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Abstract
In this article, an imperfect vendor–buyer inventory system with stochastic demand, process quality control and learning in 
production is investigated. It is assumed that there are learning in production and investment for process quality improvement 
at the vendor’s end, and lot-size dependent lead-time at the buyer’s end. The lead-time for the first batch and those for the rest 
of the batches are different. Under n-shipment policy, the annual expected total cost of the system is derived. An algorithm 
is suggested to derive the optimal values of the number of shipments, the lot-size, the percentage of defective produced per 
batch and the safety stock factor so as to minimize the annual expected total cost of the system. The solution procedure is 
illustrated through numerical examples. The benefit of investment for reducing the defect rate is shown numerically. It is 
also observed that learning in production has significant effect on the annual expected total cost of the integrated system.

Keywords Inventory · Vendor–buyer model · Lead time · Investment · Process quality · Learning

Introduction

The integrated vendor–buyer problem is inspired by the 
expanding focus on supply chain management, which has 
been proved to be an adequate means by which both the 
vendor and the buyer can be benefited simultaneously. In 
this context, a significant amount of literature can be found 
in Banerjee (1986), Goyal (1976, 1988), Ha and Kim (1997), 
Hill (1997, 1999), Pan and Yang (2002), Ouyang et  al. 
(2006), Giri and Bardhan (2015), etc. and the references 
therein. In the vendor–buyer literature, the market demand 
is generally assumed to be deterministic and the shortages 
are not allowed in the buyer’s inventory. For instance, Otake 
et al. (1999) investigated an inventory model with invest-
ment in setup operations under return on investment maxi-
mization. Wee et al. (2009) studied multi-objective joint 
replenishment inventory models for deteriorating items 
under fuzzy environment. Ghasemy et al. (2014a) developed 
an enhanced joint pricing and lot-sizing problem with logit 

demand function. Ghasemy et al. (2014b) also studied pric-
ing and lot-sizing decisions in the retail industry under fuzzy 
chance constraint approach. Using game theoretic approach, 
recently Noori-daryan et al. (2019) analyzed pricing, prom-
ised delivery lead time, supplier-selection, and ordering 
decisions of a multi-national supply chain under price and 
delivery lead time dependent demand.

Ben-Daya and Hariga (2004) were the first to extend an 
integrated vendor–buyer model with stochastic customer 
demand. Since then a lot of researchers have studied the 
integrated model with stochastic demand under various 
assumptions (Hsiao 2008b; Glock 2009, 2012). However, 
in most of these works, the production process is presumed 
to be perfect. Relaxing this perfect production assumption, 
Huang (2004) developed an optimal integrated inventory 
policy for defective items in a just-in-time manufacturing 
environment. Ouyang et al. (2006) also studied an integrated 
vendor–buyer inventory model for defective items. Hsiao 
(2008b) proved that an inventory system which is controlled 
by the reorder and shipping points is preferable compared 
to the system where only the reorder point acts as a con-
trol parameter. Glock (2009) developed a model with vari-
able lead-time by extending Ben-Daya and Hariga (2004)’s 
model with an increase in the batch shipments by a fixed 
factor. Glock (2012) further extended the previous (Q, r) 
model by studying the alternative methods for reducing the 
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lead-time. Taleizadeh and Noori-daryan (2016) developed 
pricing, inventory and production policies in a three-layer 
supply chain with rework process under a game theoretic 
approach. Taleizadeh et al. (2015) also studied pricing and 
ordering decisions in a three-layer supply chain with imper-
fect quality items under buyback of defective items. More 
studies on imperfect production process were contributed 
by Ben-Daya and Hariga (2000), Salameh and Jaber (2000), 
Ben-Daya and Hariga (2004), Lin (2012), Shu and Zhou 
(2013), to name a few. However, in these works, the qual-
ity of the production process was not taken to be a control 
parameter. But it is well established that making an invest-
ment in the production process, in terms of buying new 
equipment, regular machine maintenance and repair, worker 
training, etc. can help improving the production process 
quality (Porteus 1986). In an integrated scenario, since the 
production process is vendor-controlled, and the vendor has 
to pay warranty cost for defective items, it is beneficial for 
him/her to invest in order to reduce the number of defective 
items produced. For instance, Otake and Min (2001) and 
Li et al. (2008) studied inventory and investment in quality 
improvement under return on investment maximization.

In an integrated system with imperfect production pro-
cess, it is very likely that the buyer performs some sort of 
inspection activity before selling the products to the cus-
tomers. Neglecting this inspection/screening or assuming 
it to be non-negligible is not very practical. Keeping these 
issues in mind, Dey and Giri (2014) developed an integrated 
single-vendor single-buyer production inventory model with 
imperfect production process, finite screening time and ven-
dor investment to improve process quality. This model was 
extended by Mukherjee et al. (2019) to include controllable 
backorder rate by means of backorder price discount. How-
ever, in both the above mentioned papers, the lead-time is 
assumed to be a constant. But, in reality, the lead-time is, 
more often than not, variable. A significant amount of works 
on variable lead time is available in the literature. Hosseini 
et al. (2013) adopted a multiple objective approach for joint 
ordering and pricing policy for an inventory system with 
stochastic lead-time. Ben-Daya and Hariga (2004) illustrated 
the benefits of a lot-size dependent lead time on the total 
expected costs. Glock (2012) showed how reducing the lead-
time can affect the operational costs. With this view point, 
Mukherjee and Dey (2018) extended the model of Dey and 
Giri (2014) to include lot-size dependent lead-time. How-
ever, most of the papers mentioned above did not consider 
learning in production which is one of the most relevant 
issues of production-inventory systems in recent times.

Learning is an important human factor that has been 
proved to enhance the overall performance of a supply 
chain. In systems where workers are involved in repetitive 
type of production process, learning plays a very impor-
tant role. Wright (1936) was among the early researchers 

who described the learning process with the help of a power 
curve. According to Wright’s learning curve, per unit pro-
duction cost decreases by some fixed percentage when the 
production quantity doubles. Learning in production affects 
the optimal lot-sizes and dispatch time (Jaber and Boney 
1999). Elmaghraby (1990) and Jaber and Boney (1996) 
addressed the forgetting phenomenon during non-production 
period. Glock and Jaber (2013) developed a mathematical 
model for imperfect production process where production 
and reproduction processes both are subject to learning and 
forgetting. Giri and Glock (2017) considered a closed-loop 
supply chain where production and inspection processes 
are subject to learning and forgetting. Recently, Dey and 
Giri (2018) presented a new approach to deal with learn-
ing in inspection for a single-vendor single-buyer integrated 
imperfect inventory model. However, the combined effects 
of vendor’s investment in terms of quality control, lot-size 
dependent lead-time and learning in production on the 
optimal decisions of an integrated vendor–buyer inventory 
model remains unexplored.

Keeping this point in mind, in this paper, an attempt is 
made to extend Dey and Giri (2014) and Mukherjee and Dey 
(2018)’s models further by taking into consideration lot-size 
dependent lead-time at the buyer’s end and learning in pro-
duction at the vendor’s end. The safety stock factor is further 
assumed to be different for the first batch and the rest of the 
batches (Hsiao 2008a). The remainder of the paper is organ-
ized as follows. Notations and assumptions for developing 
the proposed model are given in the next section. Section 3 
is devoted to model development from buyer’s and vendor’s 
perspectives as well as using integrated approach. The solu-
tion procedure of the model is outlined in Sect. 4. In Sect. 5, 
the model is illustrated through numerical examples. The 
paper is concluded with some remarks in Sect. 6.

Notations and assumptions

Notations

The following notations are used to develop the proposed 
model. 

Q  Shipment size (decision variable)
n  Number of shipments (decision variable)
y  Percentage of defective items produced (decision 

variable)
k1  Safety stock factor for the first batch (decision variable)
r  Reorder point
y0  Original percentage of defective items produced
D  Expected demand rate for non-defective items(units/

year)
P  Production rate, p =

1

P
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A  Buyer’s ordering cost per order
F  Transportation cost per delivery
K  Vendor’s setup cost
L  Lead-time
hv  Vendor’s holding cost per item per year
hb1  Buyer’s holding cost for defective items per item per 

year
hb2  Vendor’s holding cost for non-defective items per item 

per year
s  Unit screening cost
x  Screening rate
w  Unit warranty cost for defective items
�  Buyer’s shortage cost per item per year
�  Fractional opportunity cost
�  Percentage decrease in defective items per dollar

increase in investment
c  Vendor’s production cost per unit per year
l  Learning exponent in the production process
k2  Safety stock factor for the jth batch; j = 2, 3,… , n

Assumptions

The proposed model is developed with the following 
assumptions:

• The supply chain consists of a single vendor and a single
buyer, and deals with a single product.

• Demand is stochastic and normally distributed with mean
D and standard deviation �.

• The buyer follows the classical (Q, r) continuous review
inventory policy.

• An order of nQ (non-defective) items is placed by the
buyer to the vendor. These items are then produced and
transferred to the buyer in n equal-sized shipments by the
vendor, n being a positive integer.

• Lead-time L is not a constant; it depends on the lot-size
Q as given below:

L = pQ + b , where b denotes a fixed delay due to
transportation, production time of other products sched-
uled during the lead-time on the same facility, etc. The
mean and variance for lead time demand are D

√
pQ + b

and �2
√
pQ + b , respectively.

• The re-order point r = expected demand during lead-time
+ safety stock (SS) i.e., r = D(pQ + b) + k�

√
pQ + b , 

where k is the safety stock factor.
• Shortages at the buyer’s inventory are allowed and com-

pletely backlogged.
• There is no overshooting of orders, i.e., there is no more

than a single order outstanding in any cycle.
• y0 (0 ≤ y0 ≤ 1) is the percentage of defective items pro-

duced in each batch of size Q.

• The vendor’s production rate of non-defective items is
greater than the mean demand rate i.e., P(1 − y0) > D.

• Upon the arrival of each batch, the buyer inspects all the
items. It is assumed that the screening process is non-
destructive and error-free. The screening rate x is fixed
and greater than the mean demand rate D.

• The vendor incurs a warranty cost for each defective item
produced.

• The vendor invests money to improve the production pro-
cess quality in terms of buying new equipment, improv-
ing machine maintenance and repair, worker training,
etc. We consider the following logarithmic investment
function I(y) (Porteus 1986):

 where � is the percentage decrease in y per dollar (or 
any other suitable currency) increase in investment and 
y0 is the original percentage of defective items produced 
prior to investment.

Model development

Buyer’s perspective

We assume that the vendor accepts an order of size nQ for 
non-defective items from the buyer. The vendor produces 
these nQ items all in one go so as to minimize the produc-
tion costs, and then n batches of size Q are delivered each 
at regular intervals of Q(1 − y0)∕D units of time. Thus each 
ordering cycle is of length Q(1 − y0)∕D and the complete 
production cycle is of length nQ(1 − y0)∕D.

When the inventory of non-defective items reaches the 
re-order level r, the buyer requests the vendor for the next 
shipment. The vendor’s delivery reaches the buyer after a 
lead time L (see Fig. 1).

We assume the lead-time L as L(Q) = pQ + b , where b 
denotes a fixed delay due to transportation, production time 
of other products scheduled during the lead-time on the same 
facility, etc. The fixed delay factor b can be decomposed into 
the waiting and set-up time Ts and the transportation time Tb 
(Hsiao 2008a). The production rate for non-defective items 
is assumed to be greater than the mean demand rate, and 
thus the vendor, having sufficient stock, can deliver the sec-
ond batch at time t2 = t1 +

Q

D
− Tb . Thus, the lead-time for 

the second batch is Tb . Similarly, the lead-time for the jth 
batch is Tb , for all j = 2, 3,… , n.

We assume that the demand during the lead time is nor-
mally distributed with mean DL(Q) and standard deviation 
�
√
L(Q) . In this case, the safety stock, S, is given by

I(y) =
1

�
ln

(
y0

y

)
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k1 being the safety factor for the first batch.
The  expec ted  shor t age  dur ing  t h i s  f i r s t 

b a t c h  i s  b(s,L(Q)) = �
√
pQ + b�(k1)  ,  w h e r e 

�(k1) = ∫ ∞

k
(z − k1)�(z)dz , �(z) being the standard normal 

density function.
For the jth batch, j = 2, 3,… , n , the demand during lead 

time is normally distributed with mean DTb and standard
deviation �

√
Tb and the safety stock, S, is given by

k2 being the safety factor for the jth batch, j = 2, 3,… , n.
The expected shortage during all other batches is given 

by b(sr, Tb) = �
√
Tb�(k2) , where �(k2) = ∫ ∞

k
(z − k2)�(z)dz

From Eqs. (1) and (2), k2 can be expressed in terms of k1 
as given below (Hsiao 2008a):

It is assumed that the safety factors k1 and k2 are related to 
the re-order point r. Since k2 is expressed in terms of k1 , we 
consider k1 as a decision variable instead of r.

The defective items which are discovered gradually in 
each batch are kept in hold separately and then returned 
to the vendor on the arrival of the next batch. The buyer, 
thus, has holding costs for defective items and non-defective 
items. The buyer’s average inventory level for non-defective 
items (including those defective items which have not yet 
been detected before the end of the screening time Q / x) is 
given by

The average inventory level for defective items is

(1)S = k1�
√
pQ + b

(2)S = k2�
√
Tb

(3)k2 = k1

√
pQ + b

Tb

(4)
nQ(1 − y)

D

�
k�

√
pQ + b +

Q(1 − y)

2
+

DQy

2x(1 − y)

�

Therefore, the buyer’s annual expected total cost including 
the ordering cost, shipment cost, holding cost, shortage cost 
and screening cost is given by

Now, if the buyer follows a deterministic demand, places his 
order only when the inventory level falls to zero and receives 
the order instantaneously then k1 = k2 = 0, L = 0,� = 0 . 
Also, if the buyer screens the items received as a single batch 
and rejects them as a single batch at the end of the screening 
process then we have hb1 = 0 . Under these assumptions, the 
above expression for the annual expected total cost for the 
buyer modifies to

which is the same expression as given in Huang (2004).

(5)nQ2y

[
1 − y

D
−

1

2x

]

(6)

ETCB(Q, k1, n) =
D(A + nF)

nQ(1 − y)
+ hb1

�
Qy −

DQy

2x(1 − y)

�

+ hb2

�
k1�

√
pQ + b +

Q(1 − y)

2
+

DQy

2x(1 − y)

�

+
�D�

Q(1 − y)
[
√
pQ + b�(k1) + (n − 1)Tb�(k2)]

+
sD

1 − y

(7)
ETCB(Q, n) =

D(A + nF)

nQ(1 − y)

+ hb2

[
Q(1 − y)

2
+

DQy

x(1 − y)

]
+

sD

1 − y

Fig. 1  Inventory of the buyer
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If the production process is assumed to be perfect, i.e., 
y = 0 , then the annual expected total cost for the buyer given 
in (6) reduces to

which is the same expression as given in Ben-Daya and 
Hariga (2004).

Vendor’s perspective

During the production process, the vendor produces Q items 
in the first instance and delivers those to the buyer. After that, 
the vendor delivers a quantity Q to the buyer every T =

Q(1−y)

D
 

units of time. This process continues till the vendor’s produc-
tion run is completed after nQ

P
 units of time (Fig. 2).

By assumption, the vendor’s production rate for non-defec-
tive items is greater than the mean demand rate. Therefore, 
the vendor’s inventory level gradually increases as long as 
the production continues and when the production stops, the 
inventory level starts decreasing according to the demand rate. 
Then the vendor’s average inventory holding cost (see Fig. 3 
for holding area) can be calculated as follows (Huang 2004):

The annual expected total cost incurred by the vendor is, 
thus, obtained as the sum of the setup cost, holding cost, war-
ranty cost for the defective items and production cost (Huang 
2004):

(8)

ETCB(Q, n, k) =
D(A + nF)

nQ

+ hb2

�
k�

√
pQ + b +

Q

2

�
+

�D�
√
pQ + b�(k)

Q

(9)EHCV = hv
Q

2

[
(n − 1) − (n − 2)

Dp

1 − y

]

If the production process is perfect, i.e., y = 0 , then (10) 
reduces to

which is the same expression as given in Ben-Daya and 
Hariga (2004).

The total cost given in Eq. (10) does not include any invest-
ment on part of the vendor to improve the process quality. We 
now assume that the vendor makes an investment to reduce the 
number of defective items produced. Assuming a logarithmic 
investment function of the form I(y) = 1

�
ln

(
y0

y

)
 , the expected 

annual total cost of the vendor can be obtained as

where � is the fractional opportunity cost. It may be noted 
here that this logarithmic function is convex in y.

(10)

ETCV(Q, n) =
BD

nQ(1 − y)

+ hv
Q

2

[
(n − 1) − (n − 2)

Dp

1 − y

]
+

wDy

1 − y
+

cD

P(1 − y)

(11)ETCV =
BD

nQ
+ hv

Q

2

[
n(1 − Dp) − 1 + 2Dp

]

(12)

ETCV(Q, y, n) =
BD

nQ(1 − y)

+ hv
Q

2

[
(n − 1) − (n − 2)

Dp

1 − y

]
+

wDy

1 − y

+
�

�
ln

(
y0

y

)

Fig. 2  Inventory of the vendor

Fig. 3  Vendor’s inventory holding area
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Learning in production

Here we assume that Qp = nQ units of items are produced in 
every cycle and the learning in the vendor’s production process 
follows the learning curve proposed by Wright (1936). In the 
following, we calculate the vendor’s average cost for the ith 
cycle, i = 1, 2, 3,….

The production time for cycle i is given by

where l denotes learning exponent.
From (13), the production quantity in the ith cycle can be 

written as

The average inventory of the product during the production 
process in the ith cycle is given by

After the production starts in the ith cycle, the time for the 
first dispatch is given by

(13)
Tpi = ∫

iQp

(i−1)Qp

T1x
−ldx

=
T1Q

1−l
p

[i1−l − (i − 1)1−l]

1 − l

(14)Q(t) =

[
(1 − l)t

T1

(
1

i1−l − (i − 1)(1−l)

)](1∕1−l)

(15)
ITpi = ∫

Tpi

0

Q(t)dt

=
T1[i

1−l − (i − 1)1−l](nQ)2−l

2 − l

Now, we calculate the vendor’s average inventory in the ith 
cycle as follows:

From Fig. 4, we have

Thus, the vendor’s average inventory in the production 
period of the ith cycle is determined from the three areas given 
above as

(16)

T1i = ∫
Q+(i−1)nQ

(i−1)nQ

T1x
−ldx

=
T1Q

1−l[(1 + (i − 1)n)1−l − ((i − 1)n)1−l]

1 − l

(17)
AreaABFE = nQT1i

=
nT1Q

2−l[(1 + (i − 1)n)1−l − ((i − 1)n)1−l]

1 − l

(18)

AreaBJHF =
n(n − 1)Q2(1 − y)

D

AreaACGE = nQTpi

=
T1(nQ)(nQ)

1−l[i1−l − (i − 1)1−l]

1 − l

=
T1(nQ)

2−l[i1−l − (i − 1)1−l]

1 − l

(19)

ITdi = AreaABFE + AreaBJHF + AreaACGE

ITdi(Q, n) =
nT1Q

2−l[(1 + (i − 1)n)1−l − ((i − 1)n)1−l]

1 − l

+
n(n − 1)Q2(1 − y)

D

−
T1(nQ)

2−l[i1−l − (i − 1)2−l]

1 − l

Fig. 4  Vendor’s total inventory 
in the ith cycle under learning 
in production
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Thus, the vendor’s average inventory in the ith cycle is

The vendor’s total cost in the ith cycle is

On simplification, (21) reduces to

(20)

Ivi = ITpi + ITdi −
n(n − 1)Q2(1 − y)

2D

=
T1[i

1−l − (i − 1)1−l](nQ)2−l

2 − l

+
nT1Q

2−l[(1 + (i − 1)n)1−l − (i − 1)n1−l]

1 − l

+
n(n − 1)Q2(1 − y)

D
−

n(n − 1)Q2(1 − y)

2D

−
T1(nQ)

2−l[i1−l − (i − 1)1−l]

1 − l

= T1(nQ)
2−li1−l − (i − 1)1−l

[
1

2 − l
−

1

1 − l

]

+
n(n − 1)Q2(1 − y)

D

+
nT1Q

2−l[(1 + (i − 1)n)1−l − (i − 1)n1−l]

1 − l

=
nT1Q

2−l[(1 + (i − 1)n)1−l − (i − 1)n1−l]

1 − l

+
n(n − 1)Q2(1 − y)

D

−
T1(nQ)

2−li1−l − (i − 1)1−l

(2 − l)(1 − l)

(21)

Cvi(Q, n) = Av + cTpi

+ hv

[
nT1Q

2−l[(1 + (i − 1)n)1−l − (i − 1)n1−l]

1 − l

+
n(n − 1)Q2(1 − y)

2D

−
T1(nQ)

2−li1−l − (i − 1)1−l

(2 − l)(1 − l)

]

(22)

Cvi(Q, n) = Av +
hvQ

2−l

P(1 − l)[
n[(1 + (i − 1)n)1−l − (i − 1)n1−l]

−
n2−l(i(1 − l) − (i − 1)1−l)

2 − l

]

+ hv
n(n − 1)Q2(1 − y)

2D

+
c(nQ)1−l[i1−l − (i − 1)1−l]

P(1 − l)

Integrated approach

The annual expected total cost of the integrated system is the 
sum of the vendor’s and the buyer’s annual expected total costs 
for the ith production cycle, which is given by

Now, assuming the safety factor to be the same for all 
batches, j = 1, 2,… , n , i.e., k1 = k2 = k , and letting the 
lead-time to be zero and no investment on the part of the 
vendor, we get,

Further, assuming that the buyer does not hold the defective 
items, but rejects them in a batch at the end of the screening 
period, we get hb1 = 0 . In this case, Eq. (24) reduces to

(23)

ETCi(Q, y, k1, n) =
D(A + B + nF)

nQ(1 − y)

+ hb1

�
Qy −

DQy

2x(1 − y)

�
+ hv

Q(n − 1)

2

+ hb2

�
k1�

√
pQ + b +

Q(1 − y)

2
+

DQy

2x(1 − y)

�

+
�D�

Q(1 − y)

[
√
pQ + b�(k1) + (n − 1)

√
Tb�(k2)]

den

+
(s + wy)D

1 − y

+
�

�
ln

�
y0

y

�
+

c(nQ)−lD[i1−l − (i − 1)1−l]

P(1 − y)(1 − l)

+
hvDQ

1−l

P(1 − y)(1 − l)

�
[1 + (i − 1)n]1−l − [(i − 1)n]1−l

−
n1−l(i1−l − (i − 1)1−l)

2 − l

�

(24)

ETCi =
D

nQ(1 − y)
[A + B + nF] +

(s + wy)D

1 − y

+
hvQ(n − 1)

2

+
hvDQ

1−l

P(1 − y)

[
(1 + (i − 1)n)1−l − ((i − 1)n)1−l

−
n1−l(i1−l − (i − 1)1−l)

2 − l

]

+
c(nQ)−lD[i1−l − (i − 1)1−l]

P(1 − y)(1 − l)

+ hb2

[
Q(1 − y)

2
+

DQy

2x(1 − y)

]

+ hb1

[
Qy −

DQy

2x(1 − y)

]
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which is the same expression as given in Khan et al. (2014).
Again, neglecting the learning in production and the cost of 

production [putting l = 0 and c = 0 in Eq. (23)], we get

Now, if the safety factor is assumed to be the same for all the 
batches, Eq. (26) reduces to

(25)

ETCi =
D

nQ(1 − y)
[A + B + nF] +

(s + wy)D

1 − y

+
hvQ(n − 1)

2

+
hvDQ

1−l

P(1 − y)

[
(1 + (i − 1)n)1−l − ((i − 1)n)1−l

−
n1−l(i1−l − (i − 1)1−l)

2 − l

]

+
c(nQ)−lD[i1−l − (i − 1)1−l]

P(1 − y)(1 − l)

+ hb2

[
Q(1 − y)

2
+

DQy

2x(1 − y)

]

(26)

ETC =
D

nQ(1 − y)
[A + B + nF] +

D(s + wy)

(1 − y)

+
hvQ(n − 1)

2

+
hvQD

P(1 − y)

�
1 −

n

2

�

+ hb1

�
Qy −

DQy

2x(1 − y)

�
+

�

�
ln

�
y0

y

�

+ hb2

�
DQy

2x(1 − y)
+

Q(1 − y)

2
+ k1�

√
pQ + b

�

+
�D�

Q(1 − y)

�√
pQ + b�(k1) + (n − 1)

√
Tb�(k2)

�

Also, assuming the lead time to be constant instead of a vari-
able quantity in the above equation, we get,

The cost function in Eq. (28) is the same as given by Dey 
and Giri (2014).

In the objective function given in Eq. (23), the control 
parameters are Q, y, k1 and n of which Q, y, k1 are positive real
numbers ( Q > 0, 0 ≤ y ≤ y0, k1 > 0 ) and n is a positive inte-
ger. It is not possible to show that the objective function is 
convex in all four decision variables. However, it can be veri-
fied numerically that, for given values of n, i (positive integer)
and y (0 ≤ y ≤ y0 ≤ 1) , the cost function ETCi is convex in Q
and k1 . One instance of 3D-graph of ETCi is shown in Fig. 5. 

(27)

ETC =
D

nQ(1 − y)
[A + B + nF] +

D(s + wy)

(1 − y)

+
hvQ

2

�
(n − 1) − (n − 2)

D

P(1 − y)

�
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�
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DQy

2x(1 − y)

�

+
�D�

Q(1 − y)

√
pQ + b�(k) +

�

�
ln

�
y0

y

�

+ hb2

�
DQy

2x(1 − y)
+

Q(1 − y)

2
+ k1�

√
pQ + b

�

(28)

ETC =
D

nQ(1 − y)
[A + B + nF] +

D(s + wy)

(1 − y)

+
hvQ

2

�
(n − 1) − (n − 2)

D

P(1 − y)

�

+ hb1

�
Qy −

DQy

2x(1 − y)

�
+

�D�

Q(1 − y)

√
L�(k) +

�

�
ln

�
y0

y

�

+ hb2

�
DQy

2x(1 − y)
+

Q(1 − y)

2
+ k�

√
L

�

Fig. 5  Convexity of ETC
i
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In the following section, we develop a solution procedure to 
derive the optimal values of Q, y, k1 and n such that the joint 
expected annual total cost ETCi is minimized.

Solution procedure

To develop a solution algorithm for the proposed model, we 
assume that for fixed values of i, Q, k1 and y, ETCi is convex 
with respect to real n. Further, we assume that, for fixed values
of n, i and y (0 ≤ y ≤ y0 ≤ 1) , ETCi is convex in k1 and Q and
for fixed values of n, i, Q, k1 , the expected cost function ETCi 
is convex in y.

If we consider the first production cycle ( i = 1 ), and there is 
no learning in production ( l = 0 ), then considering the safety 
factor to be equal for all batches ( k1 = k2 = k ), ETCi can be 
shown to be convex in n(real), k and Q as given below:

where G(n) = A+B+nF

n
.

It is to be noted here that the sum of the first and third 
terms in Eq. (31) is much greater than the second term. 
Hence, the second derivative in (31) is effectively positive.

Hence, from Eqs. (30) and (31), ETCi is seen to be con-
vex in k and Q for fixed values of n and y (0 ≤ y ≤ y0 ≤ 1) . 
Although y is bounded, it is not possible to prove conclu-
sively that ETCi is convex in y. So, in order to arrive at an 
optimal solution, the procedure suggested by Dey and Giri 
(2014) is followed here:

For fixed value of n, the first derivative of ETCi w.r.t. k is 
set to zero. That is,

(29)
𝜕2ETCi

𝜕n2
=

2D(A + K)

n3Q(1 − y)
> 0

(30)

𝜕2ETCi

𝜕k2
=

D
√
pQ + b𝜎𝜋𝜙(k)

Q(1 − y)
> 0

𝜕2ETCi

𝜕Q2
=

2DG(n)

Q3(1 − y)
−

hb2k𝜎p
2

4(pQ + b)
3

2

+
𝜋D𝜎𝜓(k)

(1 − y)

�
2
√
pQ + b

Q3

−
p

Q2
√
pQ + b

−
p2

4Q(pQ + b)
3

2

�
> 0

(31)

=
2DG(n)

Q3(1 − y)
−

hb2k�p
2

4(pQ + b)
3

2

+
8b2 + 12pQb + 3p2Q2

4Q3(pQ + b)(3∕2)

(32)
�ETCi

�k
= hb2 +

�D

Q(1 − y)
(F(k) − 1) = 0

where F(⋅) is the cumulative distribution function.
This gives

where F(⋅) = 1 − F(⋅).
Next, taking the first derivatives of ETC with respect to 

Q and y and setting those equal to zero, we get

and

respectively. From Eqs. (29)–(35), we see that the control 
parameters Q, y, k1, and n are dependent. So, we follow an 
iterative procedure and modify the algorithm proposed by 
Dey and Giri (2014) to obtain the optimal solution of the 
present problem.

Algorithm

Step 1:  Set i = 1 and ETC∗ = ∞.
Step 2:  Set n = 1 and ETC∗

i
= ∞.

Step 3:  Set y = y0 , k1 = 0, k2 = 0 , compute �(k1) and 
�(k2) and then compute Q = Q0 using the values
of y0, k1, k2,�(k) in equation (34).

(33)F(k) =
hb2Q(1 − y)

�D

(34)

�ETCi

�Q
= −

DG(n)

Q2(1 − y)
+ yhb1

�
1 −

D

2x(1 − y)

�

+ hb2

�
1 − y

2
+

Dy

2x(1 − y)

�

+
hb2k�p

2
√
pQ + b

+
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2

�
−1 + n

�
1 −

Dp

1 − y

�
+

2Dp

1 − y

�

−
�D��(k)

(1 − y)�
−

√
pQ + b

Q2
+

p

2Q
√
pQ + b

�
= 0

(35)

�ETCi
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1 − y
+

D(s + wy)

(1 − y)2
−

�

y�
+
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Q(1 − y)2
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D

2x(1 − y)
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−
DQyhb1
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�
−
Q

2
+

DQ
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+

DQy

(1 − y)2

�

+
Qhv

2

�
2Dp

(1 − y)2
−

Dnp

(1 − y)2

�

−
�D�

√
pQ + b�(k)
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Step 4:  Compute k1 from (33) using Q0, y and 
�(k1) = ∫ ∞

k1
(z − k1)�(z)dz.

Step 5:  Compute k2 using k1 and the relation k
2
= k

1

√
pQ+b

Tb
.

Step 6:  Compute y from (35) using the values of k and Q0 
obtained in the previous step. If y ≥ y0 , then we set
y = y0.

Step 7:  Compute Q from (34) using the updated val-
ues of k and y. If |Q − Q0| ≤ � , then compute
ETCi(Q, k1, y, n) and go to Step 8. Else, set Q0 = Q 
and go to Step 4.

Step 8:  If ETC∗
i
≥ ETCi ,  then  set  the followings

ETC∗
i
= ETCi,Q

∗ = Q, y∗ = y, k∗
1
= k1, n = n + 1

and go to Step 3. Else, put n∗ = n − 1 and stop. The 
corresponding values of the control parameters for 
n∗ = n − 1 give the optimal solution for the fixed 
value of i.

Step 9:  If |ETC∗ − ETC∗
i
| > 𝜖 , set i = i + 1 and go to Step 

2. Else, stop.

 It is to be noted here that we only get a local optimum by 
adopting the solution procedure mentioned above. Since it 
is difficult to prove analytically that the objective function 
ETCi is convex in all control parameters, we cannot claim 
that the solution obtained is a global optimum.

Now, we take the partial derivatives of ETC with respect 
to w, �, y0 and get

(36)
�ETCi

�w
=

Dy

1 − y

(37)�ETCi

��
=

−�log
(

y0

y

)

�2

From Eq. (36), we can infer that the annual expected total 
cost ETCi increases as the warranty cost increases. ETC also 
increases with an increase in the (original) percentage of 
defective items, i.e., with an increase in y0 , as evident from 
(38). Equation (37) shows that ETCi decreases as � increases, 
i.e., there is a reduction in the number of defective items
with each dollar increase in investment. Thus, we can say
that our effective total cost may decrease if we improve the
process quality. To further showcase the effects of the pro-
cess quality, the investment option and other model-param-
eters on the optimal decisions, numerical studies are carried
out in the following section.

Numerical results and discussion

For numerical study, we consider the following data set:
D = 1000 ,  P = 3200 ,  A = 50 ,  F = 35 ,  K = 400 , 

L = 10∕365 ,  hv = 4  ,  hb1 = 6  ,  hb2 = 10  ,  s = 0.25 , 
x = 175,200 , w = 20 , � = 100 , b = 0.01 , Tb = 0.005 , 
c = 100,000 , l = 0.32 , � = 5 , y = 0.22 , � = 0.2 , � = 0.0002 , 
in appropriate units.

For fixed values of Q, k1 and n, we find that the annual
expected cost function ETCi is convex in y (0 ≤ y ≤ y0) , see
Fig. 5a. For fixed values of Q, k1 and y (0 ≤ y ≤ y0) , we find
that the annual expected cost function ETCi is convex in n, 
see Fig. 5b. Further, the convexity of ETCi for given values 
of n and y is shown with the help of a 3D-graph of ETCi in 
Fig. 6. From Figs. (5) and (6), we can see that ETCi is convex 
w.r.t. y, n(real), Q and k1 . Applying the algorithm developed
in the previous section, the optimal solution of the model is
obtained for consecutive 10 cycles. The results are shown
in Table 1.

From Table 1, we see that, as the learning cycle increases, 
the expected total cost of the system decreases and also the 

(38)
�ETCi

�y0
=

�

y0�

Fig. 6  Convexity of ETC
i
 with respect to Q and k

1

Table 1  Optimal results

i n
∗ y

∗
I(y∗) ETC

∗
i

1 6 0.018 2484.16 37,337.00
2 8 0.038 1757.05 9019.69
3 7 0.038 1742.53 8503.22
4 7 0.039 1733.55 8206.35
5 7 0.039 1727.38 8004.13
6 7 0.039 1722.74 7853.41
7 7 0.039 1719.07 7734.70
8 6 0.039 1716.89 7637.37
9 6 0.039 1714.31 7554.80
10 6 0.040 1712.09 7483.97
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Table 2  Sensitivity with respect 
to D 

D i n
∗ y

∗ ETC
∗
i

I(y∗) Difference

800 1 6 0.023 30,615.40 2273.54 –
2 8 0.046 7924.98 1562.17 22,690.42
3 7 0.047 7487.52 1547.29 437.46
4 7 0.047 7237.43 1538.14 250.09
5 7 0.047 7067.15 1531.84 170.28
6 7 0.048 6940.29 1527.12 126.86
7 6 0.048 6839.45 1524.24 100.84
8 6 0.048 6756.78 1521.13 82.67
9 6 0.048 6687.32 1518.50 69.46

10 6 0.048 6627.75 1516.24 59.57
1000 1 6 0.018 37,337.00 2484.16 –

2 8 0.038 9019.69 1757.05 28,317.31
3 7 0.038 8503.22 1742.53 516.47
4 7 0.039 8206.35 1733.55 296.87
5 7 0.039 8004.13 1727.38 202.22
6 7 0.039 7853.41 1722.74 150.72
7 7 0.039 7734.70 1719.07 118.71
8 6 0.039 7637.37 1716.89 97.33
9 6 0.039 7554.80 1714.31 82.57

10 6 0.040 7483.97 1712.09 70.83
1200 1 7 0.015 43,981.70 2656.75 –

2 8 0.032 10,029.90 1918.89 33,951.8
3 8 0.033 9437.35 1903.89 592.55
4 7 0.033 9096.53 1895.90 340.82
5 7 0.033 8863.70 1889.84 232.83
6 7 0.033 8690.12 1885.29 173.58
7 7 0.033 8553.38 1881.68 136.74
8 7 0.034 8441.55 1878.72 111.83
9 7 0.034 8347.58 1876.22 93.97

10 6 0.034 8266.33 1874.85 81.25

Table 3  Effect of w on the optimal solution

w i n
∗ y

∗ ETC
∗ Difference

20 1 6 0.018 37,337.00 –
2 8 0.038 9019.69 28,317.31
3 7 0.038 8503.22 516.47
4 7 0.039 8206.35 296.87
5 7 0.039 8154.91 202.22

24 1 6 0.017 37,409.90 –
2 8 0.032 9166.22 28,243.68
3 7 0.033 8651.82 514.40
4 7 0.033 8356.24 295.58
5 7 0.033 8154.91 201.33

30 1 6 0.015 37,509.10 –
2 7 0.027 9352.16 28,156.94
3 7 0.027 8839.99 512.17
4 7 0.027 8545.80 294.19
5 7 0.028 8345.42 200.38

Table 4  Effect of y
0
 on the optimal solution

y
0

i n
∗ y

∗ ETC
∗

I(y ∗)

0.05 1 6 0.018 35,856.20 1002.55
2 8 0.038 7538.09 275.443
3 7 0.038 7021.62 260.921
4 7 0.039 6724.75 251.947
5 7 0.039 6522.52 245.77

0.10 1 6 0.018 36,549.30 1695.70
2 8 0.038 8231.23 968.59
3 7 0.038 7714.77 954.068
4 7 0.038 7417.90 945.094
5 7 0.039 7215.67 938.917

0.15 1 6 0.018 36,954.80 2101.16
2 7 0.038 8636.70 1374.05
3 7 0.038 8120.23 1359.53
4 7 0.039 7823.36 1350.56
5 7 0.039 7621.13 1344.38
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investment made to improve the production process quality 
also decreases.

We now examine the sensitivity of the optimal results 
with respect to some important parameters of the model. 

Table 2 shows the effects of demand on the optimal results. 
For each value of D, we see that the expected total cost and 
the investment required to improve the production process 
quality of the system decrease as the number of cycles 
increases. It is further seen that an increased demand incurs 
a greater investment in terms of process quality control. 
Also, we can see that the smaller the value of D, the faster 
the learning curve becomes plateau.

Table 3 shows the effects of the warranty cost on the opti-
mal result. We see that the percentage of defective items 
decreases with the increase in the amount of warranty. 
Table 4 shows that, with an increase in the original percent-
age of defective items present, y also increases. Also, with an 
increase in y0 , the investment needed to improve the produc-
tion process quality increases.

Table 5 shows that, as the production cost of the sys-
tem decreases, the expected total cost of the system also 
decreases. Also it is seen that, a decrease in the value of c 
(vendor’s unit production cost) results in a faster plateauing 
of the learning curve. From Table 6, we see that the expected 
total cost and the investment required to improve the pro-
duction process quality decrease as the learning exponent l 
increases. It is also seen that the average Q increases with l. 
All trends found in the results are intuitively correct and are 
similar to trends obtained in the existing literature.    

Table 5  Effect of changes in the production cost on the optimal solu-
tion

c i n
∗ ETC

∗
Q ∗ Difference

100,000 1 6 34,939.90 94.52 –
2 8 6621.80 104.975 28,318.1
3 7 6105.33 110.414 516.47
4 7 5808.46 106.938 299.87
5 7 5606.23 104.6 202.23

50,000 1 6 18,969.5 94.9238 –
2 6 4890.34 109.397 14,079.16
3 6 4613.46 105.858 276.88
4 6 4456.57 103.877 156.89
5 6 4350.12 102.545 106.45

25,000 1 6 10,925.90 95.28 –
2 5 3970.39 112.938 6955.51
3 5 3826.83 110.867 143.56
4 5 3745.89 109.704 80.94
5 5 3691.12 108.92 54.77

Table 6  Effect of learning rate 
on the optimal solution

l i n
∗ y

∗ ETC
∗

Q
∗ Average Q

0.862 (55%) 1 6 0.018 37,337.00 94.52
2 5 0.042 5538.94 103.43
3 5 0.042 5499.07 102.10 100.61
4 5 0.042 5481.51 101.50
5 5 0.042 5471.43 101.16
6 5 0.042 5464.83 100.95

0.737 (60%) 1 6 0.018 37,337.00 94.52
2 5 0.042 5675.51 106.85
3 5 0.042 5597.07 104.58
4 5 0.042 5560.29 103.52 102.36
5 5 0.042 5538.31 102.89
6 5 0.042 5523.47 102.46
7 5 0.042 5512.69 102.15
8 5 0.042 5504.45 101.91

0.32 (80%) 1 6 0.018 37,337.00 94.52
2 8 0.038 9091.69 104.98
3 7 0.038 8503.22 110.41
4 7 0.039 8206.35 106.94
5 7 0.039 8004.13 104.60 106.20
6 7 0.039 7853.41 102.87
7 7 0.039 7734.70 101.53
8 6 0.039 7637.37 113.07
9 6 0.040 7554.80 112.03

10 6 0.040 7483.97 111.13
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Concluding remarks

This paper presents a single-vendor single-buyer integrated 
imperfect production-inventory model with learning in pro-
duction and investment for process quality improvement. 
The lead-time is assumed to be lot-size dependent, and the 
safety stock factor is assumed to be different for the first 
batch and the rest of the batches. The annual expected total 
cost of the integrated system is derived and a simple iterative 
procedure is suggested to obtain the optimal values of the 
decision variables so as to minimize this cost. Numerical 
studies show that, as the cumulative number of production 
cycles increases, the expected annual total cost incurred 
by the integrated system decreases. It is also seen that the 
expected annual total cost and the investment required to 
improve the production process quality decrease, as the 
value of learning exponent increases. It is further observed 
that an increased demand rate requires an increased invest-
ment to minimize the expected annual cost incurred. There 
are ample scopes of future research based on the current 
work. The model studied here can be extended in terms of 
investment for controllable lead-time. Inspection errors can 
be introduced into the model as a possible extension. The 
proposed model can also be studied to include variable ship-
ment size or multiple buyers.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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