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Abstract
Flexible manufacturing system (FMS) readily addresses the dynamic needs of the customers in terms of variety and quality.

At present, there is a need to produce a wide range of quality products in limited time span. On-time delivery of customers’

orders is critical in make-to-order (MTO) manufacturing systems. The completion time of the orders depends on several

factors including arrival rate, variability, and batch size, to name a few. Among those, batch size is a significant construct

for effective scheduling of an FMS, as it directly affects completion time. On the other hand, constant batch size makes

MTO less responsive to customers’ demands. In this paper, an FMS scheduling problem with n jobs and m machines is

studied to minimize lateness in meeting due dates, with focus on the impact of batch size. The effect of batch size on

completion time of the orders is investigated under following strategies: (1) constant batch size, (2) minimum part set, and

(3) optimal batch size. A mathematical model is developed to optimize batch size considering completion time, lateness

penalties and setup times. Scheduling of an FMS is not only a combinatorial optimization problem but also NP-hard

problem. Suitable solutions of such problems through exact methods are difficult. Hence, a meta-heuristic Genetic algo-

rithm is used to optimize scheduling of the FMS.

Keywords Flexible manufacturing system (FMS) � Scheduling optimization � Batch size, due dates � Completion time �
Genetic algorithm (GA)

Introduction

An FMS is a highly automated production system con-

sisting of a group of computer numerical control machine

tools, linked by material handling system and controlled by

a distributed control system. An FMS can simultaneously

process medium variety and medium size volumes of

products (Browne et al. 1984). An FMS is a sophisticated

production system to respond dynamic variations of con-

temporary market including lead time reduction, flexibility

to respond market variations and higher productivity

(Atmani and Lashkari 1998). The major problems that an

FMS has to face include designing, planning, scheduling

and controlling. Among these, scheduling problem is a

major challenge (Stecke 1985). An FMS’s scheduling dif-

fers from a conventional job shop scheduling due to routing

flexibility of parts (Jain and Elmaraghy 1997).

Scheduling is the assignment of resources over time to

perform tasks. In conventional scheduling system, only one

resource is considered, which processes the parts. An FMS

scheduling differs from conventional job shop scheduling.

The complexity of FMS scheduling is due to the flexibility

of an FMS in terms of machine, product, operation and

routing (Browne et al. 1984). Scheduling of an FMS is

effected by several factors including orders arrivals, due

dates and batch size (Liu and MacCarthy 1996). The pro-

duction management has to set policies whether to handle

periodic or continuous orders of the customers. Meeting

customers’ due dates play key role in make to order system

and the FMSs are mostly suited for MTO system. Due

dates are effected by various factors including arrival rate,

& Muhammad Shafiq

dr.shafiq@uettaxila.edu.pk; shafiqaatir1@gmail.com

Muhammad Umair Akhtar

rana.umair977@gmail.com

Muhammad Huzaifa Raza

huzaifaraza4@gmail.com

1 Department of Industrial Engineering, University of

Engineering and Technology, Taxila, Pakistan

123

Journal of Industrial Engineering International (2020) 16:135–146 
https://doi.org/10.1007/s40092-018-0278-2

(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-018-0278-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40092-018-0278-2&amp;domain=pdf
https://doi.org/10.1007/s40092-018-0278-2


variability and batch size. Among these factors, batch size

is significant factor for effective scheduling of an FMS as it

directly affects due dates. In addition, constant batch size

makes MTO less responsive to customers’ demands

(Beemsterboer et al. 2017).

Extensive literature has been studied to address

scheduling of an FMS. The scheduling of an FMS is NP-

hard problems, and is solved by heuristics to find near

optimal solution (Baker 1974). Close conformance to due

dates is accomplished by minimizing mean and maximum

tardiness. In MTO system, minimization of tardiness is

significant. Nidhiry and Saravanan (2014) addressed FMS

scheduling problem to minimize idle time of the machines

and total penalty cost. Sixteen computer numeric-control

machine tools were used to process eighty different parts in

an FMS. The results of the proposed heuristic were com-

pared with cuckoo search and particle swarm optimization

(PSO). The results depicted that the proposed approach

outperformed cuckoo search and PSO.

Keung et al. (2003) proposed intelligent hierarchical

control technique for an FMS. The paper aimed to optimize

machine utilization as well as to balance capacity of tool

magazine. The proposed model was assessed based on two

benchmarks: earliness and tardiness penalty costs. Jerald

et al. (2005) determined optimal Scheduling of three FMS

with eight, fifteen and sixteen machines. The objective was

to optimize idleness of the machine and penalty costs.

Saravanan and Haq (2008) applied scatter-search approach

to optimize FMS scheduling, considering multiple objec-

tives, including minimization of machine idle time and

total penalty costs in case of exceeding the due dates.

An important performance measure to determine uti-

lization of an FMS is in optimizing makespan and com-

pletion time. Chan et al. (2005) addressed an FMS problem

in two different situations. In first case, only three machi-

nes were under consideration, whereas in second scenario

thirty-three machines were accommodated. The objective

was to optimize makespan. Reddy and Rao (2006)

addressed scheduling of machines as well as Automated

Guided Vehicles (AGVs) simultaneously in an FMS to

optimize makespan and mean flow time. The proposed

approach was practiced for an FMS having six machines

with two guided vehicles. The results depicted that the

presented algorithm has diverse solutions. Kim et al.

(2007) solved scheduling problems in an FMS with the

objective to optimize makespan in an FMS having ten

machines. The results obtained were compared with other

techniques and it was found that the proposed algorithm

outperformed in terms of quality of solution and conver-

gence speed. Multi-mode Resource Constrained Project

Scheduling Problem was solved using hybrid genetic

algorithm. Feasible schedules were based on the minimum

project completion time (Lova et al. 2009).

Udhayakumar and Kumanan (2010) performed multi-

objective scheduling of tasks of AGVs using ant colony

optimization (ACO). The objective was to maximize AGVs

utilization which has also been validated on several prob-

lems. Machines and AGVs scheduling in flexible manu-

facturing system was also addressed by Chaudhry et al.

(2011) using genetic algorithm spreadsheets to minimize

total completion time. Zhang et al. (2012) proposed a

model for flexible job shop scheduling considering trans-

portation constraints and bounded processing time to

minimize makespan and storage. Different types of prob-

lems were tested including sequencing as well as bounded

processing times. The proposed model outperformed said

types of scheduling problems. Raj et al. (2014) presented

combined machines and tools scheduling for multi-ma-

chine in an FMS to achieve best optimal sequences with the

aim to minimize makespan. A meta-heuristic GA was

developed to minimize makespan of the scheduling prob-

lem. The parameters of the GA were determined by

Taguchi orthogonal array. Analysis of variance was per-

formed to examine significant factors affecting makespan

(Candan and Yazgan 2015).

In MTO system, batch size plays a significant role for

effective scheduling of an FMS due to its direct effect on

completion time. Furthermore, constant batch size makes

MTO less responsive to customers’ demands. A few

researchers have addressed batch size problem in an FMS

scheduling. Machine utilization of a flexible manufacturing

cell was improved using hierarchic approach. In first stage,

batches of parts were determined. In second stage, batches

were sequenced and scheduled. A fuzzy-based approach

was proposed to solve machine loading problem in an

FMS. The sequence of jobs was determined by evaluating

the contribution of each job in terms of batch size and

operation processing time (Vidyarthi and Tiwari 2001).

Cheng et al. (2012) developed a mixed integer linear pro-

gramming model to address scheduling problem of parallel

batch processing of jobs to minimize makespan and com-

pletion time using polynomial time algorithm. Geng and

Yuan (2018) investigated the unbounded parallel batching

machine to minimize makespan and completion time using

pareto optimization. Matin et al. (2017) proposed PSO to

optimize batch size in flow shop to minimize makespan and

completion time. Different batch size compositions were

used on machines and an optimal batch size of all jobs on

each machine was obtained. Ying and Lin (2018) addressed

hybrid flow shop scheduling problem to minimize make-

span using self-tuning iterated greedy algorithm.

Scheduling of an FMS is NP-hard problem and it is

more complex as compared to classical job shop schedul-

ing problems. Different heuristic-based approaches

including cuckoo search, PSO, GA and artificial neural

network have been used in an FMS scheduling (Sankar
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et al. 2003; Jerald et al. 2005; Burnwal and Deb 2013;

Sadeghian and Sadeghian 2016). A hybrid multi-objective

GA was presented to optimize makespan, AGV travel time

and penalty cost due to jobs lateness. The proposed algo-

rithm proved feasibility and effectiveness for all the

objectives (Umar et al. 2015). A non-dominated sorting

biogeography-based approach to solve multi-loading–un-

loading problem in an FMS was addressed to minimize

makespan and total earliness (Rifai et al. 2018).

The main research gap identified in the literature is the

lack of considering the effect of batch size on due dates and

makespan in MTO system in an FMS scheduling. In this

paper, an FMS scheduling problem is addressed to mini-

mize lateness in meeting due dates. A mathematical model

is developed for optimizing the batch size. GA is used to

optimize lateness of each order and penalty cost. Then,

multi-objective Pareto optimization is performed for three

batch size strategies to evaluate its effect on completion

time. These strategies are then compared with each other to

investigate completion time.

The rest of the paper is organized as follows. Section 2

discusses mathematical model description. Section 3 gives

insight of technique used and Sect. 4 presents results and

discussion. In Sect. 5, conclusions and future work rec-

ommendations are presented.

Description of model

In this study, an FMS scheduling problem is studied to

minimize penalty costs incurred due to lateness, which

helps in minimizing completion time of jobs. The

scheduling problem of five parts and six machines in an

FMS having four flexible machining cells (FMC) is dis-

cussed. Each part has predefined sequence of operations

and corresponding processing time. The structure of our

FMS is depicted in Fig. 1.

The FMS contains one to two CNC machines, each sup-

ported with tool magazines. ATC is capable of changing tool

according to the part. Buffer storage is used to store parts

temporarily to mitigate the effect of starving and blockage.

Part-carrying conveyors and shuttle are used to transfer parts

between machine and AS/RS. Automated storage and

retrieval systems are used to store parts and to deliver/re-

trieve materials to/from the storage racks, respectively. All

FMCs are linked by AGVs which are responsible for:

intercellular movements, finish jobs movements to unload-

ing station and work in process to AS/RS. Four flexible

manufacturing cells and six machines are considered. Each

cell comprises one to two machines and is capable to process

five parts A, B, C, D and E. The sequence as well as pro-

cessing time of each part is different. The distribution of the

machines at each FMC is shown in Table 1.

Assumptions

The following assumptions have been set for our proposed

model:

• There are five different parts to be processed ensuring

the presence of multi-tools in tool magazine.

• Every part has a predefined processing sequence

incorporating batch size, due dates and penalty costs

in case of not meeting due dates. The processing time

of every part is known and deterministic.

• Every machine can perform only one operation at a

time.

• The sequence of operations for all parts is pre-

determined.

• The sequence-dependent setup times are considered.

Notations

In this paper, FMS scheduling is addressed to minimize

penalty costs incurred due to lateness and an optimal batch

size is achieved to minimize completion time. Genetic

algorithm is used to solve the complex scheduling problem.

The notations used in the development of mathematical

model are listed in Table 2.

Mathematical model

This objective function minimizes total lateness and total

penalty cost incurred in case of exceeding due dates of each

order received from customers. Total penalty cost for all

orders is calculated using Eq. (1). Second objective mini-

mizes total completion time of all jobs in an order o and it

is given in Eq. (2). Third objective function minimizes

sequence-dependent setup times and it is given in Eq. (3).

Z1 ¼ ðMinÞ
Xo

o¼1

LTo � PCo; 8o ð1Þ

Z2 ¼
XO

o¼1

XI

i¼1

Xik � CTi

!
; for k ¼ 1; 2; 3; . . .;K; 8o

ð2Þ

Z3 ¼ Minð Þ
XM

m¼1

XI

i¼1

XI

j¼1

Xmij � STmij; 8m ð3Þ

Subject to

XM

m¼1

Xim ¼ 1; 8i ð4Þ

LTo ¼ Max 0;CTo � DDoð Þ; 8o ð5Þ

Journal of Industrial Engineering International (2020) 16:135–146 137

123



qi � ni ¼ di for i ¼ 1; 2; 3; . . .; I ð6Þ

N ¼
XI

i¼1

ni ð7Þ

STi �
XO

o¼1

RLo � Xio; 8o ð8Þ

STiþ1 � STi þ
XO

o¼1

RLo � Xio; i ¼ 1; 2; . . .; I � 1 ð9Þ

CTi ¼ STi þ
XO

o¼1

DRo � Xio; 8i ð10Þ

Equation (4) shows that one part i cannot be assigned to

more than one machine. In Eq. (5), CTo shows completion

time of order o and DDo is the corresponding due dates,

LTo guarantees that lateness is a positive value. Equa-

tion (6) shows that demand of each part i must be satisfied.

Total number of batches can be computed by Eq. (7).

Equation (8) shows that starting time of an order o in

sequence of part i must be synchronized with order release

date. Equation (9) ensures that order production in

sequence i ? 1 can only be started once order in produc-

tion sequence i is completed. Equation (10) represents

completion time of order of part i.

AGV AS/RS

ATCATC

S S

S S

ATCATC

Output

Fig. 1 Structure of an FMS.

FMC Flexible manufacturing

cell, ATC Automatic tool

changer, AGV Automated

guided vehicles, AS/RS

Automated storage and retrieval

system, S Shuttle

Table 1 Machine distribution in each FMC

Flexible manufacturing cell (FMC) Machines

FMC-1 1

FMC-2 3.6

FMC-3 5

FMC-4 2.4

Table 2 Model’s notations

Notations

k Position of batch in sequence k = 1, 2, 3, …, K

i, j Parts i, j 2 {1, 2, 3, …, I}

m Machine number m = 1, 2, 3, …, M

o Order number o = 1, 2, …O

qi Batch size of part i

ni Number of batches of part i

di Demand of part i

N Total number of batches

PCo Penalty cost of an order o

LTo Lateness of an order o

CTi Completion time of part i

STi Starting assembly time of an order in a sequence of part i

RLo Release of an order o

CTo Completion time of an order o

DRo Estimated duration of an order o

DDo Due date of an order o

MPS Minimum part set
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Genetic algorithm

Genetic algorithm introduced by Holland was inspired by

the concept of natural and biological evolution (Si-

vasankaran and Shahabudeen 2014). GA has proven a

powerful tool for finding the near optimal solution of

combinatorial problems that cannot be handled by exact

methods due to their complexity (Zandieh et al. 2010). To

apply genetic algorithm to solve real life optimization

problems, two basic issues must be addressed: (1) Encod-

ing the solution in the form of chromosomes and (2) fitness

function evaluation (Hsu et al. 2005). In GA, the chro-

mosomes encode candidate to find optimum results. Each

result is represented by binary numbers as a string of 0 and

1 but other types of encodings are also possible in the GA

(Chan et al. 2006). Brief description of the GA imple-

mentation procedure is presented in the following section.

GA implementation

Chromosome representation

A chromosome consists of a set of locations known as

genes that assume discrete values pertaining to the prob-

lem’s solution. Each gene represents a job number. Initial

job sequence is generated randomly. Each chromosome

represents a feasible solution. Chromosome representation

is shown in Fig. 2.

Initial population

In this stage, an initial population is created consisting of N

chromosome as shown in Fig. 3. Each chromosome rep-

resents a potential solution. The greater the size of popu-

lation, the more chances are to get better solution.

Fitness function evaluation

Each chromosome is evaluated against fitness function.

Fitness function minimizes maximum lateness and com-

pletion time. Fitness function of each chromosome is cal-

culated to choose best parents among all other

chromosomes.

Crossover and mutation

Chromosomes from the population are then selected for

reproduction. For crossover, the population is paired into

even number by dividing the population by two. Chromo-

somes having the best fitness function value have greater

probability to be selected for reproduction. Chromosomes

of worst fitness value are discarded. Crossover method

adopted in this paper is elaborated with an example.

Demand of each part in an order is A = 15, B = 10,

C = 10, D = 10, E = 15 and batch size is 5. The number of

batches of each part is given as A = 3, B = 2, C = 2,

D = 2, E = 3. The base sequence is AAABBCCDDEEE.

For crossover, each pair has two sequences of parts and a

random position is selected for partition as shown in Fig. 4.

Offspring 1 is produced by taking left portion of parent 1

as it and for right portion, parts from parent 2 are selected

in such a way that feasibility of each part batches does not

violate. Similarly, offspring 2 is produced. Mutation pro-

cess is used to increase diversity of solution and it helps to

Job Sequence A E C B D

Fig. 2 Chromosome Representation

Chromosome 1 A E C B D

Chromosome 2 C E A D B

Chromosome 3 E A D B C

... ... ... ... ... ...

Chromosome N B D A C E

Fig. 3 Initial Population of N

chromosomes

Parent 1 AABCA EEEBDDC
Parent 2 BBAED EECACDA

Offspring 1 AABCA EECDBDE
Offspring 1 BBAED EEDCAAC

Fig. 4 Representation of crossover operator

A A B C A E E C D B D E

A A B C D E E C A B D E

Fig. 5 Representation of mutation operator
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explore search space for global optimization. Mutation rate

used is 20%, which means that 0.2 of total genes in the

population will be mutated. Mutation of offspring 1 is

shown in Fig. 5. The procedure of genetic algorithm is

shown in Fig. 6.

Results and discussion

To apply GA, a random schedule is generated with dif-

ferent processing time of parts on machines as shown in

Table 3. Each part has a predefined sequence of operations

to be followed. A sequence-dependent setup is required

each time a part changes in an FMS. The sequence-de-

pendent times are shown in Table 4.

In MTO system, several customers’ orders with order

date, order quantity and due dates are received. There are

total five orders with different order requirements. For

example, order 1 is placed on 4rth of the month and its

expected duration and due date is 3 and 12 days, respec-

tively. Quantity of each part is also given. Complete details

of these orders are shown in Table 5.

Optimization of lateness

At the first stage, scheduling is addressed to optimize total

lateness and penalty costs of all orders. The objective

function for lateness minimization is coded in MATLAB

using and optimized using GA. The coded program is run

ten times and best results are achieved. The parameters

values used for the GA are listed in Table 6.

The optimum sequence achieved using the GA is 2–1–

3–4–5. Total lateness is 1 day and the corresponding pen-

alty cost is $300/day. Only order 4 is exceeding its due date

by 1 day. This due date can be adjusted by negotiating with

customers or improving the time study data to minimize its

expected duration. The scheduling results are summarized

in Table 7.

End

Stopping 
Criteria Meet

Define genetic 
representation of 

chromosomes
Start

Generate initial 
population 
randomly

Fitness Function 
evaluation of each 

Chromosome

Selection of 
reproducing 

chromosomes 
Perform CrossoverPerform Mutation

Yes

No

Fig. 6 Procedure of Genetic Algorithm

Table 3 Processing time of parts on machines

M1 M2 M3 M4 M5 M6

A 0 2 5 7 2 0

B 3 2 0 4 0 3

C 1 3 0 2 5 1

D 4 0 4 0 1 5

E 2 5 4 6 1 3

Table 4 Sequence-dependent

setup times
A B C D E

A 0 1 3 5 8

B 2 0 3 4 6

C 2 5 0 2 3

D 4 7 2 0 8

E 3 8 2 5 0
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In the second stage, the effect of batch size is investi-

gated on total completion time of jobs. Three strategies are

opted and then compared to analyze its effect on comple-

tion time. The strategies considered are: (1) Constant batch

size, (2) Minimum Part Set, and (3) Variable batch size.

Effect of constant batch size on total completion
time

To investigate the effect of batch size on completion time

using GA, order 2 is chosen. The rest of the orders can be

evaluated in the same way. Constant batch size of 5 and 10

is considered for each part. The number of batches of each

part is represented as {A = 2). For batch size of 5, the

number of batches for order 2 is represented as {A = 4,

B = 2, C = 6, D = 2 E = 4}. After completion of each

batch, a setup is required to change the workstation settings

and tools for the next batch. Sequence-dependent setup

times, which are more realistic to the actual production

environment, are considered. The batch size of each part,

processing times and sequence-dependent setup times are

imputed in the MATLAB. Completion time and setup time

are conflicting objectives. The results of the first scenario

in which batch size is taken as 5 are represented in Table 8.

Optimum batch sequences, corresponding completion time,

and setup time are also given. It can be seen from the

Table 8 that as the completion time increases, setup time

decreases and vice versa. To get one optimal solution for

such conflicting objectives is not possible. Therefore, a set

of solutions known as Pareto optimal solutions exist for

such kind of problems and solutions need to tradeoff

between these two conflicting objectives. The tradeoff

solution for batch size of 5 is the first sequence as com-

pletion time is more significant to meet due dates.

For second scenario, experimentation is performed to

observe larger batch size effect on completion time and

setup time. For this case, batch size is taken as 10 for each

part and the results are summarized in Table 9. Larger

batch size gives better results of completion time and setup

time as compared to smaller batch size of 5. Now, the

minimum completion time is 362, which is lower than

scenario 1. Sequence-dependent setup times are also sig-

nificantly reduced. The tradeoff solution by comparing the

scenario 1 results is the first sequence having completion

time of 362 and setup time as 78 min.

Effect of minimum part set strategy on total
completion time

The Minimum Part Set strategy is used in flexible pro-

duction systems to deal with variety of different parts

simultaneously. Mixed model production systems possess

soft flexibility of different part styles and mid volume

production. In mixed model systems, different parts can be

processed on the same machine with small changeovers.

For the FMS, MPS strategy is investigated to analyze its

effect on completion time by considering sequence-

Table 5 The details of the

orders of the customers
Order 1 Order 2 Order 3 Order 4 Order 5

Order release date 4 1 6 10 14

Duration 3 5 4 3 5

Due date 12 8 13 15 22

Penalty cost ($/day) 100 150 200 300 100

Quantity A 10 20 30 10 30

Quantity B 20 10 20 30 20

Quantity C 0 30 10 10 10

Quantity D 30 10 10 20 0

Quantity E 20 20 40 0 10

Table 6 Parameters values used in the GA

Sr. no. Parameters Parameters values

1 Population size 300

2 Generations 500

3 Crossover probability 0.8

4 Mutation probability 0.2

Table 7 Optimal scheduling of orders using the GA

2 1 3 4 5

Start date 1 6 9 13 16

Completion time 6 9 13 16 21

Due date 8 12 13 15 22

Lateness 0 0 0 1 0

Penalty cost 0 0 0 $300 0

Total penalty costs $300
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dependent setup times. MPS demand is obtained by

dividing each part original demand by highest common

divisor (h). For example, demand of order 2 is {A = 20,

B = 10, C = 30, D = 10, E = 20} and h is 10. The MPS

demand for order 2 is {A = 2, B = 1, C = 3, D = 1, E = 2}

and MPS sequence is AABCCCDEE. To determine the

completion time and setup time for complete order 2,

results are multiplied with h. The completion time and

sequence-dependent setup times are solved as multi

objective as both are conflicting objectives. The program is

run ten times and best sequence results are shown in

Table 10.

The results show that completion time and setup times

are conflicting objectives. Optimization of one objective is

giving significant results but at the same time, other

objective is not giving better results, as it can be seen for

sequences 1–5. As completion time decreases, setup time

increases and vice versa. To determine the tradeoff point,

each obtained sequence is repeated h times to get total

objective functions values for order 2. The results are listed

in Table 11.

The results show that as completion time decreases,

setup times drastically increase. The reason is that, in MPS

strategy, a great number of setups are required as compared

to batch production. For the sequence 3, completion time is

378 while setup time is 540 min. Even for the tradeoff

solution, setup times are much higher than constant batch

size results.

Effect of variable batch size on total completion
time

Effect of constant batch size and MPS strategy has been

investigated in previous sections. In this section, batch size

is considered as control variable to analyze its effect on

completion time and setup time. For each part in order 2,

lower bound and upper bound values of batch size are

defined as {lb = 1, ub = 10}. The objective is to optimize

batch size by minimizing conflicting objectives. The

obtained optimum batch size and the number of batches are

represented as {A = (1,20), where 1 means that batch size

is 1 and 20 means total number of batches of part A.

Similarly, other part’s batch size and total batches are

represented in Table 12.

The optimum sequences of variables batch sizes listed in

Table 12 are the best solution obtained in each run while

all Pareto solution of variable batch sizes are shown

graphically in the Fig. 7. Each sequence is represented by a

different color and the best solution of each sequence is

represented in graph by a relatively larger size solid circles.

The results show that the optimum solution among all

sequences is of sequence 1 which is composed of batch size

A = (1,20) B = (2,5) C = (5,6) D = (10,1) E = (2,10).

Table 8 Scenario#1: Effect of batch size on total completion time and setup time

Batch size Number of batches Optimum sequence Completion time

(Min)

Setup time

(Min)

Batch

size = 5

A = 4, B = 2, C = 6, D = 2,

E = 4

AAAAACCCCCCCCCCCCCCC

AAAAAAAAAAAAAAABBBBBBBBBB

CCCCCDDDDDDDDDDCCCCCCCCCC

EEEEEEEEEEEEEEEEEEEE

364 96

BBBBBBBBBBCCCCCCCCCC

AAAAAAAAAAAAAAAAAAAA

CCCCCCCCCCDDDDDDDDDD

CCCCCCCCCCEEEEEEEEEEEEEEEEEEEE

382 90

CCCCCCCCCCCCCCCCCCCC

AAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBCCCCCDDDDDDDDDD

CCCCCEEEEEEEEEEEEEEEEEEEE

398 78

BBBBBBBBBBAAAAAAAAAA

AAAAAAAAAACCCCCCCCCC

CCCCCCCCCCDDDDDDDDDD

CCCCCCCCCCEEEEEEEEEEEEEEEEEEEE

407 72

AAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBCCCCCCCCCC

CCCCCCCCCCCCCCCDDDDDDDDDD

CCCCCEEEEEEEEEEEEEEEEEEEE

423 66
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Comparison of three strategies of batch size

The effect of batch size on completion time and setup time

has been investigated and elaborated in previous sections.

In this section, each of the strategy results is compared to

conclude which batch strategy should be opted in an FMS.

All three strategies are represented graphically in the

Fig. 8. Constant and variable batch size strategy shows a

similar behavior for setup time based on the best value.

However, completion time is minimum for variable batch

size scenario. The MPS strategy shows abnormal results as

compared to other strategies and values of completion time

and setup time are too high. Comparing all three scenarios,

variable batch size shows the minimum completion time of

353 min and setup time of 78 min. Therefore, it is rec-

ommended to use variable batch size strategy to have the

flexibility to opt different batch size of each part to meet

completion time as well as setup time reductions.

Conclusion

This research has presented an effort to optimize schedul-

ing with objective of minimizing lateness and penalty costs

in an FMS. To fulfill on time delivery of orders, the suit-

able batch size strategy selection and execution is

Table 9 Scenario #2: Effect of constant batch size on total completion time and setup time

Batch size Number of batches Optimum sequence Completion time

(Min)

Setup time

(Min)

Batch

size = 10

A = 2, B = 1, C = 3, D = 1,

E = 2

AAAAAAAAAABBBBBBBBBB

DDDDDDDDDDCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCC

EEEEEEEEEEEEEEEEEEEEAAAAAAAAAA

362 78

AAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBDDDDDDDDDD

CCCCCCCCCCCCCCCCCCCC

EEEEEEEEEEEEEEEEEEEECCCCCCCCCC

393 72

AAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBDDDDDDDDDD

CCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCEEEEEEEEEEEEEEEEEEEE

401 60

EEEEEEEEEEEEEEEEEEEE

CCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBDDDDDDDDDD

429 60

Table 10 Effect of MPS

strategy on total completion

time

Sr. No. MPS sequence Optimum sequence Completion time (Min) Setup time (Min)

1 AABCCCDEE EECCCAABD 51 54

2 EECDCCAAB 46 54

3 AABDCCCEE 42 60

4 AABDCCECE 41 90

5 AACBDCCEE 40 102

Table 11 Total completion time

and setup time for complete

order

Sr. No. Optimum sequence Completion time (Min) Setup time (Min)

1 EECCCAABD 459 486

2 EECDCCAAB 414 486

3 AABDCCCEE 378 540

4 AABDCCECE 369 810

5 AACBDCCEE 360 918
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significant as batch size directly affects completion time.

Different batch sizes yield different completion time and

sequence-dependent setup times. Multi-objective Pareto

optimization using GA is performed to investigate and

compare the results of three batch size strategies: (1)

constant batch size of 5 and 10. (2) MPS strategy (3)

variable batch size. In first scenario, the batch size of each

part is kept 5 and then 10. The larger batch size shows

better results. Then, MPS strategy is addressed and results

show that setup times are too high for the minimum value

of completion time. In the last scenario, variable batch size

is used to optimize conflicting objectives. All possible

batch sizes of each part are evaluated using the GA and five

best results are discussed. The results show that variable

Table 12 Results of variable batch sizes

Batch Optimum batch size Optimum sequence Completion time

(Min)

Setup time

(Min)

1 A = (1,20) B = (2,5) C = (5,6) D = (10,1)

E = (2,10)

AAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBCCCCCCCCCCCCCCC

DDDDDDDDDDCCCCCCCCCC

EEEEEEEEEECCCCC

353 78

2 A = (2,10) B = (10,1) C = (1,30) D = (5,2)

E = (2,10)

AACCCCCCCCCCAAAAAAAAAAAAAA

CCCAAAABBBBBBBBBBCCCCCCC

DDDDDCCCCCDDDDDCCCCC

EEEEEEEEEEEEEEEEEEEE

359 150

3 A = (5,4) B = (1,10) C = (10,3) D = (2,5)

E = (5,4)

AAAAABBBBBCCCCCCCCCC

AAAAAAAAAAAAAAABBBBB

DDDDDDDDCCCCCCCCCCEEEEE

DDCCCCCCCCCCEEEEEEEEEEEEEEE

364 156

4 A = (10,2) B = (5,2) C = (10,3) D = (5,2)

E = (10,2)

AAAAAAAAAACCCCCCCCCC

CCCCCCCCCCAAAAAAAAAA

BBBBBBBBBBDDDDDDDDDD

CCCCCCCCCCEEEEEEEEEE

EEEEEEEEEE

364 90

5 A = (5,4) B = (2,5) C = (5,6) D = (10,1)

E = (5,4)

AAAAABBBBBBCCCCCCCCCC

CCCCCAAAAAAAAAAAAAAA

BBBBDDDDDDDDDDCCCCC

CCCCCCCCCCEEEEEEEEEE

EEEEEEEEEE

364 96

Fig. 7 Pareto Solutions of all

variable batch sizes
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batch size strategy exhibits superior results as compared to

constant and MPS batch size strategies. This work signif-

icantly contributes to an FMS to opt suitable batch size

strategy in various demand patterns.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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