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      Abstract 

      This paper builds upon the foundation laid by Shetty's research, aiming to enhance our understanding of 

decision-making unit (DMU) efficiency. In doing so, we introduce a novel approach that offers a more 

comprehensive method for ranking DMUs. Unlike traditional methods that assess DMUs individually, our 

proposed methodology centers on the creation of a virtual DMU. This virtual entity serves as a composite 

representation, synthesizing the inputs and outputs of all DMUs within the study. By aggregating this 

information, we establish a benchmark against which the efficiency of individual DMUs can be assessed. 

This approach not only simplifies the evaluation process but also provides a more holistic perspective, 

enabling researchers to discern patterns and trends across the entire dataset. As is widely acknowledged, 

the efficiency frontier is delineated by the efficient decision-making units (DMUs). The method proposed 

in the aforementioned paper proved to be efficacious particularly in scenarios where the number of efficient 

DMUs was limited, enabling the model to accurately rank them. However, challenges may arise as the 

population of efficient DMUs increases. This is due to the necessity of excluding these efficient DMUs 

from the efficiency frontier to obtain their efficiency ranks. Consequently, their ranking criterion would be 

determined by the efficiency scores of virtual DMUs generated by the revised efficiency frontier. In 

instances where the number of efficient DMUs expands, the process of excluding them from the efficiency 

frontier becomes more intricate. Furthermore, the reliance on virtual DMUs for ranking purposes introduces 

a layer of complexity, as the efficiency scores of these virtual entities are contingent upon the composition 

of the new efficiency frontier. Therefore, as the number of efficient DMUs escalates, the effectiveness of 

the proposed methodology in accurately ranking them may diminish. This underscores the importance of 

ongoing refinement and adaptation of methodologies to accommodate evolving datasets and analytical 

requirements in the assessment of DMU efficiency. If, following the removal of the efficient DMU, the 

efficiency score of a remaining DMU within the possibility production set is higher, it suggests that the 

respective DMU exhibits greater efficiency. Efficient Decision Making Units (DMUs) construct the 
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defining hyperplane; therefore, the exclusion of these contributing efficient DMUs in an attempt to derive 

their ranking, amidst an increase in their numbers, will impede the acquisition of efficiency scores for virtual 

DMUs. Hence, achieving a comprehensive ranking of all DMUs is unattainable unless those positioned 

precisely on the defining hyperplane are included. In this complementary method, we delineate an anti-

ideal virtual DMU encompassing all DMUs situated on the corresponding defining hyperplane, which may 

be oriented in various directions. Then, we use this method for ranking efficient DMUs. In this method, 

DMUs located on different intersecting defining hyperplanes may hold multiple ranks, from which the 

highest rank is deemed the most relevant. As the proposed method aligns with the aforementioned study, it 

incorporates all the advantages, including simplicity and stability, and notably eliminates the identified flaw. 

 

       Keywords- Data Envelopment Analysis (DEA); Decision Making Units (DMU); Ranking; Virtual DMU;   

       Anti Ideal Point (AIP) 

INTRODUCTION 

      In recent years, a notably appropriate approach has emerged in the intellectual, cultural, and social domains for 

assessing performance and productivity. Among the evaluation methods, Data Envelopment Analysis (DEA) is 

extensively employed to assess the relative performance of a group of production processes known as decision-making 

units (DMUs). This non-parametric technique evaluates DMUs by employing various models that generate multiple 

outputs utilizing multiple inputs. DEA was initially introduced by Charnes et al. [1] as a method for evaluating the 

relative efficiency of DMUs with multiple inputs and outputs. Subsequently, Banker et al. [2] advanced the 

fundamental DEA models under the assumption of variable returns to scale. A DMU is deemed efficient if its 

performance, relative to other DMUs, cannot be enhanced. Basic DEA models often identify more than one DMU as 

efficient upon evaluating the comparative efficiency of DMUs. Hence, when DEA models are employed to compute 

the efficiency of DMUs, several of them may attain an efficiency score of 1. To select a superior candidate among 

these efficient DEA candidates, various methods have been proposed (see [3]).  

       In the DEA literature, several ranking methods have been proposed. Alder [4] has reviewed six groups of methods 

to comprehensively rank both efficient and inefficient DMUs. The first group involves evaluating cross efficiency 

(CE), where DMUs are assessed both internally and against their peers. The second group employs the super efficiency 

(SE) method, wherein the evaluated unit is excluded from the reference set. The third group is based on benchmarking, 

ranking a DMU highly if it serves as a benchmark for many other inefficient DMUs. The fourth group utilizes 

multivariate statistical techniques, such as discriminant analysis and canonical correlation analysis. The fifth group 

ranks DMUs using the proportional measure of inefficiency, while the sixth group ranks them based on multiple 

criteria decision methodologies using the DEA approach. However, it should be noted that while each of these 

techniques may be valuable in specific contexts, no single ranking methodology serves as a comprehensive solution 

on its own. Andersen introduced a super-efficiency DEA model, also referenced by Banker, designed to rank efficient 

DMUs. The input-oriented (output-oriented) super-efficiency DEA model excludes the DMU under evaluation from 

the reference set, allowing efficient DMUs to have efficiency scores greater (smaller) than or equal to one. The original 

super-efficiency DEA model is presented under the assumption of constant returns to scale (CRS) and is applicable if 

all inputs and outputs of DMUs are positive. Nevertheless, the issue of infeasibility may arise in variable returns to 

scale (VRS) super-efficiency DEA models.  

       Several modified variable returns to scale (VRS) radial super-efficiency DEA models, such as those proposed by 

Chen, have been introduced to tackle the infeasibility problem. Among these models, the VRS Nerlove-Luenberger 

super-efficiency DEA model, Ray, utilizes the directional distance function (DDF) and is frequently feasible when 

operating with non-negative datasets. However, this model encounters limitations in two exceptions. To overcome 

these limitations, two DDF-based variable returns to scale (VRS) super-efficiency DEA models are selected carefully. 

The model proposed by Chen may become infeasible if zero data exist in outputs. Furthermore, the majority of these 

methods are incapable of ranking non-extreme efficient DMUs (refer to [5] for details).Since research on the ranking 

of non-extreme efficient units is limited, incomplete, and fraught with difficulties, Gholam Abri [6] proposed a method 

for ranking non-extreme efficient DMUs. The proposed method in this research also has the ability to rank non-

extreme efficient units.  
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After the generation of older studies about ranking, in this section, we mention some new studies in this regard . Liu 

et al. [7] utilized the cross-evaluation method to rank unfavorable outputs. Wu et al. [8] proposed a model to enhance 

cross-evaluation results when the solution was not Pareto optimal. Chen et al [5] introduced a method for ranking 

efficient units in the presence of negative data. To encompass more diverse and comprehensive methods, research by 

Zulfaqari et al. can also be considered [9]. Additionally, Shahmirzadi [10] presented a method for ranking efficient 

units by altering the reference set.  Zhang et al. [11] and Sojoodi et al. [12] introduced models that address the 

infeasibility issues of envelopment models and the unboundedness of multiplier models. Ghaem Nasab et al. [13] 

Utilized game theory and Shapley value methods as equitable approaches to rank units in real-world scenarios. Yu and 

Rakshit [14] articulated input and output goals using a bargaining approach and data envelopment analysis to rank 

applied samples, such as global airlines. 

      One approach to rank efficient DMUs is by introducing a single virtual DMU, as presented by Shetty et al. [15]. 

This method utilizes a virtual DMU to rank efficient DMUs, where the input and output levels of the virtual DMU are 

set as the averages of inputs and outputs of all DMUs. In comparison to other methods, this approach is characterized 

by its simplicity, robustness, and effectiveness in certain scenarios. However, as the number of efficient DMUs 

increases, the model encounters flaws and struggles to rank them accurately. This paper endeavors to address this issue 

by proposing a method to comprehensively rank all efficient DMUs in the aforementioned scenario. This paper is 

organized as follows: Section 2 briefly introduces the background of DEA. Section 3 presents our proposed method. 

A numerical example is provided in Section 4, and Section 5 presents our concluding remarks. 

BACKGROUND  

       DEA is a technique extensively employed in the supply chain management literature. This non-parametric multi-factor 

approach enhances our capability to capture the multidimensionality of performance, as discussed previously. More 

formally, DEA is a mathematical programming technique for measuring the relative efficiency of decision-making 

units, wherein each DMU utilizes a set of inputs to produce outputs. Suppose observed input and output vectors of 

𝐷𝑀𝑈𝑗  are 𝑋𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑚𝑗) and 𝑌𝑗 = (𝑦1𝑗 , 𝑦2𝑗 , … , 𝑦𝑠𝑗) respectively, and 𝑋𝑗 ≥ 0 , 𝑋𝑗 ≠ 0, 𝑌𝑗 ≥ 0 , 𝑌𝑗 ≠ 0.  

The production possibility set TC is defined as: 

 

Tc = {(𝑋, 𝑌) | 𝑋 ≥  ∑ 𝜆𝑗𝑋𝑗 ,
𝑛
𝑗=1 𝑌 ≤ ∑ 𝜆𝑗𝑌𝑗 

𝑛
𝑗=1 , 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛}. 

By the definition stated, the CCR model is as follows: 

 

𝑀𝑖𝑛 𝜃   

s.t.  

        ∑ 𝜆𝑗𝑥𝑖𝑗 ≤  𝜃𝑥𝑖𝑗𝑜 
𝑛
𝑗=1  𝑖 = 1, … , 𝑚 

 

        ∑ 𝜆𝑗𝑦𝑖𝑗 ≥  𝑦𝑟𝑜 
𝑛
𝑗=1  𝑟 = 1, … , 𝑠  

        𝜆𝑗 ≥ 0 𝑗 = 1, … , 𝑛 (1)  

 (1) 

Moreover, the production possibility set 𝑇𝑣 is defined as: 

 𝑇𝑣 = {(𝑋, 𝑌) | 𝑋 ≥  ∑ 𝜆𝑗𝑋𝑗 ,
𝑛
𝑗=1 𝑌 ≤ ∑ 𝜆𝑗𝑌𝑗 

𝑛
𝑗=1 , ∑ 𝜆𝑗 = 1𝑛

𝑗=1 , 𝜆𝑗 ≥ 0, 𝑗 = 1, … , 𝑛}.  

By the above definition, the BCC model is as follows: 

𝑀𝑖𝑛 𝜃   

s.t.  

        ∑ 𝜆𝑗𝑥𝑖𝑗 ≤  𝜃𝑥𝑖𝑗𝑜 
𝑛
𝑗=1  𝑖 = 1, … , 𝑚 

 

        ∑ 𝜆𝑗𝑦𝑖𝑗 ≥  𝑦𝑟𝑜 
𝑛
𝑗=1  𝑟 = 1, … , 𝑠  

        ∑ 𝜆𝑗 = 1𝑛
𝑗=1    

        𝜆𝑗 ≥ 0 𝑗 = 1, … , 𝑛 (2)  

Tabe 1 ( 
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The model below is employed to define Pareto-efficient 𝐷𝑀𝑈𝑜 (𝑜 ∈ {1, … , 𝑛}). 

𝑀𝑎𝑥 𝑍 = ∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1     

s.t.  

        ∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− =  𝜃∗𝑥𝑖𝑜 

𝑛
𝑗=1  𝑖 = 1, … , 𝑚 

 

        ∑ 𝜆𝑗𝑦𝑖𝑗 − 𝑠𝑟
+ =  𝑦𝑟𝑜 

𝑛
𝑗=1  𝑟 = 1, … , 𝑠  

        𝑠𝑖
− ≥ 0 𝑖 = 1, … , 𝑚  

        𝑠𝑟
+ ≥ 0 𝑟 = 1, … , 𝑠  

        𝜆𝑗 ≥ 0 𝑗 = 1, … , 𝑛 (3)  

Table 2(3) 

Model (4) could be attained by incorporating ∑ 𝜆𝑗 = 1𝑛
𝑗=1  as a constraint.  

𝑀𝑎𝑥 𝑍 = ∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1     

s.t.  

        ∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− =  𝜃∗𝑥𝑖𝑜 

𝑛
𝑗=1  𝑖 = 1, … , 𝑚 

 

        ∑ 𝜆𝑗𝑦𝑖𝑗 − 𝑠𝑟
+ =  𝑦𝑟𝑜 

𝑛
𝑗=1  𝑟 = 1, … , 𝑠  

        ∑ 𝜆𝑗 = 1𝑛
𝑗=1    

        𝑠𝑖
− ≥ 0 𝑖 = 1, … , 𝑚  

        𝑠𝑟
+ ≥ 0 𝑟 = 1, … , 𝑠  

        𝜆𝑗 ≥ 0 𝑗 = 1, … , 𝑛 (4)  

Table 3(4) 

In the above models, 𝜃∗ serves as the objective function for models 1 and 2. 

𝐷𝑀𝑈𝑜(𝑜 ∈ {1, … , 𝑛}) is Pareto efficient if and only if: 

i) 𝜃∗ = 1     (the optimal value of model 1(1) or 2). 

ii) 𝑍∗ = 0  (the optimal value of model 1 of 2). 

For 𝐷𝑀𝑈𝑜 its reference set, 𝐸0 is defined by: 

𝐸0 = { 𝑗 | 𝜆𝑗
∗ > 0 𝑖𝑛 𝑠𝑜𝑚𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑜𝑓 (1) 𝑜𝑟 (2)}  ⊆ {1, … , 𝑛} 

When evaluating the relative efficiency of each DMU using DEA models, efficient scores ranging between zero and 

one are obtained. Consequently, in DEA models, it is common for more than one unit to be efficient, with their 

efficiency scores being 1. Furthermore, it is worth noting that the number of efficient units in variable return to scale 

(VRS) models is not less than that in constant return to scale (CRS) models. Therefore, researchers have proposed 

various methods to discriminate among these efficient units. This concept is referred to as ranking efficient units in 

DEA. There are numerous methods available, each with its unique qualities and properties for ranking efficient units. 

The foremost model for ranking, introduced by Andersen and Petersen [16], is notable, yet it exhibits certain 

drawbacks such as instability and infeasibility. The AP model is as follows: 

𝑀𝑖𝑛 𝜃   

s.t.  

        ∑  𝜆𝑗𝑥𝑖𝑗 ≤  𝜃𝑥𝑖𝑜
𝑛
𝑗=1,𝑗≠𝑜  𝑖 = 1, … , 𝑚 

 

        ∑ 𝜆𝑗𝑦𝑟𝑗 ≥  𝑦𝑟𝑜 
𝑛
𝑗=1,𝑗≠𝑜  𝑟 = 1, … , 𝑠 

 

        𝜆𝑗 ≥ 0 𝑗 = 1, … , 𝑛 (5)  

Table 
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Andersen and Petersen [16] have ranked extreme efficient units by omitting them from possibility production set 

(PPS). By introducing a new constraint, ∑ 𝜆𝑗 = 1𝑛
𝑗=1,𝑗≠𝑜 , the model could be regarded as variable returns to scale. 

METHODOLOGY 

      I. The problem of the mentioned method 

      In this section, we provide commentary on the paper by Shetty et al. [15], where they propose an approach to rank 

efficient DMUs utilizing a virtual DMU. The input and output levels of this virtual DMU are derived as the averages 

of inputs and outputs of all DMUs. Based on our understanding, the efficiency frontier is delineated by efficient DMUs. 

When the number of contributing DMUs is limited, their proposed method adeptly ranks the DMUs without errors. 

However, challenges emerge when the number of DMUs increases. In the process of ranking the efficient DMUs, the 

model systematically removes them one by one from the reference set, and their ranking criteria become the efficiency 

score of the virtual DMU derived from the new efficiency frontier. A DMU's ranking improves as its score increases 

within the new possibility production set (after eliminating efficient DMUs). Now, as the number of efficient DMUs 

constructing the defining hyperplane increases, excluding them for the purpose of determining their ranking does not 

alter the score of the virtual DMU created. Therefore, all the efficient DMUs cannot be ranked unless only those 

DMUs precisely located on the defining hyperplane are considered. Therefore, in order to solve this problem, the 

present research was presented. Moreover, the proposed method in this research also has the ability to rank non-

extreme efficient units. In the numerical illustration section, we depicted what we previously discussed. Nonetheless, 

we explain our method in the proposed method section. 

II. Proposed Method 

       To address the issue outlined in the previous section, we introduce a new method. Initially, the Pareto-efficient DMUs 

are identified using model (1)1 and 3(3) (or (2 and 4(4)). Next, utilizing the method proposed by Hamed et al. [17], 

we pinpoint the strong defining hyperplanes of the production possibility set. Subsequently, all the DMUs positioned 

on each defining hyperplane are recognized. Assuming 𝐴𝑡 represents the index set of all DMUs positioned on the 

defining hyperplane 𝐻𝑡 ,  the anti-ideal virtual DMU corresponding to 𝐴𝑡 is defined as follows: 

 

𝐴𝐼𝑃 = (𝑥𝑖 𝐴𝐼𝑃 , 𝑦𝑟 𝐴𝐼𝑃) = (𝑀𝑎𝑥 (𝑥𝑖𝑗) | 𝑗 ∈ 𝐴𝑡 , 𝑀𝑖𝑛(𝑦𝑟𝑗)|𝑗 ∈ 𝐴𝑡)    i=1,…,m,    r=1,…,s. 

 

Actually, the virtual (𝑥𝐴𝑉 , 𝑦𝐴𝑉) is replaced by the anti-ideal point (AIP), defined as above. In this approach, rather 

than utilizing a virtual DMU with averaged input and output, we employ a virtual DMU with anti-ideal input and 

output. This adjustment is made because the virtual DMU is efficient with the average inputs and outputs of the set 𝐴𝑡 

(the convex composition of efficient DMUs remains efficient) rendering it challenging to obtain an index for ranking 

efficient DMUs. Therefore, for each strong defining hyperplane that constructs the production possibility set, we have 

corresponding anti-ideal DMUs. Eventually, we sequentially eliminate efficient DMUs belonging to set At (t=1,...,k), 

one by one. Subsequently, we calculate the efficiency score of the anti-ideal DMU consisting of this set, relative to 

the new efficiency frontier. A higher score indicates that the rank of the eliminated DMU was greater. As stated, the 

main goal of this research is to solve the problem of the article presented by Shetty et al. [15].  

        The method proposed in the aforementioned paper proved to be efficacious particularly in scenarios where the 

number of efficient DMUs was limited, enabling the model to accurately rank them. However, challenges may arise 

as the population of efficient DMUs increases. In this research, we have solved the problem by introducing anti-ideal 

points as follows. As we know, the average of inputs and outputs is considered a special case of convex composition. 

On the other hand, the convex combination of a number of efficient units is itself an efficient unit, so the new unit is 

located on the previous strong hyperplane and does not provide a criterion for ranking those units. Therefore, to solve 

this problem, anti- ideal points was introduced. The details of the method are described in section 2-3.  In addition, 

the advantage of the presented method is that it has the ability to rank non-extreme efficient units. 
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III. Numerical Example  

To describe the problem of the previously presented method and show the performance of the proposed method, we 

present the following example. A system with ten decision making units including one input and one output is 

considered in figure 1. Data is given in table 1. Initially, employing the proposed method and utilizing the outcomes 

of models (2 and 4(4), we designate DMUs A, B, C, D, E, and F as Pareto-efficient DMUs. In this example DMUs G, 

H, I, J are inefficient DMUs and their efficiency scores and ranks are 𝜽𝑮
∗ = 𝟎. 𝟒𝟗𝟗𝟗 , 𝜽𝑯

∗ = 𝟎. 𝟔𝟐𝟓𝟎, 𝜽𝑰
∗ =

𝟎. 𝟕𝟓𝟎𝟎, 𝜽𝑱
∗ = 𝟎. 𝟑𝟑𝟑, 𝒓𝒂𝒏𝒌𝑮 = 𝟗, 𝒓𝒂𝒏𝒌𝑯 = 𝟖, 𝒓𝒂𝒏𝒌𝑰 = 𝟕, and 𝒓𝒂𝒏𝒌𝑱 = 𝟏𝟎, respectively. For ranking efficient 

DMUs we follow the method. Utilizing the method proposed by Hamed et al. [17], we identify strong defining 

hyperplanes as follows: 

TABLE 1 

A SYSTEM WITH 10 DMUS 

 

F = {A, B, C, D, E, F} 
 

 

𝐹𝐴 = {𝐴, 𝐵} ; 
𝐹𝐴 = {𝐶, 𝐷, 𝐸, 𝐹} 

𝐹𝐵 = {𝐴, 𝐵, 𝐶} 
; 

𝐹𝐵 = {𝐷, 𝐸, 𝐹} 

𝐹𝐶 = {𝐵, 𝐶, 𝐷} ; 𝐹𝐶 = {𝐴, 𝐸, 𝐹} 

𝐹𝐷 = {𝐶, 𝐷, 𝐸} ; 𝐹𝐷 = {𝐴, 𝐵, 𝐹} 

𝐹𝐸 = {𝐷, 𝐸, 𝐹} ; 𝐹𝐸 = {𝐴, 𝐵, 𝐶} 

𝐹𝐹 = {𝐸, 𝐹} ; 𝐹𝐹 = {𝐴, 𝐵, 𝐶, 𝐷} 
 

𝐷𝑀𝑈 |
𝑥 = 3.4
𝑦 = 5.3

 

 

 

Strong hyperplanes are:  

𝐻1: 𝐷1 = {𝐴, 𝐵} ; |
𝑥 − 1 𝑦 − 2

1.5 − 1 4 − 2
| = 0 

That yields to  4𝑥 − 𝑦 = 2 

𝐻2: 𝐷2 = {𝐵, 𝐶} ; |
𝑥 − 1.5 𝑦 − 4
3 − 1.5 7 − 4

| = 0 

That yields to        6𝑥 − 3𝑦 =  −3 

𝐻3: 𝐷3 = {𝐶, 𝐷} ; |
𝑥 − 3 𝑦 − 7
4 − 3 8 − 7

| = 0 

That yields to  𝑥 − 𝑦 = −4 

𝐻4: 𝐷4 = {𝐷, 𝐸} ; |
𝑥 − 4 𝑦 − 8

5.5 − 4 9 − 8
| = 0 

DMUs A B C D E F G H I J 

Input 1 1.5 3 4 5.5 8 2 2 4 3 

Output 2 4 7 8 9 10 1 3 7 2 
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That yields to  2𝑥 − 3𝑦 = −16 

𝐻5: 𝐷5 = {𝐸, 𝐹} ; |
𝑥 − 8 𝑦 − 10

8 − 5.5 10 − 9
| = 0 

That yields to  2𝑥 − 5𝑦 = −34 

As illustrated, there are 5 strong defining hyperplanes, each with one corresponding anti-ideal virtual DMU. 

Therefore, we consider the anti-ideal DMU from each defining hyperplane.  

                    𝐷𝑀𝑈𝐴𝐵
𝐴𝑛𝑡𝑖 |

1.5
2

       ;   𝐷𝑀𝑈𝐵𝐶
𝐴𝑛𝑡𝑖 |

3
4

       ;  𝐷𝑀𝑈𝐶𝐷
𝐴𝑛𝑡𝑖 |

4
7

       ;  𝐷𝑀𝑈𝐷𝐸
𝐴𝑛𝑡𝑖 |

5.5
8

       ;  𝐷𝑀𝑈𝐸𝐹
𝐴𝑛𝑡𝑖 |

8
9

  

 

Now, to obtain the ranking of A, B, C, D, E, and F, we follow the proposed method. As an example, and for illustration 

purposes, we describe one of them. As depicted in Figure 1, DMU E is positioned at the intersection of hyperplanes 

H4 and H5. Therefore, to determine its rank, we proceed as follows: 

Since DMU E is situated on the H4 hyperplane, we designate the anti-ideal DMU of H4, denoted as DE, in the two-

dimensional space. 

              𝐷𝑀𝑈𝐷𝐸
𝐴𝑛𝑡𝑖 |

5.5
8

 

Next, we remove DMU E from the PPS and calculate the distance of this anti-ideal DMU to the new frontier after 

elimination, resulting in 𝜃1𝐸
∗ = 0.7272. Since E is also situated on H5, we consider the anti-ideal DMU of H5, denoted 

as EF, in the two-dimensional space: 

           𝐷𝑀𝑈𝐸𝐹
𝐴𝑛𝑡𝑖 |

8
9

 

the obtained distance from new frontier is 𝜃2𝐸
∗ = 0.7500. So following the proposed method: 

 

          𝜃𝐸
∗ = 𝑀𝑎𝑥{𝜃1𝐸

∗ , 𝜃2𝐸
∗ } = 𝑀𝑎𝑥{0.7272,0.7500} = 0.7500 

 

Following as the above example, the efficiency score of all Pareto-efficient DMUs is: 

𝜃𝐴
∗ = 1     

𝜃1𝐵
∗ = 0.6667 , 𝜃2𝐵

∗ = 0.6000 , 𝜃𝐵
∗ = 𝑀𝑎𝑥{𝜃1𝐵

∗ , 𝜃2𝐵
∗ } = 0.6667 

𝜃1𝐶
∗ = 0.5000 , 𝜃2𝐶

∗ = 0.8437 , 𝜃𝐶
∗ = 𝑀𝑎𝑥{𝜃1𝐶

∗ , 𝜃2𝐶
∗ } = 0.8437 

𝜃1𝐷
∗ = 0.7500 , 𝜃2𝐷

∗ = 0.7727 , 𝜃𝐷
∗ = 𝑀𝑎𝑥{𝜃1𝐷

∗ , 𝜃2𝐷
∗ } = 0.7727 

𝜃1𝐸
∗ = 0.7126 ,      

               
               𝜃2𝐸

∗ = 0.7275               
 

, 𝜃𝐸
∗ = 𝑀𝑎𝑥{𝜃1𝐸

∗ , 𝜃2𝐸
∗ } = 0.7275 

  𝜃𝐹
∗ = 0.6875 
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FIGURE 1 
DMUS AND THE EFFICIENCY FRONTIER OF DMUS A, B, C, D, E, F, G, H, I,J AND THE VIRTUAL DMU 

 

So, the rank for each of these DMUs are 𝑟𝑎𝑛𝑘𝐴 = 1, 𝑟𝑎𝑛𝑘𝐶 = 2, 𝑟𝑎𝑛𝑘𝐷 = 3, 𝑟𝑎𝑛𝑘𝐸 = 4, 𝑟𝑎𝑛𝑘𝐹 = 5, 𝑟𝑎𝑛𝑘𝐵 = 6.  

As we can observe, following Shetty's proposed method, the DMU would be calculated as 𝐷𝑀𝑈𝐴𝑉 |
3.4
5.3

.   

In this scenario, if we opt to utilize input-oriented models, we would only rank DMUs C and B, which are positioned 

on the 𝐻2 hyperplane. Since eliminating A, D, E, and F DMUs would not alter the ranking of  𝐷𝑀𝑈𝐴𝑉, the ranking 

process would remain unchanged. Additionally, if we opt to use output-oriented models, we would only rank DMUs 

C and D, which are situated on the 𝐻3 hyperplane. Even if we solely utilize one anti-ideal DMU for the PPS, the 

outcome would remain consistent, and ranking all the efficient DMUs would not be attainable. 
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CONCLUSION 

     This paper focuses on Shetty's method, which proposes a technique for ranking efficient DMUs based on a single virtual 

inefficient DMU in DEA. The input and output levels of this virtual DMU are the averages of inputs and outputs of 

all DMUs. The fundamental concept of the proposed approach is to compare efficient units by evaluating the efficiency 

of the virtual DMU with the linear combination of all efficient units, excluding one efficient unit at a time. However, 

as demonstrated, Shetty's method becomes ineffective as the number of efficient DMUs increases, failing to rank all 

DMUs. Therefore, this paper introduces a new method to address this issue. The primary idea of this method is to first 

obtain all anti-ideal DMUs corresponding to the hyperplanes of the PPS. In other words, for each defining hyperplane 

and efficient DMUs on them, one anti-ideal DMU will be created. Then, by sequentially removing efficient DMUs on 

the hyperplane and calculating the efficiency score of the anti-ideal DMU to the new efficiency frontier, a criterion for 

ranking efficient DMUs will be established. A higher efficiency score indicates a better condition of the efficient unit. 

In this scenario, it is possible that there are multiple efficiency scores for DMUs placed on different hyperplane 

intersections. In such cases, the maximum obtained score for each efficient DMU will be utilized. This new method 

also incorporates all the advantages of the previous method, namely simplicity and robustness. 
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