
 

* Corresponding author. E-mail: abbasi@sharif.edu 

Journal of Industrial Engineering International        Islamic Azad University, South Tehran Branch 

January 2009, Vol. 5, No. 8, 77-89 

 

EPQ model with depreciation cost and process quality cost 

as continuous functions of time 

Behrouz Afshar Nadjafi 

Assistant Professor, Industrial Engineering Department, Islamic Azad University, Qazvin Branch, Qazvin, Iran 

Babak Abbasi*  

Assistant Professor, Industrial Engineering Department, Sharif University of Technology, Tehran, Iran 

          Abstract 

Extensive research has been devoted to economic production quantity (EPQ) problem. However, little atten-

tion has been paid to problems where depreciation cost and process quality cost must be considered, simulta-

neously. In this paper, we consider the economic production quantity model of minimizing the annual total 

cost subject to depreciation cost and process quality cost, where depreciation cost and process quality cost are 

assumed to be continuous functions of holding time and of production run length, respectively. Local search 

meta-heuristics: iterated local search (ILS) and simulated annealing (SA) are proposed to solve proposed 

model. Finally, the meta-heuristics are computationally compared by using some numerical examples and re-

sults are analyzed.  
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1. Introduction 

The economic production quantity (EPQ) model 

has been widely used in practice because of its sim-

plicity. However, there are some drawbacks in the 

assumption of the original EPQ model and many re-

searchers have tried to improve it with different 

viewpoints, and the absence of the inventory quality 

is one of these shortcomings. 

  The classic EPQ model assumes that quality level 

is fixed at an optimal level. However, in real produc-

tion environment, this assumption does not accurately 

reflect the reality. Because, it can often be observed 

that the product quality depends on the production 

run time of the production process and the holding 

time. Hence, the inventory policy determined by the 

conventional model might be inappropriate. The rela-

tionship between quality and EPQ model has been 

diversely studied over the last decade. Porteus ini-

tially studied the effect of process deterioration on the 

optimal production cycle time [13]. Rosenblatt and 

Lee conducted that the presence of defective products 

motivates smaller lot sizes [14]. Tapiero links optimal 

quality inspection policies and the resulting im-

provements in the manufacturing cost [16]. Lee and 

Rosenblatt considered using process inspection dur-

ing the production run so that the shift to out-of-

control state can be detected and restored earlier [10]. 

Kim and Hong [7] extended the work of Lee and 

Rosenblatt [10] by assuming that an elapsed time un-

til shift is arbitrarily distributed.  

Chan et al. modified the classical EPQ model in 

order to develop a new EPQ model that can be ac-

commodated with different situations and taking con-

sideration of the time factor [1]. Papachristos and 

Konstantaras discussed the issue of non-shortages in 

inventory models with imperfect quality and espe-

cially in models with proportional imperfect quality, 

i.e. models where the rate of defectives is a random 

variable [12].  

Khouja reformulated some inventory models which 

allow for adjustments to the process within a produc-

tion cycle, without interrupting the system [6]. These 

adjustments (minor setups) do not involve performing 

all activities of a full set up and incurs only a fraction 

of a full set up cost and time. Jaber [4] extended the 



 

 

 

78 B. Afshar Nadjafi and B. Abbasi      

 

 

 

work of Khouja [6] by assuming that the setup cost 

reduces because of learning effects, and that the rate 

of generating defects reduces because the production 

process benefits from any changes for eliminating the 

defects, and thus reduces with every minor setup.  

Salameh and Jaber considered a special inventory 

situation where items, received or produced, are not 

of perfect quality [15]. Hou and Lin studied the effect 

of an imperfect production process on the optimal 

production run length when capital investment in 

process quality improvement is adopted [3]. The op-

timal lot sizing and capital investment are appropri-

ately determined, and relevant critical performance 

measures are also discussed. Lee presented a 

cost/benefit model for investments in inventory and 

preventive maintenance in an imperfect production 

system in order to increase product and service qual-

ity [9].  

Recently, Hou considered an EPQ model with im-

perfect production processes, in which the setup cost 

and process quality are functions of capital expendi-

ture [2]. Tsou presented a modified inventory model 

which accounts for imperfect items and Taguchi's 

cost of poor quality [19].  

Tsou and Chen developed a quality improvement 

model based on the hypothesis of a classical EPQ 

model [20]. The practical case of a car seat assembly 

line was used to verify this model. Tsou and Chen 

proposed a dynamic model for a defective production 

system with Poka Yoke [21].  

The practical case of automotive industry was used 

to verify proposed model. Tsou formulated a model 

on quality investment in a dynamic lot sizing produc-

tion system [18].  

None of the above surveyed works assumed depre-

ciation cost and process quality cost to be continuous 

functions of holding time and of production run 

length, respectively. The rationales for these assump-

tions are as follows: 

In the beginning of production cycle, produced 

items have lower quality due to instability of produc-

tion equipment and learning. After some time, quality 

of produced items has the best situation, because of 

stability of production system and learning. Again at 

end of production long cycle, produced items have 

lower quality due to fatigue of operators and equip-

ments, necessity to service operations etc. (see Jaber 

and Bonney [5] and Urban [22] about influential 

learning and forgetting in quality of produced items). 

In this paper cost due to the influence of length pro-

duction cycle in reduction quality, named quality 

cost. 

Produced items in warehouses will be deteriorated 

and generally, in reality the value or utility of goods, 

while in stock, may decrease. Then the value of pro-

duced items may be depending on the holding time. 

The relation between depreciation cost and holding 

time may not be linear. In this paper cost imposed 

because of the influence of holding time in reduction 

quality named depreciation cost that is similar to de-

preciation cost in financial models. 

 These assumptions add complexity of the model 

where a closed form solution was not possible and the 

convexity of the cost function was not validated. This 

therefore requires relying on meta-heuristics search 

methods such as iterated local search (ILS) and simu-

lated annealing (SA) to solve this problem.  

In this paper, we use ILS and present a method to 

solve the economic production quantity model of 

minimizing the total annual cost subject to deprecia-

tion cost and process quality, where depreciation cost 

and process quality costs are assumed to be continu-

ous functions of holding time and of production run 

length, respectively. The paper is organized as fol-

lows:  

Section 2 describes the problem. Section 3 explains 

the basics of simulated annealing (SA) and iterated 

local search (ILS). In Section 4, we explain the steps 

of SA and ILS algorithm to solve the problem. Some 

numerical examples and its computational results are 

represented in Section 5. Finally, Section 6 contains 

the conclusions. 

2. Problem description 

In this section, we derive a mathematical statement 

for the EPQ model with depreciation cost and process 

quality cost. The basic EPQ model is that of deter-

mining a production quantity of an item, subject to 

the following conditions related to the production 

facility and marketplace [17]: 

 

• Demand rate and production rate are continu-

ous, known and constant. Production rate is 

greater than or equal to demand rate. 

• All demand must be met. 

• Holding costs are determined by the value of 

the item. 

• Setup time is assumed to zero. 

• Unit production cost of product and setup cost 

are time and quantity invariant. 

• There are no quantity constraints. 

• No shortages are allowed. 
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Most of the assumptions in our mathematical 

model are the same as those in the conventional EPQ. 

Besides, we impose the following additional assump-

tions: 

 

1) Product depreciation depends on its holding 

time. 

2) The depreciation cost of product is a non-

decreasing function of its holding time. 

3) The process quality cost of product is a con-

vex function of run time. 

 

The first assumption is very clear because in finan-

cial models depreciation depend on time, then after 

producing item it may have depreciation by time 

(holding time). 

The second assumption is also related to concept of 

deprecation because generally deprecation cannot be 

decreasing function. 

The third assumption is very realist. Quality in the 

beginning of the production cycle is low due to non 

learning operators and instability of production 

equipments. After some time, quality of product will 

be in the best situation. Again, by passing time the 

quality of products is going to low due to fatigue of 

the operators and equipments, necessity to service 

operations etc. That means the process quality is a 

concave function of production run length. Therefore, 

we assume the process quality cost of product is a 

convex function of run time. 

In classic EPQ model value or quality of goods are 

assumed to be independent of holding time and pro-

duction run length. Generally, in reality the value or 

utility of goods, while in stock, may decrease in case 

of deteriorating items. Stored items may be unprofit-

able depending on holding time. We suppose that 

depreciation cost is a continuous non-decreasing 

function h(t) of holding time. Also, production run 

length can influence the quality of produced goods. 

As explanation at above, we suppose that process 

quality cost is a continuous convex function g(t) of 

production run length. 

In order to state the problem mathematically, let: 

 

Q  Production quantity (real positive decision 

variable). 

"Q  Local optimum production quantity. 

*Q  Economic production quantity (positive 

real decision. 

D   Annual demand rate of product. 

P   Annual production rate of product. 

C   Unit production cost of product. 

h   Annual unit holding cost. 

A   Fixed setup cost of production system. 

T   Cycle length.  

pT  Production period length in a cycle. 

dT  Only-demand period length in a cycle. 

)(th  Non-decreasing continuous function of de-

preciation cost. 

)(tg  Convex continuous function of process 

quality cost.  

)(tI p  Inventory level at time t of production pe-

riod.      

)(tI d  Inventory level at time t of only-demand 

period.       

ATC  Annual total cost (objective function). 

 

The behavior of inventory level in EPQ model is il-

lustrated in Figure1.  

The objective is to find economic production quan-

tity *Q , in order to minimize the annual total cost 

ATC. ATC is computed as follows: 
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where the first term is production cost. The second 

term is setup cost. The third term is the holding cost 

that related to investment cost and costs of warehous-

ing and it dose not contain the cost of the deteriora-

tion products. The forth term is the process quality 

cost. Fifth and sixth terms are depreciation cost of 

inventory holding that is different from the third term 

and )(th  may have any non-decreeing function. 

From graphical representation of EPQ model in 

Figure 1, we have: 
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Substituting Equations (2), (3), (4) and (5) into 

Equation (1) yields: 
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Also, from graphical representation of EPQ model 

in Figure 1, we have: 

 

)1(max
P

D
QI −=                                                   (7) 

 

Substituting Equation (7) into Equation (6) yields 

the following expression of the annual total cost 

ATC: 
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The first order condition for Q yields its optimal 

choice (see appendix A): 
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Notice that the ATC in Equation (8) is nor convex 

or concave (since it's second derivative is sign free 

(see Appendix B)). Then "Q is a local minimum solu-

tion of ATC if: 
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Replacing Equation (9) in Equation (10) yields: 
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This problem poses a difficult computational task 

due to the nonlinearities involved, depending on 

functions h(t) and g(t).  Due the complexity to solve 

this equation, we developed a method based on iter-

ated local search (ILS) metaheuristic.  

3. General simulated annealing and iterated local 

search 

3.1. Simulated annealing  

Simulated annealing is one of the most novel algo-

rithms initially presented by Kirkpatrick et. al. [8]. 

Similar to other meta-heuristic algorithms, such as 

Genetic algorithm, Tabu search, and Ant algorithm, it 

attempts to solve hard combinatorial optimization 

problems through controlled randomization. Ease of 
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use and provision of good solutions to real-world 

problems makes this algorithm be one of the most 

powerful and popular meta-heuristics to solve many 

optimization problems.  

The basic structure of SA algorithm is presented in 

Table 1, where the following notation is used: 

S  The current solution. 

*
S  The best solution. 

nS  Neighboring solution.  

)(Sf  The value of objective function at solution S. 

n  Repetition counter. 

0T  Initial temperature. 

L  Number of repetition allowed at each tem-

perature level. 

p  Probability of accepting Sn when it is not 

better than S 

 

It is obvious that this procedure just takes into ac-

count the minimization problems, hence while per-

forming a maximization problem, the objective func-

tion is multiplied by (-1) to obtain a capable form. 

The algorithm starts with an initial solution for the 

problem. As it is obvious from table 1, SA has two 

cycles, inner and outer. In the inner cycle of the SA, 

repeated while Ln < , a neighboring solution nS of 

the current solution S is generated.  

If 0≤∆  ( nS  is better than S), then the generated 

solution replaces the current solution, otherwise the 

solution is accepted with a criterion probability, 

say
T

ep
∆−= . The value of the temperature, T, de-

creases in each iteration of the outer cycle of the al-

gorithm. 

As a meta-heuristic algorithm, the most important 

feature of this algorithm is the possibility of accept-

ing a worse solution, hence allowing it to prevent fal-

ling into a local optimum trap. Obviously, the prob-

ability of accepting a worse solution decreases as the 

temperature decreases in each outer cycle. The per-

formance of SA depends on the definition of the sev-

eral control parameters: 

1. The initial temperature (T0) should be high 

enough that in the first iteration of the algorithm, the 

probability of accepting a worse solution is, at least, 

of 80% [2]. 

2. The most commonly used temperature reducing 

function is geometric; i.e. 1−= ii CTT  in which C < 1 

and constant. Typically, 95.075.0 ≤≤ C . 

3. The length of each temperature level (L) deter-

mines the number of solutions generated at a certain 

temperature, T. 

4. The stopping criterion defines when the system 

has reached a desired energy level. Equivalently it 

defines: 

• The total number of solutions generated, 

• The temperature at which the desired energy 

level is reached (freezing temperature), 

• The acceptance ratio (ratio between the num-

ber of solutions accepted and the number of 

solutions generated). 

 

It is obvious that these control parameters are cho-

sen with respect to the specific problem at hand. 

When adapting this general algorithm to a specific 

problem, the procedure to generate both initial and 

neighboring solutions is very important in addition to 

the control parameter.  

3.2. Iterated local search  

Iterated local search is a simple but powerful meta-

heuristic algorithm [11]. It applies local search to an 

initial solution until it finds a local optimum; then it 

perturbs the solution and it restarts local search. The 

importance of the perturbation is obvious: too small a 

perturbation might not enable the system to escape 

from the basin of attraction of the local optimum just 

found. On the other side, too strong a perturbation 

would make the algorithm similar to a random restart 

local search.  

A local search is effective if it is able to find good 

local optima, that is, if it can find the basin of attrac-

tion of those states. When the search space is wide 

and / or when the basin of attraction of good local 

optima is small, a simple multi-start algorithm is al-

most useless. An effective search could be designed 

as a trajectory only in the set of local optima 
*

s , in-

stead of in the set s of all the states. Unfortunately, in 

most cases there is no feasible way of introducing a 

neighborhood structure for 
*

s . Therefore, a trajectory 

along local optima 
**

2
*
1 ,...,, tsss is performed, by ap-

plying the following scheme: 
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Table 1.  Simulated Annealing Algorithm for minimization problem. 

Initialize the SA control parameter (T0 , L) 

Select an initial solution, S0 

Set T=T0 ; Set  S=S0 ; Set  S*
=S0 ; Calculate  f(S0) ; 

While the stop criterion is not reached do: 

     Set n = 1 ; 

     While n <  L do: 

          Generate solution Sn in the neighborhood of S0 ;   Calculate ∆ = f(Sn) -  f(S) ; 

          if 0∆ ≤   

                S=Sn 

          else 

               generate a random number, ( )0,1r ∈  

                if  ( r ≤
/T

p e
− ∆

= ) ; 

                     S=Sn  ;   n = n+1 ; 

               end 

          end 

          if (  f(S )< f(S
*
)  ) 

                 S
*
 = Sn   ; 

          end 

     end 

     reduce the temperature T; 

end   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Td Tn 

T 

D 

P 

P-D 

Imax 

Q 

Time 

Figure 1. The relation between inventory level and time. 
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1) Execute local search from an initial state s 

until a local optimum 
*

s  is found. 

2) Perturb 
*

s and obtain s′ . 

3) Execute local search from s′ until a local 

optimum 
'*

s  is reached. 

4) On the basis of an acceptance criterion de-

cide whether to set 
*

s        s′ . 

5) Go to step 2. 

 

The requirement on the perturbation of s is to pro-

duce a starting point for local search such that a local 

optimum different from s is reached. However, this 

new local optimum should be closer to s than a local 

optimum produced by a random restart. The accep-

tance criterion acts as a counter balance, as it filters 

and gives feedback to the perturbation action, de-

pending on the characteristics of the new local opti-

mum. A high level description of ILS steps is pre-

sented in Table 2. 

The design of ILS algorithms has several degrees 

of freedom in the choice of the initial solution, per-

turbation and acceptance criteria.   

The construction of initial solutions should be fast, 

and initial solutions should be a good starting point 

for local search. The fastest way of producing an ini-

tial solution is to generate it at random; however, this 

procedure being the easiest way to produce a solution 

for unconstrained optimization problems should be 

carefully adjusted to generate feasible solutions for 

constrained problems. The perturbation is usually 

nondeterministic in order to avoid cycling. Its most 

important characteristic is the strength, simply de-

fined as the amount of changes made on the current 

solution. The strength can be either fixed or variable. 

In the first case, the distance between perturbation 

and Local Search is kept constant, independently of 

the problem size. However, a variable strength is in 

general more effective, since it has been experimen-

tally found that, in most of the problems, the bigger 

the problem size, the larger should the strength be.  

A second choice is the mechanism to perform per-

turbations. This may be a random mechanism, or the 

perturbation may be produced by a deterministic or 

semi-deterministic method.  

The third important component is the acceptance 

criterion. Two extreme examples can be defined as 

(1) accepting the new local optimum only in case of 

improvement and (2) always accepting the new solu-

tion. In-between, there are several possibilities. For 

example, it is possible to adopt a kind of annealing 

schedule: accept all the improving new local optima 

and accept also the non-improving ones with a prob-

ability that is a function of the temperatureτ and the 

difference of objective values, in formulas: 









−
−

<

=

otherwise    )
)()(

exp(

 )()(    if        1

)Acceptance( *'*

*'*

τ

ss

ss
ff

ff

P (13) 

4. Using SA and ILS in proposed model 

In this section we proposed two metaheuristic 

methods to solve the proposed model. 

4.1. Applying ILS algorithm to the problem 

To obtain the economic production quantity of the 

above mentioned model we are to minimize ATC, 

using iterated local search. In this regard, the steps of 

this algorithm are briefly presented bellow where the 

following notation is used: 

0Q  Initial solution. 

Q   Current solution. 

'*
Q  Local optimum solution. 

*
Q  Best solution. 

)(QATC  Value of the objective function at solution Q. 

ε   Neighborhood step-length parameter. 

λ   Perturbation step-length parameter. 

k   Repetition counter. 

L   Number of repetitions allowed. 

 

Initialize the ILS control parameter ( λ ,ε ,L)  

select an initial solution Q0 between 0 and D; 

set Q = Q0;  

while |ATC' (Q)| >ε  do 

            if ATC' (Q) < 0  

                                 Q = Q +ε ; 

           else       
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           if ATC' (Q) > 0  

                                 Q = Q -ε ; 

          end 

end 

set Q'
* 
= Q; 

set Q
* 
= Q'

*
; 

set k = 1; 

while k < L do: 

      generate a binary random number ]1,0[∈z  

     Q = z. [Q'
*
+ λ . (D-Q'

*
)] + (1-z). λ . Q'

*
; 

     while |ATC' (Q)| >ε  do 

            if ATC' (Q) < 0  

                                 Q = Q +ε ; 

           else       

           if ATC' (Q) > 0  

                                 Q = Q -ε ; 

          end 

     end 

     set Q'
* 
= Q; 

     if ATC (Q'
*
) ≤ ATC (Q

*
) 

                set Q
* 
= Q'

*
; 

    end 

    k = k +1; 

    reduce the Perturbation step-length parameter λ ;  

end. 

The algorithm starts with an initial solution (pro-

duction quantity) for the problem between 0 and D, at 

random, and by initializing the so-called perturbation 

step-length parameter λ , the neighborhood step-

length parameterε  and the number of repetitions al-

lowed, L.  

To generate neighborhood solutions we use Equa-

tion (12): If the first derivative of Equation (8) at so-

lution Q  is negative, a neighborhood solution is gen-

erated by right shift of current solution by an amount 

ofε , and if the first derivative of Equation (8) at so-

lution Q  is positive, a neighborhood solution is gen-

erated by left shift of current solution by an amount 

ofε , and then the generated solution replaces the cur-

rent one. This procedure continues until a local opti-

mum solution 
'*

Q  is reached, namely, the first de-

rivative of Equation (8) at solution Q  almost equals 

to zero. This first local optimum solution sets as best 

solution 
*

Q . In the inner cycle of ILS, repeated while 

k < L, a perturbed solution of the current local opti-

mum solution 
'*

Q  is generated as follows: with gen-

erating a binary random number z, we select a direc-

tion for perturbation (right or left). 

Perturbed solution is obtained by adding to or sub-

tracting from current local optimum solution 
'*

Q , a 

dynamic amount, depending on the perturbation di-

rection and λ , where ]1,0[∈λ  is the perturbation 

step-length parameter playing an important role in 

our algorithm. The generated solution replaces the 

current one. Local search procedure is applied to the 

newly chosen solution. We suppose that after the lo-

cal optimum is reached, it is always acceptable. 

Hereby, the most important feature of this algorithm, 

as a metaheuristic, is the possibility of accepting a 

worse solution, which can allow it to prevent falling 

into local optimum trap.  

The choice of an appropriate λ is crucial for the 

performance of the algorithm. The value of parameter 

λ decreases during the search process, thus at the 

beginning of the search, diversification is high and as 

it gradually goes on its search path, intensification 

becomes more apparent. The terms diversification 

generally refers to the exploration of the search space, 

whereas the term intensification refers to the exploita-

tion of the accumulated search experience. Hereby, 

with the choice of an appropriate λ , a dynamic com-

promise is made between diversification and intensi-

fication. 

In proposed model the values of Q  must be integer. 

This can be problematic, because it may be the case 

that the optimum be an integer neighborhood of a 

local but not the global solution.  

To overcome this problem in this algorithm we 

save the immediate integer neighborhoods of each 

solution in each iteration to make sure that we pick 

the right solution.  

4.2. Applying SA algorithm to the problem 

For SA the initial solution is chosen to be an 

amount equal to the half of the demand. Integer 

neighborhoods are generated by adding or subtracting 

an integer value, say neighborhood length, to or from 

the current solution. The neighborhood length de-

pends on temperature. We set 5=L and 95.0=C ; 

but we set 0T and fT  at different values for different 

problem sizes. 
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Table 2. Iterated Local Search (ILS) Algorithm. 

                                                              s0             Generate Initial Solution () 

                                                              s*             Apply Local Search(s0) 

                                                             While termination condition not met do 

s'               Apply perturbation (s*) 

s'*              Apply Local Search (s') 

                  s*              Apply acceptance criterion (s*, s'*) 

                             Memorize Best Found Solution 

                                                             End While 

 

 

 

Table 3. Comparison SA, ILS and enumeration methods (P=1500, D=1300). 

Index→ 

Method 

↓ 

 
*

Q  

 

ATC  Time (Sec) 

Enumeration 1075 65974 469.49 

Iterated Local Search 1075 65974 224.84 

Simulated Annealing 1075 65974 182.43 

 

 

Table 4. Comparison SA, ILS and Enumeration methods (P=2200, D=1900). 

Index→ 

Method 

↓ 

 
*

Q  

 

ATC  Time (Sec) 

Enumeration 1576 65974 682.24 

Iterated Local Search 1576 65974 309.12 

Simulated Annealing 1576 65974 180.09 

 

 

Table 5. Comparison SA, ILS and enumeration methods (P=3500, D=3000). 

Index→ 

Method 

↓ 

 
*

Q  

 

ATC  Time (Sec) 

Enumeration 2507 151990 1073.80 

Iterated Local Search 2507 151990 453.93 

Simulated Annealing 2507 151990 172.46 
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Table 6. Comparison SA, ILS and Enumeration methods (P=10000, D=14000).  

Index→ 

Method 

↓ 

 
*

Q  

 

ATC  Time (Sec) 

Enumeration 9998 509710 3332.6 

Iterated Local Search 9998 509710 1046.40 

Simulated Annealing 9998 509710 594 

 

 

 

 

Table 7. Comparison SA, ILS and Enumeration methods (P=100000, D=130000). 

Index→ 

Method 

↓ 

 
*

Q  

 

ATC  Time (Sec) 

Enumeration 13 1838500 34069 

Iterated Local Search 92955 5079500 11143 

Simulated Annealing 92955 5079500 2503.50 
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Figure 2. Comparison of SA, ILS and enumeration method.  
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5. Numerical examples 

In this section, we solve a problem instance for il-

lustrative and comparative purposes. In addition, to 

know the effects of the perturbation rule and accep-

tance criterion, different approaches have been cho-

sen and used to optimize Equation (8). Let us con-

sider an inventory system with the following data: 

P=1500, 2200, 3500, 14000, 13000 units/year,  

D=1300, 1900, 3000, 10000, 100000 units/year, 

 A=200, C=3, h=2, )ln(30)( )2.0(7
tetg

t −= −
,  

t
eCCth

005.0)5/()( −= .  

We select 5=λ  in ILS.  

The initial solution is considered as the half of the 

demand. Tables 3 to 7 show the different measure 

one can use to compare the performance of these 

algorithms. To be able to compare the algorithms in 

terms of timing and the minimum value that they 

achieve we also did a direct enumeration search to 

establish the model, but good to serve as a compari-

son platform for which the results are shown in cor-

responding tables. 

Almost in all of the cases all the algorithms report 

the same EPQ, hence same objective function, 

therefore the only criterion that is left for the com-

parison sake is the run time. As obviously can be 

viewed from Figure 2, simulated annealing algo-

rithm outperforms the other algorithms. Also, as the 

problem size gets bigger SA seems to perform 

much more efficiently.  

Comparison of CPU time requirements of SA, 

ILS and enumeration method is shown in Figure 2. 

We could clearly see that for each dimension of 

model's parameters P and D, the simulated anneal-

ing and iterated local search have good performance 

in time by comparing with enumeration method, 

whereas the growth of the parameters dimension 

improves the efficiency of the simulated annealing 

algorithm respect to iterated local search. 

6. Conclusion 

In reality the value or utility of goods, while in 

stock, may decrease in case of deteriorating items. 

Also, production run length can influence the qual-

ity of produced goods. In this paper, economic pro-

duction quantity (EPQ) model has been developed 

considering both the depreciation cost of stored 

items and process quality cost. We have assumed 

depreciation cost to be a continuous non-decreasing 

function of holding time, and process quality cost to 

be a continuous convex function of production run 

length. The problem has been described using a 

mathematical model, and then the simulated anneal-

ing (SA) and Iterated Local Search (ILS) have been 

proposed to solve it. From the numerical results, we 

clearly see that the ILS algorithm performs better 

than the enumeration method. On the other hand, 

SA outperforms ILS.  
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Appendix A 

Computation procedure of the first derivative of 

ATC - Equation (9). 

Recall Equation (8): 
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Finally, one obtains Equation (9) as follows: 
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Appendix B 

Computation procedure of the second derivative 

of ATC . 

Recall Equation (9): 
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It is obvious that second derivative of ATC is sign 

free. 

 

 

 

 

 


