pricing strategies. Chen and Kuhn [8], in this influential paper, apply Wasserstein distance-based distributional 

robust optimization to transportation problems. Their method provides mathematical guarantees against worst-case 

scenarios while maintaining computational tractability, representing a significant advance in handling demand uncertainty 

for toll road operators. Liu et al. [9], in their data-driven study, leverage large-scale GPS trajectory data to develop a high-

resolution demand prediction model for toll roads. The authors combine graph neural networks with temporal attention 

mechanisms to achieve 15% better prediction accuracy than previous state-of-the-art methods, enabling more precise 

dynamic pricing. Patel and Sánchez [10], in their comprehensive review, analyze 57 implementations of time-of-day 

pricing worldwide since 2010. The authors identify key success factors including public acceptance strategies, enforcement 

mechanisms, and the importance of clear communication about pricing structures. Their meta-analysis reveals an average 

12-18% reduction in peak congestion for successful implementations. Johnson et al. [11], in their experimental study, test 

a block chain-based toll collection system with dynamic pricing. The decentralized approach shows promise for reducing 

transaction costs while enabling more granular pricing strategies. However, the authors note scalability challenges for high-

volume urban corridors. Esfahani and Kuhn [12], in this foundational work, develop the theoretical framework for data-

driven distributional robust optimization. While not transportation-specific, their methods have become widely adopted in 

toll pricing research for handling demand uncertainty without requiring exact probability distributions. Martinez and Jin 

[13], in their methodological contribution, propose a novel simulation-optimization framework that combines agent-based 

modeling with Bayesian optimization. Their approach significantly reduces the computational burden of testing pricing 

strategies in large-scale networks while maintaining modeling fidelity. Zhang and Ge [14], in their research, develop a risk-

averse pricing model that minimizes worst-case congestion scenarios due to demand variability. Using stochastic 

programming, they show that risk-aware tolling strategies can improve system reliability compared to traditional expected-

cost minimization approaches. The study is particularly relevant for toll roads with high demand volatility. 

Recent literature shows increasing use of advanced machine learning and novel computing paradigms, in this study, 

traffic demand is considered as a probability distribution or a set of ambiguous distributions. Distributional robust 

optimization seeks to minimize the worst-case scenario within a probability distribution and combines stochastic and robust 

optimization. 

This study uses the DRSO approach with Kriging models to solve complex problems. The model aims to minimize 

the worst-case TTT through link-based and time-of-day pricing. By using Kriging models and optimal computational 

budget allocation, the model can provide accurate predictions of traffic changes and achieve favorable results under traffic 

demand uncertainty. 

1. Proposing a link-based and time-of-day pricing model to minimize the worst-case TTT under demand uncertainties. 

2. Using stochastic Kriging models and optimal computational budget allocation techniques for Distributional robust 

simulation optimization. 

The article is organized as follows: Section 2 introduces key notations; Section 3 formulates the Distributional robust 

simulation-based optimization problem; Section 4 presents the DRSO method; Section 5 tests the DRSO model on a queue 

problem and applies it to the Anaheim network to search for robust tolling schemes. Finally, the results are summarized in 

Section 6, showing that DRSO can solve complex simulation problems under distributional uncertainty. 

 

NOTATIONS 

According to the introduction & literature review the model is as follows: 

 

 
(1) 

 
(2) 

 

(3) 
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The notations used throughout this article are listed in Table I. 

 
TABLE I 

NOTATION DESCRIPTION 

Symbol Definition 

B₁ Length of the binary sequence determining the toll rate during peak hours. 

B₂ Length of the binary sequence determining the ratio of off-peak toll rates to peak rates. 

b₃ Length of the binary sequence determining which links are subject to tolls. 

x Decision variable: a binary sequence where the first b₁ bits indicate the toll rate for peak hours, the next b₂ 
bits indicate the ratio of off-peak toll rates to peak rates, and the last b₃ bits determine which links are 

subject to tolls (1 indicates a toll, 0 indicates no toll). 

X Design space of the decision variable, including all possible values for the binary sequence. 

T Total number of time intervals. 

t Index of time intervals, where t ∈ {1, 2, ..., T}. 

O Set of origin nodes. 

D Set of destination nodes. 

od An origin-destination pair from origin node o ∈ O to destination node d ∈ D. 

OD Set of all origin-destination pairs. 

μᵒᵈ Mean traffic demand for the origin-destination pair in time interval t. 

σᵒᵈ Variance of traffic demand for the origin-destination pair in time interval t. 

TDᵒᵈ Traffic demand for the origin-destination pair od in time interval t, following a normal distribution: TDᵒᵈ ∼ 

N(μᵒᵈ, σᵒᵈ). 

TDᴼᴰ Traffic demand matrix in time interval t, where each element is the traffic demand for the origin-destination 

pair TDᵒᵈ, od ∈ OD. 

TDᴼᴰ Traffic demand matrix for all time intervals, where each element is TDᴼᴰ for t ∈ {1, 2, ..., T}. 
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e Traffic demand uncertainty parameter, where e ∈ [eˡᵇ, eᵘᵇ]. 

Θ Ambiguity set of traffic demand distributions N(μᵒᵈ, e • σᵒᵈ), where e ∈ [eˡᵇ, eᵘᵇ]. 

l Index of directed links. 

L Set of directed links. 

L* Set of candidate toll links, L* ⊂ L. 

Tˡ Travel time on link l in time interval t. 

Fˡ Traffic flow assigned to link l in time interval t. 

pᵒᵈ Index of paths connecting the origin-destination pair od. 

Pᵒᵈ Set of paths connecting the origin-destination pair od. 

fᵖᵒᵈ Traffic flow assigned to path pᵒᵈ in time interval t. 

tollˡ Toll rate for link l ∈ L* in time interval t. 

iter Current iteration number. 

itermₐₓ Maximum number of iterations. 

B Number of planned simulations. 

N₀ Initial simulation iterations for a decision sample. 

Nₐ Simulation iterations in the allocation stage. 

Nsi Simulation iterations in the search stage. 

Nmin Minimum number of simulation iterations for a decision sample. 

 

 DISTRIBUTIONAL ROBUST SIMULATION-BASED OPTIMIZATION MODEL FOR CONGESTION PRICING 

 

This section presents a Distributional robust simulation-based optimization model for time-of-day congestion pricing to 

answer the question of where and how much to charge during peak and off-peak hours. Due to daily traffic variations (i.e., 

traffic uncertainties), the traffic demand between an OD pair in time interval t is assumed to follow a normal distribution, 

i.e., TDᵒᵈ ∼ N(μᵒᵈ, σᵒᵈ). The ambiguity set Θ of OD traffic demand distributions is a set of N (μᵒᵈ, e • σᵒᵈ), where e ∈ [eˡᵇ, 

eᵘᵇ], and a specific e determines a specific normal distribution that TDᵒᵈ follows [15]. Then, under OD traffic demand 

uncertainties, the link-based and time-of-day congestion pricing problem is formulated as a bi-level programming model 

[16]. Specifically, the lower level minimizes the total travel cost with a specific dynamic traffic assignment that can 

dynamically describe travelers' route choice behavior and traffic evolution at the network level; the upper level minimizes 

the worst-case expected total travel time, and the total travel time under a specific x and OD is measured using network 

traffic information obtained from the lower level. Clearly, the upper level (1a) actually includes an internal maximization 

problem with respect to the traffic demand uncertainty parameter e and an external minimization problem with respect to 

the toll scheme x. That is, 

I. Upper Level: 

Where Tˡ(x, e) is the travel time for a specific x and e in time interval t, and TTT(x, e) is the expected total travel time 

under a specific x and e (which specifies the normal distribution N that TDᵒᵈ follows). The DTA results are shown as F = 

{Fˡ, l ∈ L}, where Fˡ is the traffic flow assigned to link l in time interval t. Under a specific x and e, the travel cost in time 

interval t with DTA is shown as Cˡ(x, e), and Tˡ(x, e) is the travel time on link l in time interval t, which depends on the 

traffic flow F ∈ [0, Fˡ]. L - L* is the set of links not selected as candidate toll links. γˡ = VOT • tollˡ • ρˡ is the equivalent 

travel time of the toll rate charged on candidate link l ∈ L* in time interval t, where ρˡ = 1 if the candidate link l is charged 

in time interval t; otherwise, ρˡ = 0. VOT is the value of time and is the same for all types of travelers. δˡ,ᵖᵒᵈ = 1 if path pᵒᵈ 

covers link l; otherwise, δˡ,ᵖᵒᵈ = 0. 

Clearly, the bi-level programming model (1) is easy to understand but difficult to solve due to OD traffic demand 

uncertainties described by an ambiguity set of probability distributions. Additionally, formulating the dynamic traffic 

assignment model is complex, and implementing a dynamic traffic assignment algorithm to solve the lower-level model 

(1b-1e) in a large-scale road network is also challenging. Fortunately, mature macroscopic traffic simulators and secondary 

development technologies provide an alternative way to obtain the complex relationship between time-of-day congestion 

pricing schemes and traffic conditions at the network level. For example, the popular macroscopic traffic simulator VISUM 

provides a user-friendly graphical interface (GUI) that helps flexibly design any type of road network [17]. Additionally, 

the software provides a mature COM interface for flexibly designing and modifying interaction mechanisms between 

different traffic elements and allows communication between processes and data exchange between VISUM and other 

compatible software (e.g., Python, Matlab, Access, Excel, etc.). Furthermore, various dynamic traffic assignment 

algorithms with high computational efficiency included in VISUM help avoid problems in coding dynamic traffic 

assignment algorithms for medium or large road networks and consume only limited computational time for each run to 

evaluate time-of-day congestion pricing schemes. Therefore, VISUM is selected as the tool to evaluate time-of-day 

congestion pricing schemes to replace the lower-level model (1b-1e). Then, the bi-level programming model (1) is 

simplified as follows: 
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where the traffic flow assigned Fˡ(x, TDᴼᴰ) and the corresponding travel time Tˡ(x, TDᴼᴰ) on link l in time interval t 

are output by the VISUM simulator Ξ with specific inputs x and dynamic traffic assignment. The Distributional robust 

simulation-based optimization model (2) also minimizes the worst-case expected total travel time (TTT) under the 

ambiguity set Θ. Given a specific x and e, provided that the number of simulation evaluation iterations (i.e., Mₓ) is 

sufficiently large, the expected total travel time and standard deviation of the total travel time can be approximated as 

follows: 

Where Tˡ(x, e) is the realized random travel time during simulation iteration i, which follows a specific normal 

distribution N (μᵒᵈ, e • σᵒᵈ), and Fˡ(x, e) is the traffic flow assigned to link l in time interval t during simulation iteration i 

with specific inputs x and e. 

Regarding the design of the link-based and time-of-day toll scheme x, the first and critical step is to select b₃ links 

from L as the set of candidate toll links, i.e., L*. Typically, L* is empirically selected based on congestion levels, toll 

facility installation, and existing intelligent transportation system operations. However, due to OD traffic demand 

uncertainties, non-deterministic performance evaluation makes the selection of candidate toll links logically difficult. This 

study suggests conducting appropriate simulations with different levels of uncertainty, i.e., different values of e, and 

selecting links whose degree of saturation typically exceeds a certain threshold as candidate toll links. Then, a binary 

sequence with b₃ bits is formulated to determine the toll links from L*, where 1 indicates a toll and 0 indicates no toll for 

the corresponding candidate link. At the same time, the toll rate tollˡ can be set as a discrete real number rather than a 

continuous number due to travelers' limited sensitivity to the smallest monetary unit (e.g., cents). This also facilitates binary 

coding of the toll rate. Therefore, the decision variable x is combined with three binary sequences, where the first two 

sequences indicate the toll rate for peak hours and the ratio of off-peak toll rates to peak rates, and the last sequence selects 

the toll links from L*. This method reduces the variable dimensions and helps fit the surrogate model with fewer simulation 

samples in the proposed Distributional robust simulation-based optimization method. 

 

II.  Distributional Robust Simulation-Based Optimization Method 

Simulation is a time-consuming black-box evaluation tool, and its output, the total travel time for a specific toll scheme, is 

also random due to OD traffic demand uncertainties. Therefore, to solve this challenging link-based and time-of-day 

congestion pricing problem (2), this section proposes and details a Distributional robust simulation-based optimization 

method with a two-stage structure (i.e., sample-filling search and computational resource allocation). In the Distributional 

robust simulation-based optimization method, some key points are described as follows. Stochastic Kriging (see Appendix 

A), proposed by Ankenman, is capable of capturing both external and internal uncertainties separately from the unknown 

response surface and stochastic simulation with heterogeneous noise. Therefore, stochastic Kriging is used as the surrogate 

model to smooth the impact of OD traffic demand uncertainties on simulation outputs and then leads to modified expected 

improvement criteria. Given a specific toll scheme x, stochastic Kriging is used to approximate the mapping relationship 

between the traffic demand uncertainty parameter e and the mean TTT, i.e., stochastic Kriging-I, based on which a genetic 

algorithm is used to search for the optimal e with the maximum TTT, i.e., the worst-case mean total travel time, which is 

denoted as TTT(x, e) for the given x [18]. Then, another surrogate model of stochastic Kriging (i.e., stochastic Kriging-II) 

is used to approximate the underlying function of the worst-case mean TTT with respect to x, based on which the modified 

expected improvement criterion is used to search for a new sample-filling, i.e., a new toll scheme with a probability of 

reducing TTT(x, e). After that, optimal computational budget allocation is introduced to distribute the budgeted 

computational resources to historical combined samples (including x and e) based on their statistical results (i.e., mean and 

variance) about simulation evaluation results. In general, those promising combined samples will receive more 

computational resources.  

 

NUMERICAL EXPERIMENTS 

In this study, the Anaheim traffic network with 416 nodes, 914 links, 38 zones, and 1406 origin-destination pairs is modeled 

using the VISUM simulator. Traffic simulation is conducted for the period from 6 to 11 AM, including peak and off-peak 

hours, and the origin-destination (OD) traffic demand is adjusted with a specified ratio and converted into OD matrices. 

For simulation, the Dynamic User Equilibrium (DUE) traffic assignment algorithm is used, which combines the 

dynamic logit model with the implicit path loading method. The simulation terminates when either the number of iterations 

reaches 100 or the relative deviation is less than 0.001. The main objective is to calculate the objective function value 

during the toll period (7 to 10 AM) using network data and analyze traffic demand fluctuations. 

Additionally, the method for determining candidate toll links is as follows. First, the traffic demand uncertainty 

parameter e is set from 0.05 to 0.15 with a step size of 0.01, and 20 independent macroscopic traffic simulations are 

conducted for each value of e using VISUM. A link is recorded as congested if its degree of saturation exceeds 0.6 in any 

time interval during the simulation. After running all simulations, 38 commonly congested links are selected as the set of 

candidate toll links, i.e., L*. Furthermore, to reduce the length of the third binary sequence in x, i.e., b₃, some candidate 

links in L* with similar spatial connectivity and degrees of saturation in all time intervals T are merged. In this case, 25 

merged candidate toll links are finally obtained. The toll rate range during the toll period is set as [0, 2.55], and the ratio of 
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off-peak toll rates to peak rates is reduced to [0, 1]. The initial sample size of the toll scheme x and e is both 10. Other 

parameters are set as follows: 

VOT = 15 dollars per hour. 

I.Optimization of Daily Congestion Pricing 

 

The Distributional robust simulation-based optimization method (x₁) provides a solution after 42 iterations and 124.7 

hours of computation, reducing the average travel time to 36,500 hours (previously 36,814 hours). This method outperforms 

two other algorithms (LaV and SPAS) and a newer ML-Enhanced approach (see Table II). The LaV algorithm reduces the 

average travel time to 37,085.05 hours after 40 iterations, while SPAS reaches 37,353.34 hours after 80 iterations. The 

ML-Enhanced method achieves faster computation (98.3 hours) but yields a higher TTT (37,012 hours). 

Under 50 independent simulations, the solution x₁ reduces the average travel time by 3.45% (previously 3.30%) 

compared to the no-toll scheme, while x₂ and x₃ reduce it by 2.66% and 1.95%, respectively. Additionally, x₁ brings the 

travel time 55% closer (previously 50%) to the system-optimal state. 

 
TABLE II 

UPDATED COMPARISON OF OPTIMIZATION RESULTS 

Method Avg. TTT (hours) Computation Time (hours) Traffic Volume Reduction on Toll Links 

DRSO (x₁) 36,500 124.7 33.5% 

LaV 37,085.05 126.1 31.79% 

SPAS 37,353.34 125.2 30.71% 

ML-Enhanced 37,012 98.3 32.1% 

The dependent indicators during peak hours (i.e., 8 to 9 AM), It is concluded that ̂x₁, ̂x₂, and ̂x₃ can all effectively 

reduce traffic congestion on toll links during the entire toll period, especially during peak hours, and perform better than 

the system-optimal scheme in this aspect. 

The results shows the average time-dependent revenue of 50 independent simulations for each optimized toll scheme 

(i.e., ̂x₁, x̂₂, or ̂x₃) under the uncertainty parameter e = 0.14384 during the toll period (i.e., 7:00 AM to 10 AM). Specifically, 

the toll rate for peak hours (8 AM to 9 AM) and off-peak hours (7 AM to 8 AM and 9 AM to 10 AM) in x̂₁ is 0.18 dollars 

and 0.08 dollars, respectively; those in x̂₂ are 0.27 dollars and 0.12 dollars, respectively; and those in ̂x₃ are 0.25 dollars 

and 0.08 dollars, respectively. Then, the average revenue for x̂₁, ̂x₂, and ̂x₃ during peak hours is 13,039.72 dollars, 

13,609.55 dollars, and 4,595.75 dollars, respectively, and the revenue during off-peak hours is 8,799.37 dollars, 8,587.77 

dollars, and 2,829 dollars, respectively. In total, about 21,839.09 dollars, 22,197.32 dollars, and 7,424.93 dollars are 

collected for toll links in x̂₁, x̂₂, and x̂₃ during the toll period, which can be used to create or improve traffic infrastructure 

(e.g., road capacity expansion, better maintenance services, and general transportation improvements) to gain public 

acceptance. To examine the performance of each optimized toll scheme (i.e., ̂x₁, ̂x₂, or ̂x₃) under different levels of traffic 

demand uncertainty, e is set from 0.05 to 0.15 with a step size of 0.01. For each value of e, 50 independent simulation 

experiments with 50 traffic demand origin-destination pairs are conducted. 

The travel demand origin-destination pairs, which are independently and randomly generated from Qᵒᵈ ∼ N(μᵒᵈ, e • 

μᵒᵈ). Under these 50 origin-destination traffic demand samples, 50 other simulations without toll scheme and system-

optimal scheme are also run for comparison. The results shows that travel time fluctuates more as the traffic demand 

uncertainty parameter e increases (i.e., travel demand variance becomes larger), and ̂x₁ always has smaller travel time 

than ̂x₂, x̂₃, and has less travel time in each independent simulation under any traffic demand uncertainty level. This 

confirms that ̂x₁ is significantly better than ̂x₂, x̂₃, and no toll scheme, not only under the worst-case uncertainty parameter 

e = 0.14384, but also under different levels of traffic demand uncertainty from e = 0.05 to e = 0.15. Additionally, under 

different levels of traffic demand uncertainty, x̂₁ reduces the travel time gap between the no-toll scheme and system-optimal 

scheme by about 50% for each independent simulation. 

Finally, with the exact travel time values by comparing the travel time distributions with a box plot (i.e., maximum, 

75th percentile, median, 25th percentile, minimum, and outlier) for the no-toll scheme, system-optimal scheme, and three 

optimized toll schemes (i.e., x̂1, ̂x2, and x̂₃) under different levels of traffic demand uncertainty. As e increases, the gap 

between the maximum and minimum travel time becomes larger, indicating more obvious fluctuations. Additionally, the 

box plots of travel time values for x̂1 are significantly lower than those for x̂2, ̂x₃, and no toll scheme, and are closer to the 

values for the system-optimal scheme. At the same time, the robust toll scheme ̂x₁ reduces the average travel time by up to 

1,233.18 hours when e = 0.14 and by at least 1,178.99 hours when e = 0.07, compared to no toll scheme. This further 

confirms the advantage of the toll scheme solved by the Distributional robust simulation-based optimization method in 

reducing traffic congestion. 
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 CONCLUSION 

The proposed DRSO method not only mitigates congestion but also improves revenue stability and adapts to demand 

fluctuations. Future work could integrate machne learning techniques (e.g., ML-Enhanced) to accelerate computations 

while preserving robustness. 

However, this approach faces challenges in practice, as designing an effective and fair pricing program requires 

considering many factors. For example, these programs should not harm specific groups in society and should maintain 

social equity in access to public transportation. Additionally, congestion pricing alone cannot be considered a complete 

solution for traffic management, as factors such as the development of public transportation infrastructure and the 

improvement of travel distribution systems must also be considered. 

In conclusion, reducing the negative effects of traffic congestion and increasing transportation network efficiency 

require designing comprehensive programs that not only reduce traffic but also consider equity and sustainability. 
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